Fostering Carbon Credits to Finance Wildfire Risk Reduction Forest Management in Mediterranean Landscapes
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Landscape Data
2.3. Forest Fuel Treatments
2.4. Wildfire Occurrence
2.5. Fire-Weather Scenarios
2.6. Fire Spread Simulation Modeling
2.7. Expected Carbon Emissions
2.8. Cost-Efficiency Analysis
3. Results
3.1. Expected Carbon Emissions
3.2. Carbon Emission Reduction in Managed Scenarios
3.3. Financing Fuel Treatment Cost with Carbon Credits
4. Discussion and Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A. Dominant Vegetations Types and Historic Fire Activity
Planning Areas (Code) | Area (ha) | Dominant Vegetation Type and Tree Species (abbreviation) | Burned Area (% yr−1) | Fire Occurrence (ip km−2 yr−1) | LF Burned Area (%) | LF Number (%) | Largest Wildfire |
---|---|---|---|---|---|---|---|
Vall de Rialb (1) | 23,467 | Evergreen and semi-evergreen oak (Qsp) stands under post-fire regeneration and mature stands of adult black pine (Pn) | 0.21 | 0.009 | 87 | 3 | 4986 ha on 17 July 2009 |
Capçaleres del Llobregat (2) | 62,293 | Mature stands of Scots pine (Ps) and black pine (Pn) | 0.47 | 0.013 | 96 | 3 | 25,368 ha on 4 July 1994 |
Replans del Berguedá (3) | 52,591 | Post-fire regeneration Aleppo pine (Ph) young stands under and mature stands of Scots pine (Ps) | |||||
Els Aspres (4) | 18,392 | Post-fire regeneration young stands and adult stands of cork oak (Qs) woodlands managed for cork production | 1.49 | 0.030 | 95 | 3 | 19,612 ha on 19 July 1982 |
Serres d’Ancosa (5) | 22,957 | Mature stands of Aleppo pine (Ph) | 0.49 | 0.034 | 86 | 2 | 3852 ha on 6 July 1986 |
El Montmell (6) | 15,461 | Stands of Aleppo pine (Ph), evergreen and semi-evergreen oak (Qsp) forests, and post-fire regeneration mixed forests (Mx) |
Appendix B. Fire Spread Model Calibration
Appendix C. Dead Fuel Loads in Dominant Forest Types
Appendix D. Methodological Flowchart
References
- van der Werf, G.R.; Randerson, J.T.; Giglio, L.; Collatz, G.J.; Mu, M.; Kasibhatla, P.S.; Morton, D.C.; DeFries, R.S.; Jin, Y.; van Leeuwen, T.T. Global fire emissions and the contribution of deforestation, savanna, forest, agricultural, and peat fires (1997–2009). Atmos. Chem. Phys. 2010, 10, 11707–11735. [Google Scholar] [CrossRef] [Green Version]
- Giglio, L.; Boschetti, L.; Roy, D.P.; Humber, M.L.; Justice, C.O. The Collection 6 MODIS burned area mapping algorithm and product. Remote Sens. Environ. 2018, 217, 72–85. [Google Scholar] [CrossRef]
- San-Miguel-Ayanz, J.; Moreno, J.M.; Camia, A. Analysis of large fires in European Mediterranean landscapes: Lessons learned and perspectives. For. Ecol. Manag. 2013, 294, 11–22. [Google Scholar] [CrossRef]
- Balde, B.; Vega-García, C. Estimación de emisiones de GEI y sus trayectorias en grandes incendios forestales en Cataluña, España. Madera Y Bosques 2019, 25, e2521764. [Google Scholar] [CrossRef]
- Rodrigues, M.; Alcasena, F.; Gelabert, P.; Vega-García, C. Geospatial modeling of containment probability for escaped wildfires in a Mediterranean region. Risk Anal. 2020, 40, 1762–1779. [Google Scholar] [CrossRef] [PubMed]
- Tedim, F.; Leone, V.; Amraoui, M.; Bouillon, C.; Coughlan, M.R.; Delogu, G.M.; Fernandes, P.; Ferreira, C.; McCaffrey, S.; McGee, T.K.; et al. Defining extreme wildfire events: Difficulties, challenges, and impacts. Fire 2018, 1, 9. [Google Scholar] [CrossRef] [Green Version]
- Moreira, F.; Ascoli, D.; Safford, H.; Adams, M.A.; Moreno, J.M.; Pereira, J.M.C.; Catry, F.X.; Armesto, J.; Bond, W.; González, M.E.; et al. Wildfire management in Mediterranean-type regions: Paradigm change needed. Environ. Res. Lett. 2020, 15, 011001. [Google Scholar] [CrossRef]
- Curt, T.; Frejaville, T. Wildfire Policy in Mediterranean France: How Far is it Efficient and Sustainable? Risk Anal. 2017, 38, 472–488. [Google Scholar] [CrossRef] [Green Version]
- Palaiologou, P.; Kalabokidis, K.; Ager, A.A.; Day, M.A. Development of comprehensive fuel management strategies for reducing wildfire risk in Greece. Forests 2020, 11, 789. [Google Scholar] [CrossRef]
- Salis, M.; Del Guiudice, L.; Arca, B.; Ager, A.A.; Alcasena, F.; Lozano, O.; Bacciu, V.; Spano, D.; Duce, P. Modeling the effects of different fuel treatment mosaics on wildfire spread and behavior in a Mediterranean agro-pastoral area. J. Environ. Manag. 2018, 212, 490–505. [Google Scholar] [CrossRef]
- Finney, M.A. A computational method for optimizing fuel treatment location. Int. J. Wildland Fire 2007, 16, 702–711. [Google Scholar] [CrossRef] [Green Version]
- Oliveira, T.M.; Barros, A.M.G.; Ager, A.A.; Fernandes, P.M. Assessing the effect of a fuel break network to reduce burnt area and wildfire risk transmission. Int. J. Wildland Fire 2016, 25, 619–632. [Google Scholar] [CrossRef]
- Fernandes, P.M. Scientific support to prescribed underburning in southern Europe: What do we know? Sci. Total Environ. 2018, 630, 340–348. [Google Scholar] [CrossRef]
- Lasanta, T.; Khorchani, M.; Perez-Cabello, F.; Errea, P.; Saenz-Blanco, R.; Nadal-Romero, E. Clearing shrubland and extensive livestock farming: Active prevention to control wildfires in the Mediterranean mountains. J. Environ. Manag. 2018, 227, 256–266. [Google Scholar] [CrossRef] [PubMed]
- Varela, E.; Górriz-Mifsud, E.; Ruiz-Mirazo, J.; López-i-Gelats, F. Payment for Targeted Grazing: Integrating Local Shepherds into Wildfire Prevention. Forests 2018, 9, 464. [Google Scholar] [CrossRef] [Green Version]
- Ascoli, D.; Russo, L.; Giannino, F.; Siettos, C.; Moreira, F. Firebreak and Fuelbreak. In Encyclopedia of Wildfires and Wildland-Urban Interface (WUI) Fires; Manzello, S.L., Ed.; Springer: Berlin/Heidelberg, Germany, 2018; pp. 1–9. [Google Scholar]
- Elia, M.; Lovreglio, R.; Ranieri, N.; Sanesi, G.; Lafortezza, R. Cost-effectiveness of fuel removals in Mediterranean wildland-urban interfaces threatened by wildfires. Forests 2016, 7, 149. [Google Scholar] [CrossRef] [Green Version]
- Costa, P.; Castellnou, M.; Larrañaga, A.; Miralles, M.; Daniel, K. Prevention of Large Wildfires Using the Fire Types Concept; Graf, U.T.d., Ed.; Cerdanyola del Vallès: Barcelona, Spain, 2011. [Google Scholar]
- Quilez, R.; Valbuena, L.; Vendrell, J.; Uytewaal, K.; Ramirez, J. Establishing Propagation Nodes as a Basis for Preventing LargeWildfires: The Proposed Methodology. Front. For. Glob. Chang. 2020, 3, 137. [Google Scholar] [CrossRef]
- Romero-Vivó, M.; Soriano, J.L.; Quílez, R.; Gorgonio, E.; Caballero, D.; Larrañaga, A.; Rodríguez y Silva, F.; Blanco, J.; Ortega, G.; López del Río, R.; et al. Definición y Recomendaciones Técnicas en el Diseño de Puntos Estratégicos de Gestión. Available online: https://agroambient.gva.es/documents/162905929/164277177/Dec%C3%A1logo+Valencia+Jornada+PEG/510265c0-fd5e-48b6-bba2-d3038264a134 (accessed on 15 September 2021).
- Gonzalez-Olabarria, J.R.; Reynolds, K.M.; Larrañaga, A.; Garcia-Gonzalo, J.; Busquets, E.; Pique, M. Strategic and tactical planning to improve suppression efforts against large forest fires in the Catalonia region of Spain. For. Ecol. Manag. 2019, 432, 612–622. [Google Scholar] [CrossRef]
- Castellnou, M.; Prat-Guitart, N.; Arilla, E.; Larrañaga, A.; Nebot, E.; Castellarnau, X.; Vendrell, J.; Pallàs, J.; Herrera, J.; Monturiol, M.; et al. Empowering strategic decision-making for wildfire management: Avoiding the fear trap and creating a resilient landscape. Fire Ecol. 2019, 15, 31. [Google Scholar] [CrossRef]
- Ruiz-Peinado, R.; Bravo-Oviedo, A.; López-Senespleda, E.; Bravo, F.; Del Rio, M. Forest management and carbon sequestration in the Mediterranean region: A review. For. Syst. 2017, 26, eR04S. [Google Scholar] [CrossRef]
- Prada, M.; Bravo, F.; Berdasco, L.; Canga, E.; Martínez-Alonso, C. Carbon sequestration for different management alternatives in sweet chestnut coppice in northern Spain. J. Clean. Prod. 2016, 135, 1161–1169. [Google Scholar] [CrossRef]
- Piqué, M.; Valor, T.; Castellnou, M.; Pagés, J.; Larrañaga, A.; Miralles, M. Integració del Risc de Grans Incendis Forestals (GIF) en la Gestió Forestal. Incendis Tipus i Vulnerabilitat de les Estructures Forestals al Foc de Capçades; Generalitat de Catalunya, Departament d’Agricultura, Ramaderia, Pesca, Alimentació i Medi Natural, Centre de la Propietat Forestal, Eds.; Generalitat de Catalunya: Barcelona, Spain, 2011; p. 122. [Google Scholar]
- Beltrán, M.; Piqué, M.; Vericat, P. Models de Gestió per als Boscos de pi Blanc (Pinus halepensis L.): Producció de Fusta i Prevenció D’incendis Forestals; Centre de la Propietat Forestal, Generalitat de Catalunya: Barcelona, Spain, 2011; 124p. [Google Scholar]
- Chiono, L.A.; Fry, D.L.; Collins, B.M.; Chatfield, A.H.; Stephens, S.L. Landscape-scale fuel treatment and wildfire impacts on carbon stocks and fire hazard in California spotted owl habitat. Ecosphere 2017, 8, e01648. [Google Scholar] [CrossRef]
- James, J.N.; Kates, N.; Kuhn, C.D.; Littlefield, C.E.; Miller, C.W.; Bakker, J.D.; Butman, D.E.; Haugo, R.D. The effects of forest restoration on ecosystem carbon in western North America: A systematic review. For. Ecol. Manag. 2018, 429, 625–641. [Google Scholar] [CrossRef]
- Campbell, J.L.; Harmon, M.E.; Mitchell, S.R. Can fuel-reduction treatments really increase forest carbon storage in the western US by reducing future fire emissions? Front. Ecol. Environ. 2011, 10, 83–90. [Google Scholar] [CrossRef]
- Cervera, T.; Pino, J.; Marull, J.; Padró, R.; Tello, E. Understanding the long-term dynamics of forest transition: From deforestation to afforestation in a Mediterranean landscape (Catalonia, 1868–2005). Land Use Policy 2019, 80, 318–331. [Google Scholar] [CrossRef]
- Seijo, F.; Cespedes, B.; Zavala, G. Traditional fire use impact in the aboveground carbon stock of the chestnut forests of Central Spain and its implications for prescribed burning. Sci. Total Environ. 2018, 625, 1405–1414. [Google Scholar] [CrossRef]
- Vadell, E.; De Miguel, S.; Pemán, J. La repoblación forestal en España: Las especies utilizadas desde 1877 a partir de las cartografías forestales. Hist. Agraria. Rev. Agric. Hist. Rural. 2019, 107–136. [Google Scholar] [CrossRef]
- Pausas, J.G.; Fernández-Muñoz, S. Fire regime changes in the Western Mediterranean Basin: From fuel-limited to drought-driven fire regime. Clim. Chang. 2012, 110, 215–226. [Google Scholar] [CrossRef] [Green Version]
- Martín-Alcón, S.; Coll, L. Unraveling the relative importance of factors driving post-fire regeneration trajectories in non-serotinous Pinus nigra forests. For. Ecol. Manag. 2016, 361, 13–22. [Google Scholar] [CrossRef] [Green Version]
- Sánchez-Pinillos, M.; Ameztegui, A.; Kitzberger, T.; Coll, L. Relative size to resprouters determines post-fire recruitment of non-serotinous pines. For. Ecol. Manag. 2018, 429, 300–307. [Google Scholar] [CrossRef]
- Salis, M.; Arca, B.; Alcasena-Urdiroz, F.; Massaiu, A.; Bacciu, V.; Bosseur, F.; Caramelle, P.; Dettori, S.; Fernandes de Oliveira, A.S.; Molina-Terren, D.; et al. Analyzing the recent dynamics of wildland fires in Quercus suber L. woodlands in Sardinia (Italy), Corsica (France) and Catalonia (Spain). Eur. J. For. Res. 2019, 138, 415–431. [Google Scholar] [CrossRef] [Green Version]
- Kay, S.; Rega, C.; Moreno, G.; den Herder, M.; Palma, J.H.N.; Borek, R.; Crous-Duran, J.; Freese, D.; Giannitsopoulos, M.; Graves, A.; et al. Agroforestry creates carbon sinks whilst enhancing the environment in agricultural landscapes in Europe. Land Use Policy 2019, 83, 581–593. [Google Scholar] [CrossRef]
- Verkerk, P.J.; Martinez de Arano, I.; Palahí, M. The bio-economy as an opportunity to tackle wildfires in Mediterranean forest ecosystems. For. Policy Econ. 2018, 86, 1–3. [Google Scholar] [CrossRef]
- Errea, M.P.; Arnáez, J.; Ortigosa, L.; Oserin, M.; Ruiz-Flaño, P.; Lasanta, T. Marginación y paisaje en una montaña submediterránea (1956–2001): El ejemplo de Camero Viejo (Sistema Ibérico, La Rioja). Nimbus 2007, 19, 53–71. [Google Scholar]
- Vacchiano, G.; Berretti, R.; Romano, R.; Motta, R. Voluntary carbon credits from improved forest management: Policy guidelines and case study. Iforest Biogeosci. For. 2018, 11, 1–10. [Google Scholar] [CrossRef] [Green Version]
- Retana, J.; Maria Espelta, J.; Habrouk, A.; Ordoñez, J.L.; de Solà-Morales, F. Regeneration patterns of three Mediterranean pines and forest changes after a large wildfire in northeastern Spain. Écoscience 2002, 9, 89–97. [Google Scholar] [CrossRef]
- GENCAT. Fitxes de les Unitats de Paisatge; Generalitat de Catalunya; Departament de Territori i Sostenibilitat: Barcelona, Spain, 2016. [Google Scholar]
- MAAyMA. Estadística General de Incendios Forestales. Centro de Coordinación de la Información Nacional Sobre Incendios Forestales; Ministerio de Agricultura, Alimentación y Medio Ambiente: Madrid, Spain, 2015. [Google Scholar]
- Gonzalez-Olabarria, J.R.; Mola-Yudego, B.; Coll, L. Different Factors for Different Causes: Analysis of the Spatial Aggregations of Fire Ignitions in Catalonia (Spain). Risk Anal. 2015, 35, 1197–1209. [Google Scholar] [CrossRef] [PubMed]
- Ager, A.A.; Vaillant, N.M.; Finney, M.A. Integrating fire behavior models and geospatial analysis for wildland fire risk assessment and fuel management planning. J. Combust. 2011, 2011, 572452. [Google Scholar] [CrossRef] [Green Version]
- Scott, J.H.; Burgan, R.E. Standard Fire Behavior Fuel Models: A Comprehensive Set for Use with Rothermel’s Surface Fire Spread Model; RMRS-GTR-153; USDA Forest Service, Rocky Mountain Research Station: Fort Collins, CO, USA, 2005; p. 72. [Google Scholar]
- GENCAT. Sistema D’informació Geogràfica de Parcel·les Agrícoles (SIGPAC); Departament d’Agricultura, Ramaderia, Pesca i Alimentació; Generalitat de Catalunya: Barcelona, Spain, 2016. [Google Scholar]
- GENCAT. Cartografia dels Hàbitats a Catalunya; Generalitat de Catalunya, Departament de Territori i Sostenibilitat: Barcelona, Spain, 2012; p. 359. [Google Scholar]
- ICGC. Mapes de Variables Biofísiques de L’arbrat de Catalunya; ICGC: Barcelona, Spain, 2016. [Google Scholar]
- Otero, I.; Castellnou, M.; Gonzalez, I.; Arilla, E.; Castell, L.; Castellvi, J.; Sanchez, F.; Nielsen, J.O. Democratizing wildfire strategies. Do you realize what it means? Insights from a participatory process in the Montseny region (Catalonia, Spain). PLoS ONE 2018, 13, e0204806. [Google Scholar] [CrossRef] [Green Version]
- Pique, M.; Domenech, R. Effectiveness of mechanical thinning and prescribed burning on fire behavior in Pinus nigra forests in NE Spain. Sci. Total Environ. 2017, 9, 316. [Google Scholar] [CrossRef]
- Domènech, R.; Piqué, M.; Larrañaga, A.; Beltrán, M.; Castellnou, M. The Role of Fire in the Conservation of the Black Pine (Pinus nigra Arn.) Habitat. Life+ PINASSA Project (LIFE13 NAT/ES/000724); Forest Ownership Center: Catalonia, Spain, 2018; p. 64. [Google Scholar]
- Casals, P.; Valor, T.; Besalú, A.; Molina-Terrén, D. Understory fuel load and structure eight to nine years after prescribed burning in Mediterranean pine forests. For. Ecol. Manag. 2016, 362, 156–168. [Google Scholar] [CrossRef]
- Beltrán, M.; Piqué, M.; Cervera, T.; Palero, N.; Camprodon, J. Best Management Practices for the Conservation of Black Pine (Pinus nigra) Forests. Making Compatible Forest Production and Habitat Conservation. Life+ PINASSA Project (LIFE13 NAT/ES/000724); Forest Ownership Center: Catalonia, Spain, 2018. [Google Scholar]
- Breiman, L. Random forests. Mach. Learn. 2001, 45, 5–32. [Google Scholar] [CrossRef] [Green Version]
- Rodrigues, M.; De la Riva, J. An insight into machine-learning algorithms to model human-caused wildfire occurrence. Environ. Model. Softw. 2014, 57, 192–201. [Google Scholar] [CrossRef]
- Hanley, J.A.; McNeil, B.J. The meaning and use of the area under a receiver operating characteristic (ROC) curve. Radiology 1982, 143, 29–36. [Google Scholar] [CrossRef] [Green Version]
- Duane, A.; Brotons, L. Synoptic weather conditions and changing fire regimes in a Mediterranean environment. Agric. For. Meteorol. 2018, 253-254, 190–202. [Google Scholar] [CrossRef]
- Alcasena, F.J.; Ager, A.A.; Bailey, J.D.; Pineda, N.; Vega-Garcia, C. Towards a comprehensive wildfire management strategy for Mediterranean areas: Framework development and implementation in Catalonia, Spain. J. Environ. Manag. 2019, 231, 303–320. [Google Scholar] [CrossRef]
- Bradshaw, L.; McCormick, E. Fire Family Plus User’s Guide, Version 2.0; RMRS-GTR-67WWW; USDA Forest Service: Ogden, UT, USA, 2000. [Google Scholar]
- Rodrigues, M.; Alcasena, F.; Vega-García, C. Modeling initial attack success of wildfire suppression in Catalonia, Spain. Sci. Total Environ. 2019, 2, 323. [Google Scholar] [CrossRef]
- Finney, M.A. Fire growth using minimum travel time methods. Can. J. For. Res. 2002, 32, 1420–1424. [Google Scholar] [CrossRef]
- Rothermel, R.C. A Mathematical Model for Predicting Fire Spread in Wildland Fuels; INT-115; USDA Forest Service, Intermountain Forest and Range Experiment Station: Ogden, UT, USA, 1972; p. 40. [Google Scholar]
- Salis, M.; Arca, B.; Del Giudice, L.; Palaiologou, P.; Alcasena-Urdiroz, F.; Ager, A.; Fiori, M.; Pellizzaro, G.; Scarpa, C.; Schirru, M.; et al. Application of simulation modeling for wildfire exposure and transmission assessment in Sardinia, Italy. Int. J. Disaster Risk Reduct. 2021, 58, 102189. [Google Scholar] [CrossRef]
- Galizia, L.F.; Alcasena, F.; Prata, G.; Rodrigues, M. Assessing expected economic losses from wildfires in eucalypt plantations of western Brazil. For. Policy Econ. 2021, 125, 102405. [Google Scholar] [CrossRef]
- Ager, A.A.; Vaillant, N.M.; Finney, M.A.; Preisler, H.K. Analyzing wildfire exposure and source–sink relationships on a fire prone forest landscape. For. Ecol. Manag. 2012, 267, 271–283. [Google Scholar] [CrossRef]
- Castellnou, M.; Miralles, M. The changing face of wildfires. Crisis Response 2009, 5, 56–57. [Google Scholar]
- Finney, M.A.; McHugh, C.W.; Grenfell, I.C.; Riley, K.L.; Short, K.C. A simulation of probabilistic wildfire risk components for the continental United States. Stoch. Environ. Res. Risk Assess. 2011, 25, 973–1000. [Google Scholar] [CrossRef] [Green Version]
- Ager, A.A.; Finney, M.A.; McMahan, A.J.; Cathcart, J. Measuring the effect of fuel treatments on forest carbon using landscape risk analysis. Nat. Hazards Earth Syst. Sci. 2010, 10, 2515–2526. [Google Scholar] [CrossRef]
- Finney, M.A. The challenge of quantitative risk analysis for wildland fire. For. Ecol. Manag. 2005, 211, 97–108. [Google Scholar] [CrossRef]
- Evtyugina, M.; Alves, C.; Calvo, A.; Nunes, T.; Tarelho, L.; Duarte, M.; Prozil, S.O.; Evtuguin, D.V.; Pio, C. VOC emissions from residential combustion of Southern and mid-European woods. Atmos. Environ. 2014, 83, 90–98. [Google Scholar] [CrossRef]
- Prichard, S.J.; Kennedy, M.C.; Wright, C.S.; Cronan, J.B.; Ottmar, R.D. Predicting forest floor and woody fuel consumption from prescribed burns in southern and western pine ecosystems of the United States. For. Ecol. Manag. 2017, 405, 328–338. [Google Scholar] [CrossRef] [Green Version]
- WorldBank. State and Trends of Carbon Pricing 2020; WorldBank: Washington, DC, USA, 2020; p. 347. [Google Scholar]
- Wastl, C.; Schunk, C.; Lüpke, M.; Cocca, G.; Conedera, M.; Valese, E.; Menzel, A. Large-scale weather types, forest fire danger, and wildfire occurrence in the Alps. Agric. For. Meteorol. 2013, 168, 15–25. [Google Scholar] [CrossRef]
- Salis, M.; Laconi, M.; Ager, A.A.; Alcasena, F.J.; Arca, B.; Lozano, O.; Fernandes de Oliveira, A.; Spano, D. Evaluating alternative fuel treatment strategies to reduce wildfire losses in a Mediterranean area. For. Ecol. Manag. 2016, 368, 207–221. [Google Scholar] [CrossRef]
- Salis, M.; Ager, A.A.; Alcasena, F.J.; Arca, B.; Finney, M.A.; Pellizzaro, G.; Spano, D. Analyzing seasonal patterns of wildfire exposure factors in Sardinia, Italy. Environ. Monit. Assess. 2015, 187, 4175. [Google Scholar] [CrossRef] [Green Version]
- Alcasena, F.J.; Salis, M.; Ager, A.A.; Castell, R.; Vega-Garcia, C. Assessing wildland fire risk transmission to communities in northern Spain. Forests 2017, 8, 30. [Google Scholar] [CrossRef] [Green Version]
- Nations, U. Paris Agreement. In Proceedings of the Paris Agreement to the United Nations Framework Convention on Climate Change, New York, NY, USA, 12 December 2015. [Google Scholar]
- Dupuy, J.; Fargeon, H.; Martin-StPaul, N.; Pimont, F.; Ruffault, J.; Guijarro, M.; Hernando, C.; Madrigal, J.; Fernandes, P. Climate change impact on future wildfire danger and activity in southern Europe: A review. Ann. For. Sci. 2020, 77, 35. [Google Scholar] [CrossRef]
- Lecina-Diaz, J.; Martínez-Vilalta, J.; Alvarez, A.; Vayreda, J.; Retana, J. Assessing the Risk of Losing Forest Ecosystem Services Due to Wildfires. Ecosystems 2021. [Google Scholar] [CrossRef]
- Botequim, B.; Fernandes, P.M.; Borges, J.G.; González-Ferreiro, E.; Guerra-Hernández, J. Improving silvicultural practices for Mediterranean forests through fire behaviour modelling using LiDAR-derived canopy fuel characteristics. Int. J. Wildland Fire 2019, 28, 823–839. [Google Scholar] [CrossRef]
- Benali, A.; Sá, A.C.L.; Pinho, J.; Fernandes, P.M.; Pereira, J.M.C. Understanding the Impact of Different Landscape-Level Fuel Management Strategies on Wildfire Hazard in Central Portugal. Forests 2021, 12, 522. [Google Scholar] [CrossRef]
- Gonzalez-Olabarria, J.R.; Mola-Yudego, B.; Pukkala, T.; Palahi, M. Using multiscale spatial analysis to assess fire ignition density in Catalonia, Spain. Ann. For. Sci. 2011, 68, 861–871. [Google Scholar] [CrossRef] [Green Version]
- Migliavacca, M.; Dosio, A.; Camia, A.; Hobourg, R.; Houston-Durrant, T.; Kaiser, J.W.; Khabarov, N.; Krasovskii, A.A.; Marcolla, B.; San Miguel-Ayanz, J.; et al. Modeling biomass burning and related carbon emissions during the 21st century in Europe. J. Geophys. Res. Biogeosci. 2013, 118, 1732–1747. [Google Scholar] [CrossRef] [Green Version]
- Ramo, R.; Roteta, E.; Bistinas, I.; van Wees, D.; Bastarrika, A.; Chuvieco, E.; van der Werf, G.R. African burned area and fire carbon emissions are strongly impacted by small fires undetected by coarse resolution satellite data. Proc. Natl. Acad. Sci. USA 2021, 118, e2011160118. [Google Scholar] [CrossRef] [PubMed]
- Barnett, K.; Parks, S.; Miller, C.; Naughton, H. Beyond fuel treatment effectiveness: Characterizing interactions between fire and treatments in the US. Forests 2016, 7, 237. [Google Scholar] [CrossRef] [Green Version]
- Thompson, M.; Riley, K.; Loeffler, D.; Haas, J. Modeling fuel treatment leverage: Encounter rates, risk reduction, and suppression cost impacts. Forests 2017, 8, 469. [Google Scholar] [CrossRef] [Green Version]
- Parisien, M.-A.; Dawe, D.A.; Miller, C.; Stockdale, C.A.; Armitage, O.B. Applications of simulation-based burn probability modelling: A review. Int. J. Wildland Fire 2020, 28, 913–926. [Google Scholar] [CrossRef] [Green Version]
- Pais, C.; Carrasco, J.; Elimbi Moudio, P.; Shen, Z.-J.M. Downstream protection value: Detecting critical zones for effective fuel-treatment under wildfire risk. Comput. Oper. Res. 2021, 131, 105252. [Google Scholar] [CrossRef]
- Restaino, J.C.; Peterson, D.L. Wildfire and fuel treatment effects on forest carbon dynamics in the western United States. For. Ecol. Manag. 2013, 303, 46–60. [Google Scholar] [CrossRef]
- Sorensen, C.D.; Finkral, A.J.; Kolb, T.E.; Huang, C.H. Short- and long-term effects of thinning and prescribed fire on carbon stocks in ponderosa pine stands in northern Arizona. For. Ecol. Manag. 2011, 261, 460–472. [Google Scholar] [CrossRef]
- Fernandes, P.M.; Loureiro, C. Fine fuels consumption and CO2 emissions from surface fire experiments in maritime pine stands in northern Portugal. For. Ecol. Manag. 2013, 291, 344–356. [Google Scholar] [CrossRef]
- Arellano-Pérez, S.; Castedo-Dorado, F.; López-Sánchez, C.A.; González-Ferreiro, E.; Yang, Z.; Díaz-Varela, R.A.; Álvarez-González, J.G.; Vega, J.A.; Ruiz-González, A.D. Potential of Sentinel-2A Data to Model Surface and Canopy Fuel Characteristics in Relation to Crown Fire Hazard. Remote Sens. 2018, 10, 1645. [Google Scholar] [CrossRef] [Green Version]
- Fidalgo-González, L.A.; Arellano-Pérez, S.; Álvarez-González, J.G.; Castedo-Dorado, F.; Ruiz-González, A.D.; González-Ferreiro, E. Estimación de la distribución vertical de combustibles finos del dosel de copas en masas de Pinus sylvestris empleando datos LiDAR de baja densidad. Rev. Teledetec. 2019, 1–16. [Google Scholar] [CrossRef]
- Campbell, J.L.; Ager, A.A. Forest wildfire, fuel reduction treatments, and landscape carbon stocks: A sensitivity analysis. J. Environ. Manag. 2013, 121, 124–132. [Google Scholar] [CrossRef]
- Alcasena, F.J.; Ager, A.A.; Salis, M.; Day, M.A.; Vega-Garcia, C. Optimizing prescribed fire allocation for managing fire risk in central Catalonia. Sci. Total Environ. 2018, 4, 872–885. [Google Scholar] [CrossRef] [Green Version]
- Ager, A.A.; Houtman, R.; Day, M.A.; Ringo, C.; Palaiologou, P. Tradeoffs between US national forest harvest targets and fuel management to reduce wildfire transmission to the wildland urban interface. For. Ecol. Manag. 2019, 434, 99–109. [Google Scholar] [CrossRef]
- Ruiz-Peinado, R.; Montero, G.; Del Rio, M. Biomass models to estimate carbon stocks for hardwood tree species. For. Syst. 2012, 21, 42. [Google Scholar] [CrossRef]
Type of Treatment | Treatment Location | Treatment Cost (€ ha−1) | Effective Duration (yr) | Annualized Cost (€ ha−1 yr−1) |
---|---|---|---|---|
Prescribed fire | Conifer forests | 800 | 8 | 100.00 |
Mechanical mastication | Broadleaf forests | 950 | 8 | 118.75 |
Thinning from below | High density forests (cc > 60%) | 1000 | 14 | 71.43 |
Planning Area Code | Macro-Area-Level Weather Station (Municipality) | Fuel Moisture Content, % | Fire Spread Duration, Min (Probability, %) | ||||||
1 h | 10 h | 100 h | LH | LW | |||||
1 | Plain of Lleida (Tárrega) | 7 | 8 | 10 | 20 | 65 | 75 (0.80); 180 (0.20) | ||
North–south valleys (Torredembarra) | 7 | 9 | 11 | 40 | 70 | ||||
Mountainous areas (Montsec d’Ares) | 8 | 10 | 12 | 40 | 85 | ||||
2 and 3 | Plain and open valleys (Muntanyola) | 7 | 8 | 11 | 20 | 65 | 150 (0.25); 300 (0.50); 660 (0.25) | ||
Mountainous areas (Orís) | 9 | 10 | 13 | 25 | 75 | ||||
Mountain peaks (Cadí-Nord) | 11 | 12 | 14 | 30 | 90 | ||||
4 | Mountainous area (Cabanes) | 8 | 9 | 12 | 40 | 75 | 90 (0.70); 540 (0.30) | ||
Inner Albera (Cabanes) | 7 | 8 | 11 | 30 | 65 | ||||
Coastal Albera (Portbou) | 6 | 7 | 9 | 20 | 60 | ||||
5 and 6 | Plain of Lleida (Tárrega) | 7 | 8 | 10 | 20 | 65 | 110 (0.50); 210 (0.50) | ||
Inner mountains (St. Salvador Guardiola) | 9 | 11 | 15 | 40 | 80 | ||||
Pre-coastal depression (Font-Rubí) | 7 | 8 | 10 | 20 | 65 | ||||
Coastal belt (Torredembarra) | 8 | 9 | 12 | 30 | 75 | ||||
Macro-Area-Level Weather Station (Municipality) | Wind Speed Scenario, km h−1 (Frequency, %) | ||||||||
45° | 90° | 135° | 180° | 225° | 270° | 315° | 360° | ||
Plain of Lleida (Tárrega) | - | 19 (6) | 20 (24) | 19 (17) | 19 (17) | 18 (36) | - | - | |
North–south valleys (Torredembarra) | 14 (12) | 8 (8) | 12 (43) | 12 (20) | 11 (8) | 12 (9) | - | - | |
Mountainous areas (Montsec d’Ares) | - | - | - | 20 (44) | 14 (37) | 18 (19) | - | - | |
Plain and open valleys (Muntanyola) | - | 8 (6) | 8 (20) | 12 (39) | 12 (27) | 12 (8) | - | - | |
Mountainous areas (Orís) | - | 12 (12) | 12 (28) | 12 (34) | 10 (20) | 10 (6) | - | - | |
Mountain peaks (Cadí-Nord) | - | - | 12 (8) | 12 (9) | 14 (20) | 14 (34) | 12 (29) | - | |
Mountainous areas (Cabanes) | - | 8 (25) | 8 (31) | 8 (12) | 12 (8) | - | 14 (11) | 14 (13) | |
Inner Albera (Cabanes) | - | 8 (25) | 8 (31) | 8 (12) | 12 (8) | - | 14 (11) | 14 (13) | |
Coastal Albera (Portbou) | 32 (14) | - | 19 (15) | 32 (23) | 32 (6) | - | 39 (7) | 37 (35) | |
Plain of Lleida (Tárrega) | - | 19 (6) | 20 (24) | 19 (17) | 19 (17) | 18 (36) | - | - | |
Inner mountains (St. Salvador Guardiola) | - | 10 (5) | 15 (32) | 10 (41) | 10 (13) | 10 (9) | - | - | |
Pre-coastal depression (Font-Rubí) | - | - | 14 (7) | 19 (58) | 19 (23) | 18 (7) | 19 (5) | - | |
Coastal belt (Torredembarra) | - | 20 (21) | 15 (20) | 16 (36) | 18 (23) | - | - | - |
Planning Areas (Code) | Area (ha) | Non-Managed Scenario | Managed Scenario | ||
---|---|---|---|---|---|
Expected Emission (CO2 T yr−1) | Treated Area (ha) | Emission Reduction | |||
(CO2 T yr−1) | (%) | ||||
Vall de Rialb (1) | 23,467 | 362 | 1316 | 59 | 16 |
Capçaleres del Llobregat (2) | 62,303 | 156 | 3251 | 55 | 35 |
Replans del Berguedá (3) | 52,592 | 2629 | 5330 | 444 | 16 |
Els Aspres (4) | 18,392 | 1107 | 2740 | 246 | 22 |
Serres d’Ancosa (5) | 22,968 | 1044 | 3951 | 213 | 20 |
El Montmell (6) | 15,461 | 454 | 318 | 49 | 11 |
Planning Area (Code) | Strategic Management Points | Fuel Treatment Cost | ||||
Area (ha) | Hotspot Area (%) | Thinning (ha) | Mastication (ha) | Prescribed Fire (ha) | Cost (€ yr−1) | |
1 | 628 | 64 | 164 | 26 | 602 | 74,972 |
2 | 1980 | 0 | 1099 | 129 | 1851 | 278,880 |
3 | 3775 | 74 | 1133 | 711 | 3064 | 471,821 |
4 | 691 | 29 | 24 | 310 | 382 | 76,698 |
5 | 3171 | 96 | 1657 | 50 | 3121 | 436,342 |
6 | 274 | 93 | 104 | 1 | 273 | 34,770 |
Planning Area (Code) | Carbon-Credit Revenue | |||||
Reduction in Emissions (T CO2 yr−1) | Revenue (€ yr−1) | Contribution to Cost (%) | ||||
1 | 58.8 | 775 | 1.0 | |||
2 | 55.0 | 725 | 0.3 | |||
3 | 444.1 | 5853 | 1.2 | |||
4 | 246.2 | 3245 | 4.2 | |||
5 | 212.7 | 2804 | 0.6 | |||
6 | 48.8 | 643 | 1.8 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Alcasena, F.; Rodrigues, M.; Gelabert, P.; Ager, A.; Salis, M.; Ameztegui, A.; Cervera, T.; Vega-García, C. Fostering Carbon Credits to Finance Wildfire Risk Reduction Forest Management in Mediterranean Landscapes. Land 2021, 10, 1104. https://doi.org/10.3390/land10101104
Alcasena F, Rodrigues M, Gelabert P, Ager A, Salis M, Ameztegui A, Cervera T, Vega-García C. Fostering Carbon Credits to Finance Wildfire Risk Reduction Forest Management in Mediterranean Landscapes. Land. 2021; 10(10):1104. https://doi.org/10.3390/land10101104
Chicago/Turabian StyleAlcasena, Fermín, Marcos Rodrigues, Pere Gelabert, Alan Ager, Michele Salis, Aitor Ameztegui, Teresa Cervera, and Cristina Vega-García. 2021. "Fostering Carbon Credits to Finance Wildfire Risk Reduction Forest Management in Mediterranean Landscapes" Land 10, no. 10: 1104. https://doi.org/10.3390/land10101104
APA StyleAlcasena, F., Rodrigues, M., Gelabert, P., Ager, A., Salis, M., Ameztegui, A., Cervera, T., & Vega-García, C. (2021). Fostering Carbon Credits to Finance Wildfire Risk Reduction Forest Management in Mediterranean Landscapes. Land, 10(10), 1104. https://doi.org/10.3390/land10101104