Spatial–Temporal Impacts of Urban Sprawl on Ecosystem Services: Implications for Urban Planning in the Process of Rapid Urbanization
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Data Source and Processing
2.3. Methods
2.3.1. Urban Expansion Zoning
2.3.2. Estimation of ESs
Carbon Storage Service
Soil Retention Service
Water Retention Service
Habitat Suitability
Sandstorm Prevention
Crop Yield
2.3.3. Relationship between ESs
3. Results
3.1. Urban Sprawl of Changchun during 2000–2015
3.2. Changes of ESs in Changchun
3.2.1. Spatial–Temporal Changes for Overall ESs
3.2.2. Relationships among ES Changes
3.3. Impact of Urbanization on ESs
3.3.1. ES Changes in Different Urbanization Areas
3.3.2. Correlation Analysis between Urbanization and ESs
4. Discussion
4.1. Typical Impact of Urban Expansion on ESs in Changchun
4.2. Effects of Urbanization on the Relationships among ESs
4.3. Implications for Urban Planning
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Li, B.J.; Chen, D.X.; Wu, S.H.; Zhou, S.L.; Wang, T.; Chen, H. Spatio-temporal assessment of urbanization impact on ecosystem services: Case study of Nanjing City, China. Ecol. Indic. 2016, 71, 416–427. [Google Scholar] [CrossRef]
- Kuang, B.; Lu, X.H.; Han, J.; Fan, X.Y.; Zuo, Z. How urbanization influence urban land consumption intensity: Evidence from China. Habitat Int. 2020, 100, 102103. [Google Scholar] [CrossRef]
- Gu, C.L.; Hu, L.Q.; Cook, I.G. China’s urbanization in 1949–2015: Processes and driving forces. Chin. Geogr. Sci. 2017, 27, 847–859. [Google Scholar] [CrossRef]
- The Central People’s Government of the People’s Republic of China. Available online: http://www.gov.cn/shuju//hgjjyxqk/detail.html?q=3 (accessed on 25 October 2021).
- The World Bank. Available online: https://www.worldbank.org/en/topic/urbandevelopment/overview (accessed on 25 October 2021).
- The United Nations. Available online: https://www.un.org/en/climatechange/climate-solutions/cities-pollution (accessed on 25 October 2021).
- Ding, C.R.; Zhao, X.S. Land market, land development and urban spatial structure in Beijing. Land Use Policy 2014, 40, 83–90. [Google Scholar] [CrossRef]
- Costanza, R.; d’Arge, R.; de Groot, R.; Farber, S.; Grasso, M.; Hannon, B.; Limburg, K.; Naeem, S.; O’Neill, R.V.; Paruelo, J.; et al. The value of the world’s ecosystem service and natural capital. Nature 1997, 387, 253–260. [Google Scholar] [CrossRef]
- Wang, W.J.; Wu, T.; Li, Y.Z.; Xie, S.L.; Han, B.L.; Zheng, H.; Ouyang, Z.Y. Urbanization impacts on natural habitat and ecosystem services in the Guangdong-Hong Kong-Macao “Megacity”. Sustainability 2020, 12, 6675. [Google Scholar] [CrossRef]
- Wu, J.G. Landscape sustainability science: Ecosystem services and human well-being in changing landscapes. Landsc. Ecol. 2013, 28, 999–1023. [Google Scholar] [CrossRef]
- Athukorala, D.; Estoque, R.C.; Murayama, Y.J.; Matsushita, B. Impacts of urbanization on the Muthurajawela Marsh and Negombo Lagoon, Sri Lanka: Implications for landscape planning towards a sustainable urban wetland ecosystem. Remote Sens. 2021, 13, 316. [Google Scholar] [CrossRef]
- Deng, C.X.; Liu, J.Y.; Nie, X.D.; Li, Z.W.; Liu, Y.J.; Xiao, H.B.; Hu, X.Q.; Wang, L.X.; Zhang, Y.T.; Zhang, G.Y.; et al. How trade-offs between ecological construction and urbanization expansion affect ecosystem services. Ecol. Indic. 2021, 122, 107253. [Google Scholar] [CrossRef]
- Larondelle, N.; Haase, D. Urban ecosystem services assessment along a rural–urban gradient: Across-analysis of European cities. Ecol. Indic. 2013, 29, 179–190. [Google Scholar] [CrossRef]
- Mach, M.E.; Martone, R.G.; Chan, K.M.A. Human impacts and ecosystem services: Insufficient research for trade-off evaluation. Ecosyst. Serv. 2015, 16, 112–120. [Google Scholar] [CrossRef]
- Amundson, R.; Berhe, A.A.; Hopmans, J.W.; Olson, C.; Sztein, A.E.; Sparks, D.L. Soil and human security in the 21st century. Science 2015, 348, 1261071. [Google Scholar] [CrossRef] [Green Version]
- Wan, L.L.; Ye, X.Y.; Lee, J.; Lu, X.Q.; Zheng, L.; Wu, K.Y. Effects of urbanization on ecosystem service values in a mineral resource-based city. Habitat Int. 2015, 46, 54–63. [Google Scholar] [CrossRef]
- Sun, X.S.; Crittenden, J.C.; Li, F.; Lu, Z.M.; Dou, X.L. Urban expansion simulation and the spatio-temporal changes of ecosystem services, a case study in Atlanta Metropolitan area, USA. Sci. Total Environ. 2018, 622, 974–987. [Google Scholar] [CrossRef] [PubMed]
- Aguilera, M.A.; Tapia, J.; Gallardo, C.; Nunez, P.; Varas-Belemmi, K. Loss of coastal ecosystem spatial connectivity and services by urbanization: Natural-to-urban integration for bay management. J. Environ. Manag. 2020, 276, 111297. [Google Scholar] [CrossRef]
- María, D.A.; Juan, M.B.; Javier, G.S. Relationships between coastal urbanization and ecosystems in Spain. Cities 2017, 68, 8–17. [Google Scholar]
- García-Nieto, A.P.; Geijzendorffer, I.R.; Baró, F.; Roche, P.K.; Bondeau, A.; Cramer, W. Impacts of urbanization around Mediterranean cities: Changes in ecosystem service supply. Ecol. Indic. 2018, 91, 589–606. [Google Scholar] [CrossRef] [Green Version]
- Li, X.Y.; Yang, L.M.; Ren, Y.X.; Li, H.Y.; Wang, Z.M. Impacts of urban sprawl on soil resources in the Changchun–Jilin Economic Zone, China, 2000–2015. Int. J. Environ. Res. Public Health 2018, 15, 1186. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- ASTER GDEM Project. Available online: http://www.jspacesystems.or.jp/ersdac/GDEM/E (accessed on 15 April 2021).
- National Meteorological Science Data Center. Available online: http://data.cma.cn (accessed on 15 April 2021).
- National Oceanic and Atmospheric Administration. Available online: https://ngdc.noaa.gov (accessed on 15 April 2021).
- National Aeronautics and Space Administration. Available online: https://ladsweb.modaps.eosdis.nasa.gov (accessed on 15 April 2021).
- Li, X.P.; Gong, L. Calibration and fitting of DMSP/OLS and VIIRS/DNB night light images. Bull. Surv. Mapp. 2019, 7, 138–146. (In Chinese) [Google Scholar]
- Zhang, B.F.; Miao, C.H.; Song, Y.N.; Wang, J.J. Correction of DMSP/OLS Stable Night Light Images in China. J. Geo-Inf. Sci. 2020, 8, 1679–1691. (In Chinese) [Google Scholar]
- Wu, B.F. Land Cover of China; Science Press: Beijing, China, 2017. [Google Scholar]
- Xu, Q.; Yang, R.; Dong, Y.X.; Liu, Y.X.; Qiu, L.R. The influence of rapid urbanization and land use changes on terrestrial carbon sources/sinks in Guangzhou, China. Ecol. Indic. 2016, 70, 304–316. [Google Scholar] [CrossRef]
- Kumari, G.; Jian, Y.; Lei, F. Assessing ecosystem services from the forestry-based reclamation of surface mined areas in the North fork of the Kentucky river watershed. Forests 2018, 9, 652–674. [Google Scholar]
- Wang, Z.M.; Mao, D.H.; Li, L.; Jia, M.M.; Dong, Z.Y.; Miao, Z.H.; Ren, C.Y.; Song, C.C. Quantifying changes in multiple ecosystem services during 1992–2012 in the Sanjiang Plain of China. Sci. Total Environ. 2015, 514, 119–130. [Google Scholar] [CrossRef]
- Renard, K.G.; Foster, G.R.; Weesies, G.A.; Porter, J.P. RUSLE: Revised universal soil loss equation. J. Soil Water Conserv. 1991, 46, 30–33. [Google Scholar]
- Sajedipour, S.; Zarei, H.; Oryan, S. Estimation of environmental water requirements via an ecological approach: A case study of Bakhtegan Lake, Iran. Ecol. Eng. 2017, 100, 246–255. [Google Scholar] [CrossRef]
- Jiang, C.; Nath, R.; Labzovskii, L.; Wang, D.W. Integrating ecosystem services into effectiveness assessment of ecological restoration program in northern China’s arid areas: Insights from the Beijing-Tianjin Sandstorm Source Region. Land Use Policy 2018, 75, 201–214. [Google Scholar] [CrossRef]
- Yang, Y.Y.; Zheng, H.; Kong, L.Q.; Huang, B.B.; Xu, W.H.; Ouyang, Z.Y. Mapping ecosystem services bundles to detect high-and low-value ecosystem services areas for land use management. J. Clean. Prod. 2019, 225, 11–17. [Google Scholar] [CrossRef]
- Xiang, H.X.; Wang, Z.M.; Mao, D.H.; Zhang, J.; Zhao, D.; Zeng, Y.; Wu, B.F. Surface mining caused multiple ecosystem services losses in China. J. Environ. Manag. 2021, 290, 112618. [Google Scholar] [CrossRef] [PubMed]
- Jackson, B.; Pagella, T.; Sinclair, F.; Orellana, B.; Henshaw, A.; Reynolds, B.; Mcintyre, N.; Wheater, H.; Eycott, A. Polyscape: A GIS mapping framework providing efficient and spatially explicit landscape-scale valuation of multiple ecosystem services. Landsc. Urban Plann. 2013, 112, 74–88. [Google Scholar] [CrossRef]
- Sun, X.; Lu, Z.M.; Li, F.; Crittenden, J.C. Analyzing spatio-temporal changes and trade-offs to support the supply of multiple ecosystem services in Beijing, China. Ecol. Indic. 2018, 94, 117–129. [Google Scholar] [CrossRef]
- Jiang, C.; Wang, F.; Zhang, H.Y.; Dong, X.L. Quantifying changes in multiple ecosystem services during 2000–2012 on the Loess Plateau, China, as a result of climate variability and ecological restoration. Ecol. Eng. 2016, 97, 258–271. [Google Scholar] [CrossRef]
- Du, H.Q.; Xue, X.; Wang, T.; Deng, X.H. Assessment of wind-erosion risk in the watershed of the Ningxia-Inner Mongolia Reach of the Yellow River, northern China. Aeolian Res. 2015, 17, 193–204. [Google Scholar] [CrossRef]
- Lyu, R.F.; Zhang, J.M.; Xu, M.Q.; Li, J.J. Impacts of urbanization on ecosystem services and their temporal relations: A case study in Northern Ningxia, China. Land Use Policy 2018, 77, 163–173. [Google Scholar] [CrossRef]
- Sun, X.; Li, F. Spatiotemporal assessment and trade-offs of multiple ecosystem services based on land use changes in Zengcheng, China. Sci. Total Environ. 2017, 609, 1569–1581. [Google Scholar] [CrossRef] [PubMed]
- Qi, Z.F.; Ye, X.Y.; Zhang, H.; Yu, Z.L. Land fragmentation and variation of ecosystem services in the context of rapid urbanization: The case of Taizhou city, China. Stoch. Environ. Res. Risk. Assess. 2014, 28, 843–855. [Google Scholar] [CrossRef]
- Jopke, C.; Kreyling, J.; Maes, J.; Koellner, T. Interactions among ecosystem services across Europe: Bagplots and cumulative correlation coefficients reveal synergies, trade-offs, and regional patterns. Ecol. Indic. 2015, 49, 36–52. [Google Scholar] [CrossRef]
- Zhou, Z.X.; Li, J.; Guo, Z.Z.; Li, T. Trade-offs between carbon, water, soil and food in Guanzhong-Tianshui economic region from remotely sensed data. Int. J. Appl. Earth Obs. Geoinf. 2017, 58, 145–156. [Google Scholar] [CrossRef]
- Wu, J.J.; Jin, X.R.; Feng, Z.; Chen, T.Q.; Wang, C.X.; Feng, D.R.; Lv, J.Q. Relationship of ecosystem services in the Beijing-Tianjin-Hebei region based on the production possibility frontier. Land 2021, 10, 881. [Google Scholar] [CrossRef]
- Zhang, Y.; Liu, Y.F.; Zhang, Y.; Liu, Y.; Zhang, G.X.; Chen, Y.Y. On the spatial relationship between ecosystem services and urbanization: A case study in Wuhan, China. Sci. Total Environ. 2018, 637, 780–790. [Google Scholar] [CrossRef]
- Li, J.S.; Sun, W.; Li, M.Y.; Meng, L.L. Coupling coordination degree of production, living and ecological spaces and its influencing factors in the Yellow River Basin. J. Clean. Prod. 2021, 298, 126803. [Google Scholar] [CrossRef]
Datasets | Description | Resolution | Time | Data Sources |
---|---|---|---|---|
DEM | ASTER GDEM product | Raster, 30 m | 2009 | http://www.jspacesystems.or.jp/ersdac/GDEM/E, accessed on 15 April 2021 [22] |
Climatic data | Daily temperature, Daily rainfall, Daily wind speed, Daily sunshine duration | Point | 2000–2015 | CMDSSS (http://data.cma.cn), accessed on 15 April 2021 [23] |
Soil data | Soil map | Vector, 1:500,000 | 2016 | SFSJP |
Remote sensing image | Night data, DMSP/OLS | Raster, 1000 m | 2000 | https://ngdc.noaa.gov accessed on 15 April 2021 [24] |
Night data, NPP/VIIRS | Raster, 750 m | 2015 | ||
Evapotranspiration data, MODIS 16A2 | Raster, 500 m | 2000, 2015 | https://ladsweb.modaps.eosdis.nasa.gov/ accessed on 15 April 2021 [25] | |
Land cover data | Interpreted data of Landsat TM/OLI Image | Vector | 2000, 2015 | IGA, CAS |
Time | Mean | Rural Area | Developing Urban Area | Developed Urban Area |
---|---|---|---|---|
2000 | 12.21 | 4.21 | 48.76 | 60.31 |
2015 | 22.55 | 17.85 | 59.50 | 62.83 |
Carbon Storage | Habitat Suitability | Soil Retention | Sandstorm Prevention | Water Retention | Crop Yield | ||
---|---|---|---|---|---|---|---|
Carbon storage | developed | 1 | |||||
developing | 1 | ||||||
rural | 1 | ||||||
Habitat suitability | developed | 0.528 ** | 1 | ||||
developing | 0.495 ** | 1 | |||||
rural | 0.430 ** | 1 | |||||
Soil retention | developed | −0.023 | 0.188 * | 1 | |||
developing | 0.191 ** | 0.198 ** | 1 | ||||
rural | 0.306 ** | 0.247 ** | 1 | ||||
Sandstorm prevention | developed | −0.009 | −0.010 | −0.070 | 1 | ||
developing | −0.002 | −0.015 | −0.102 | 1 | |||
rural | 0.006 | −0.036 | −0.028 | 1 | |||
Water retention | developed | −0.058 | −0.063 | 0.013 | −0.015 | 1 | |
developing | −0.088 | −0.181 ** | −0.061 | −0.043 | 1 | ||
rural | −0.121 ** | −0.260 ** | −0.043 | 0.055 | 1 | ||
Crop yield | developed | −0.114 | −0.339 ** | −0.211 * | −0.025 | 0.105 | 1 |
developing | 0.024 | 0.051 | 0.055 | −0.036 | −0.108 | 1 | |
rural | −0.172 ** | 0.176 ** | −0.104 ** | −0.015 | −0.051 | 1 |
Soil Retention (103 t·km−2) | Sandstorm Prevention (103 t·km−2) | Carbon Density (109 gC·km−2) | HabitatSuitability | Water Retention (105 t·km−2) | Crop Yield (103 kg·ha−1) | |||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
2000 | 2015 | 2000 | 2015 | 2000 | 2015 | 2000 | 2015 | 2000 | 2015 | 2000 | 2015 | |
Developed | 0.68 | 1.75 | 4.10 | 4.94 | 1.83 | 1.52 | 28.64 | 28.30 | 3.99 | 4.58 | 1.51 | 2.28 |
Developing | 1.33 | 3.28 | 4.08 | 4.50 | 4.30 | 4.19 | 40.38 | 36.17 | 2.19 | 2.98 | 3.79 | 4.16 |
Rural | 1.88 | 4.14 | 6.0 | 4.44 | 7.29 | 7.53 | 45.21 | 45.71 | 1.66 | 2.15 | 5.97 | 6.79 |
Developed Area | Developing Area | Rural Area | ||||
---|---|---|---|---|---|---|
2000 | 2015 | 2000 | 2015 | 2000 | 2015 | |
Soil retention | −0.067 | −0.081 * | −0.036 | −0.117 | −0.064 * | −0.077 * |
Sandstorm prevention | −0.021 | 0.071 | 0.113 | 0.112 | 0.04 | 0.067 * |
Carbon density | −0.081 | −0.014 | −0.104 | −0.207 ** | −0.071 * | −0.076 * |
Habitat suitability | −0.373 ** | −0.309 ** | −0.397 ** | −0.467 ** | −0.17 ** | −0.233 ** |
Wate retention | −0.252 ** | −0.428 ** | 0.218 ** | 0.08 | 0.126 ** | 0.248 ** |
Crop yield | −0.359 ** | −0.314 ** | −0.172 * | −0.147 * | 0.064 * | −0.054 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, X.; Suoerdahan, G.; Shi, Z.; Xing, Z.; Ren, Y.; Yang, R. Spatial–Temporal Impacts of Urban Sprawl on Ecosystem Services: Implications for Urban Planning in the Process of Rapid Urbanization. Land 2021, 10, 1210. https://doi.org/10.3390/land10111210
Li X, Suoerdahan G, Shi Z, Xing Z, Ren Y, Yang R. Spatial–Temporal Impacts of Urban Sprawl on Ecosystem Services: Implications for Urban Planning in the Process of Rapid Urbanization. Land. 2021; 10(11):1210. https://doi.org/10.3390/land10111210
Chicago/Turabian StyleLi, Xiaoyan, Gulinaer Suoerdahan, Zhenyu Shi, Zihan Xing, Yongxing Ren, and Ran Yang. 2021. "Spatial–Temporal Impacts of Urban Sprawl on Ecosystem Services: Implications for Urban Planning in the Process of Rapid Urbanization" Land 10, no. 11: 1210. https://doi.org/10.3390/land10111210
APA StyleLi, X., Suoerdahan, G., Shi, Z., Xing, Z., Ren, Y., & Yang, R. (2021). Spatial–Temporal Impacts of Urban Sprawl on Ecosystem Services: Implications for Urban Planning in the Process of Rapid Urbanization. Land, 10(11), 1210. https://doi.org/10.3390/land10111210