Dynamic Amazonia: The EU–Mercosur Trade Agreement and Deforestation
Abstract
:1. Introduction
2. Background
3. Materials and Methods
3.1. GTAP-BIO Model
3.1.1. Sensitivity Analysis
3.1.2. Implemented Tariffs and Quotas
- Elimination of the export tax on soybeans from the other South American countries (including Argentina) to the EU. EU import tariff regime remains at zero, the current value.
- Other countries of South America (OCSA) and Brazil eliminate import tariffs on EU’s soybeans.
- EU eliminates import tariffs on ethanol from Mercosur for up to 450,000 tones for chemical use and reduces the baseline tariff by one third for 200,000 tones for any use, including fuel use (Brazil and OCSA). Current tariff regime applies for volumes above these quotas.
- EU reduces specific import tariffs on pork and eliminates the import tariffs for poultry to exports from Mercosur. Further, for poultry, a quota is introduced, the out-of-quota tariff remains at baseline.
- The EU eliminates the in-quota tariff for sugar from Brazil up to the quota level, which does not change. The EU also eliminates the in-quota tariff for sugar from Paraguay and introduces a new quota. The out-of-quota tariffs remain at baseline.
- EU reduces in-quota tariffs for beef exported from Mercosur. The quota for frozen and fresh beef is divided equally among Mercosur members. Elimination of in-quota tariffs on high-quality beef is considered and their quota level, specifically in Mercosur, is maintained.
- Mercosur reduces in-quota tariffs to dairy products from the EU.
- Mercosur reduces in-quota tariffs to EU cars, parts, clothing, chemicals, machinery, pharmaceuticals, and textiles
3.2. Spatial Allocation Model
4. Results
4.1. GTAP-BIO
4.1.1. Welfare Impacts
4.1.2. Trade Impacts
4.1.3. Impacts on Production
4.1.4. Land Use Impacts
4.2. Deforestation Spatial Allocation Model
4.2.1. Spatial Model Statistical Results
4.2.2. Spatial Allocation of Deforestation
5. Discussion
6. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- CEPEA; CNA. PIB do Agronegócio. Piracicaba, Brazil. 2021. Available online: https://www.cepea.esalq.usp.br/br/pib-do-agronegocio-brasileiro.aspx (accessed on 10 September 2021).
- IPEA. Nota de Conjuntura N. 52 Rio de Janeiro. 2021. Available online: https://www.ipea.gov.br/portal/images/stories/PDFs/conjuntura/210825_nota_18_pib_agora.pdf (accessed on 14 September 2021).
- Pan, Y.; Birdsey, R.A.; Fang, J.; Houghton, R.; Kauppi, P.E.; Kurz, W.A.; Phillips, O.L.; Shvidenko, A.; Lewis, S.L.; Canadell, J.G.; et al. A Large and Persistent Carbon Sink in the World’s Forests. Science 2011, 333, 988–993. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Foley, J.A.; DeFries, R.; Asner, G.P.; Barford, C.; Bonan, G.; Carpenter, S.R.; Chapin, F.S.; Coe, M.T.; Daily, G.C.; Gibbs, H.K.; et al. Global Consequences of Land Use. Science 2005, 309, 570–574. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Simmons, C.S.; Walker, R.; Perz, S.; Aldrich, S.; Caldas, M.; Pereira, R.; Leite, F.; Fernandes, L.C.; Arima, E. Doing it for Themselves: Direct Action Land Reform in the Brazilian Amazon. World Dev. 2010, 38, 429–444. [Google Scholar] [CrossRef]
- Rorato, A.C.; Picoli, M.C.; Verstegen, J.A.; Camara, G.; Silva Bezerra, F.G.; SEscada, M.I. Environmental Threats over Amazonian Indigenous Lands. Land 2021, 10, 267. [Google Scholar] [CrossRef]
- Patel, K. Brazil Battered by Drought: NASA Earth Observatory. 2021. Available online: https://earthobservatory.nasa.gov/images/148468/brazil-battered-by-drought (accessed on 14 September 2021).
- Walker, R.T. Collision Course: Development Pushes Amazonia toward Its Tipping Point. Environ. Sci. Policy Sustain. Dev. 2020, 63, 15–25. [Google Scholar] [CrossRef]
- Nobre, C.A.; Borma, L.D.S. Tipping points’ for the Amazon forest. Curr. Opin. Environ. Sustain. 2009, 1, 28–36. [Google Scholar] [CrossRef]
- Lovejoy, T.E.; Nobre, C. Amazon Tipping Point; American Association for the Advancement of Science: Washington, DC, USA, 2018. [Google Scholar]
- Arraut, J.M.; Nobre, C.; Barbosa, H.M.; Obregón, G.; Marengo, J. Aerial Rivers and Lakes: Looking at Large-Scale Moisture Transport and Its Relation to Amazonia and to Subtropical Rainfall in South America. J. Clim. 2012, 25, 543–556. [Google Scholar] [CrossRef]
- Lovejoy, T.E.; Nobre, C. Amazon Tipping Point: Last Chance for Action; American Association for the Advancement of Science: Washington, DC, USA, 2019. [Google Scholar]
- Gatti, L.V.; Basso, L.S.; Miller, J.B.; Gloor, M.; Domingues, L.G.; Cassol, H.L.G.; Tejada, G.; Aragão, L.E.O.C.; Nobre, C.; Peters, W.; et al. Amazonia as a carbon source linked to deforestation and climate change. Nature 2021, 595, 388–393. [Google Scholar] [CrossRef] [PubMed]
- Conceição, K.V.; Chaves, M.E.; Picoli, M.C.; Sánchez, A.H.; Soares, A.R.; Mataveli, G.A.; Silva, D.E.; Costa, J.S.; Camara, G. Government policies endanger the indigenous peoples of the Brazilian Amazon. Land Use Policy 2021, 108, 105663. [Google Scholar] [CrossRef]
- Abessa, D.; Famá, A.; Buruaem, L. The systematic dismantling of Brazilian environmental laws risks losses on all fronts. Nat. Ecol. Evol. 2019, 3, 510–511. [Google Scholar] [CrossRef]
- Laue, J.; Arima, E. What drives downsizing of protected areas? A case study of Amazon National Park. J. Lat. Am. Geogr. 2016, 15, 7–31. [Google Scholar]
- Brito, B.; Barreto, P.; Brandão, A., Jr.; Baima, S.; Gomes, P.H. Stimulus for land grabbing and deforestation in the Brazilian Amazon. Environ. Res. Lett. 2019, 14, 064018. [Google Scholar] [CrossRef]
- IMAZON. Ameaça e Pressão de Desmatamento em Áreas Protegidas. 2021. Available online: https://imazon.org.br/imprensa/terras-indigenas-yanomami-alto-rio-negro-e-munduruku-sao-as-mais-pressionadas-pelo-desmatamento-na-amazonia/Belém (accessed on 16 September 2021).
- Abman, R.; Lundberg, C. Does Free Trade Increase Deforestation? The Effects of Regional Trade Agreements. J. Assoc. Environ. Resour. Econ. 2020, 7, 35–72. [Google Scholar] [CrossRef]
- IBGE. Produção Agrícola Municipal, SIDRA; IBGE: Rio de Janeiro, Brazil. Available online: https://sidra.ibge.gov.br/acervo#/S/Q (accessed on 5 March 2021).
- Richards, P.; Taheripour, F.; Arima, E.; Tyner, W.E. Tariffs on American soybeans and their impact on land use change and greenhouse gas emissions in South America. Choices 2020, 35, 1–8. [Google Scholar]
- INPE. Monitoramento da Floresta Amazônica Brasileira Por Satélite—Projeto PRODES: INPE. 2021. Available online: http://www.obt.inpe.br/OBT/assuntos/programas/amazonia/prodes (accessed on 20 January 2021).
- Arima, E.Y.; Richards, P.; Walker, R.T. Biofuel expansion and the spatial economy: Implications for the Amazon Basin in the 21st century. In Bioenergy and Land Use Change: Impact on Natural Capital and Ecosystem Services; American Geophysical Union: Washington, DC, USA, 2017. [Google Scholar]
- Le Tourneau, F.-M. The sustainability challenges of indigenous territories in Brazil’s Amazonia. Curr. Opin. Environ. Sustain. 2015, 14, 213–220. [Google Scholar] [CrossRef]
- Pendrill, F.; Persson, U.M.; Godar, J.; Kastner, T.; Moran, D.; Schmidt, S.; Wood, R. Agricultural and forestry trade drives large share of tropical deforestation emissions. Glob. Environ. Chang. 2019, 56, 1–10. [Google Scholar] [CrossRef]
- Green, J.M.; Croft, S.A.; Durán, A.P.; Balmford, A.P.; Burgess, N.D.; Fick, S.; Gardner, T.; Godar, J.; Suavet, C.; Virah-Sawmy, M.; et al. Linking global drivers of agricultural trade to on-the-ground impacts on biodiversity. Proc. Natl. Acad. Sci. USA 2019, 116, 23202–23208. [Google Scholar] [CrossRef] [Green Version]
- Zu Ermgassen, E.K.; Godar, J.; Lathuillière, M.J.; Löfgren, P.; Gardner, T.; Vasconcelos, A.; Meyfroidt, P. The origin, supply chain, and deforestation risk of Brazil’s beef exports. Proc. Natl. Acad. Sci. USA 2020, 117, 31770–31779. [Google Scholar] [CrossRef]
- Pendrill, F.; Persson, U.M.; Thomas, W.L., Jr. Deforestation Risk Embodied in Production and Consumption of Agricultural and Forestry Commodities 2005–2017, 1st ed.; Zenodo: Genève, Switzerland, 2020; Available online: https://doi.org/10.5281/zenodo.4250532 (accessed on 21 September 2021).
- Alcott, B. Jevons’ paradox. Ecol. Econ. 2005, 54, 9–21. [Google Scholar] [CrossRef]
- Angelsen, A. Agricultural expansion and deforestation: Modelling the impact of population, market forces and property rights. J. Dev. Econ. 1999, 58, 185–218. [Google Scholar] [CrossRef]
- Anderson, J.E.; Van Wincoop, E. Borders, Trade and Welfare; National Bureau of Economic Research: Cambridge, MA, USA, 2001. [Google Scholar]
- Anderson, J.E.; Yotov, Y.V. Terms of Trade and Global Efficiency Effects of Free Trade Agreements, 1990–2002. J. Int. Econ. 2016, 99, 279–298. [Google Scholar] [CrossRef] [Green Version]
- Samuelson, P.A. Welfare economics and international trade. Am. Econ. Rev. 1938, 28, 261–266. [Google Scholar]
- Feenstra, R.C. Advanced International Trade: Theory and Evidence; Princeton University Press: Princeton, NJ, USA, 2015. [Google Scholar]
- Arima, E.; Richards, P.; Walker, R.; Caldas, M. Statistical confirmation of indirect land use change in the Brazilian Amazon. Environ. Res. Lett. 2011, 6, 024010. [Google Scholar] [CrossRef]
- Richards, P.; Walker, R.T.; Arima, E. Spatially complex land change: The Indirect effect of Brazil’s agricultural sector on land use in Amazonia. Glob. Environ. Chang. 2014, 29, 1–9. [Google Scholar] [CrossRef] [Green Version]
- Hertel, T.W. Global Trade Analysis: Modeling and Applications; Cambridge University Press: Cambridge, UK, 1997. [Google Scholar]
- Hertel, T.W.; Burke, M.B.; Lobell, D.B. The poverty implications of climate-induced crop yield changes by 2030. Glob. Environ. Chang. 2010, 20, 577–585. [Google Scholar] [CrossRef] [Green Version]
- Yao, G.; Hertel, T.W.; Taheripour, F. Economic drivers of telecoupling and terrestrial carbon fluxes in the global soybean complex. Glob. Environ. Chang. 2018, 50, 190–200. [Google Scholar] [CrossRef]
- Taheripour, F.; Tyner, W.E. Impacts of possible Chinese 25% tariff on US soybeans and other agricultural commodities. Choices 2018, 33, 1–7. [Google Scholar]
- Taheripour, F.; Hertel, T.W.; Ramankutty, N. Market-mediated responses confound policies to limit deforestation from oil palm expansion in Malaysia and Indonesia. Proc. Natl. Acad. Sci. USA 2019, 116, 19193–19199. [Google Scholar] [CrossRef] [Green Version]
- Harrison, W.J.; Horridge, M.; Pearson, K.R.; Wittwer, G. A Practical Method for Explicitly Modeling Quotas and Other Complementarities. Comput. Econ. 2004, 23, 325–341. [Google Scholar] [CrossRef]
- van der Mensbrugghe, D. The ABCs of TRQs. GTAP 2020, unpublished manuscript. [Google Scholar]
- Hertel, T.; van der Mensbrugghe, D. Chapter 14: Behavioral parameters. In Global Trade Analysis Project (GTAP); Purdue University: West Lafayette, Indiana, 2019. [Google Scholar]
- Arima, E.; Barreto, P.; Araújo, E.; Soares-Filho, B. Public policies can reduce tropical deforestation: Lessons and challenges from Brazil. Land Use Policy 2014, 41, 465–473. [Google Scholar] [CrossRef]
- Cisneros, E.; Zhou, S.L.; Borner, J. Naming and Shaming for Conservation: Evidence from the Brazilian Amazon. PLoS ONE 2015, 10, e0136402. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Malcolm, G. Adjusting tax rates in the GTAP data base. In Global Trade Analysis Project (GTAP); GTAP Technical Paper No. 12; Purdue University: West Lafayette, Indiana, 2000; Volume 6, p. 20. [Google Scholar]
- Smith, T.E.; LeSage, J.P. A Bayesian probit model with spatial dependencies. In Advances in Econometrics: Spatial and Spatiotemporal Econometrics; Lesage, J.P., Kelley, P., Eds.; Elsevier: Oxford, UK, 2004; pp. 127–160. [Google Scholar]
- Arima, E. A Spatial Probit Econometric Model of Land Change: The Case of Infrastructure Development in Western Amazonia, Peru. PLoS ONE 2016, 11, e0152058. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- MapBiomas. Project Mapbiomas—Collection 4.1 of Brazilian Land Cover and Use Map Series. 4.1. Available online: https://mapbiomas.org/pages/downloads (accessed on 18 May 2020).
- Observatório da Cana. 2021. Available online: https://observatoriodacana.com.br/ (accessed on 20 September 2021).
- Schneider, R.; Arima, E.Y.; Verissimo, A.; Souza, C., Jr.; Barreto, P. Sustainable Amazon: Limitations and Opportunities for Rural Development; Bank, W., Ed.; World Bank: Washington, DC, USA, 2002. [Google Scholar]
- Chomitz, K.; Thomas, T.S. Determinants of Land Use in Amazônia: A Fine-Scale Spatial Analysis. Am. J. Agric. Econ. 2003, 85, 1016–1028. [Google Scholar] [CrossRef]
- Alencar, A.; Pereira, C.; Castro, I.; Cardoso, A.; Souza, L.; Costa, R.; Bentes, A.J.; Stella, O.; Azevedo, A.; Gomes, J.; et al. Desmatamento Nos Assentamentos da Amazônia: Histórico, Tendências e Oportunidades; IPAM: Brasília, Brazil, 2016. [Google Scholar]
- Brandão, A., Jr.; Souza, C., Jr. Desmatamento nos assentamentos de reforma agrária na Amazônia. Estado Amazon. 2006, 7, 4. [Google Scholar]
- Carrero, G.C.; Fearnside, P.M.; do Valle, D.R.; de Souza Alves, C. Deforestation Trajectories on a Development Frontier in the Brazilian Amazon: 35 Years of Settlement Colonization, Policy and Economic Shifts, and Land Accumulation. Environ. Manag. 2020, 66, 966–984. [Google Scholar] [CrossRef]
- Pereira, R.; Simmons, C.S.; Walker, R. Smallholders, Agrarian Reform, and Globalization in the Brazilian Amazon: Cattle versus the Environment. Land 2016, 5, 24. [Google Scholar] [CrossRef]
- Nelson, A.; Chomitz, K.M. Effectiveness of Strict vs. Multiple Use Protected Areas in Reducing Tropical Forest Fires: A Global Analysis Using Matching Methods. PLoS ONE 2011, 6, e22722. [Google Scholar] [CrossRef]
- Arima, E.Y.; Simmons, C.S.; Walker, R.; Cochrane, M.A. Fire in the Brazilian Amazon: A Spatially Explicit Model for Policy Impact Analysis. J. Reg. Sci. 2007, 47, 541–567. [Google Scholar] [CrossRef]
- Soares-Filho, B.; Moutinho, P.; Nepstad, D.; Anderson, A.; Rodrigues, H.; Garcia, R.; Dietzsch, L.; Merry, F.; Bowman, M.; Hissa, L.; et al. Role of Brazilian Amazon protected areas in climate change mitigation. Proc. Natl. Acad. Sci. USA 2010, 107, 10821–10826. [Google Scholar] [CrossRef] [Green Version]
- Hagen, A. Fuzzy set approach to assessing similarity of categorical maps. Int. J. Geogr. Inf. Sci. 2003, 17, 235–249. [Google Scholar] [CrossRef] [Green Version]
- Bernard, E.; Penna, L.; Araújo, E. Downgrading, Downsizing, Degazettement, and Reclassification of Protected Areas in Brazil. Conserv. Biol. 2014, 28, 939–950. [Google Scholar] [CrossRef] [PubMed]
- Diele-Viegas, L.M.; Rocha, C.F.D. Why releasing mining on Amazonian indigenous lands and the advance of agrobusiness is extremely harmful for the mitigation of world’s climate change? Comment on Pereira et al. (Environmental Science & Policy 100 (2019) 8–12). Environ. Sci. Policy 2020, 103, 30–31. [Google Scholar]
- Pfaff, A.; Walker, R. Regional interdependence and forest “transitions”: Substitute deforestation limits the relevance of local reversals. Land Use Policy 2010, 27, 119–129. [Google Scholar] [CrossRef]
- Cuypers, D.; Geerken, T.; Gorissen, L.; Lust, A.; Peters, G.; Karstensen, J.; Prieler, S.; Fischer, G.; Hizsnyik, E.; Van Velthuizen, H. The Impact of EU Consumption on Deforestation: Comprehensive Analysis of the Impact of EU Consumption on Deforestation; European Union Publications Office: Luxembourg, 2013. Available online: https://ec.europa.eu/environment/forests/pdf/1.%20Report%20analysis%20of%20impact.pdf (accessed on 15 October 2021).
- Kehoe, L.; Reis, T.; Virah-Sawmy, M.; Balmford, A.; Kuemmerle, T.; Knohl, A.; Antonelli, A.; Hochkirch, A.; Vira, B.; Massa, B.; et al. Make EU trade with Brazil sustainable. Science 2019, 364, 341–342. [Google Scholar] [CrossRef] [Green Version]
- Kehoe, L.; dos Reis, T.N.; Meyfroidt, P.; Bager, S.; Seppelt, R.; Kuemmerle, T.; Berenguer, E.; Clark, M.; Davis, K.F.; zu Ermgassen, E.K.; et al. Inclusion, Transparency, and Enforcement: How the EU-Mercosur Trade Agreement Fails the Sustainability Test. One Earth 2020, 3, 268–272. [Google Scholar] [CrossRef]
- Follador, M.; Soares-Filho, B.S.; Philippidis, G.; Davis, J.L.; de Oliveira, A.R.; Rajão, R. Brazil’s sugarcane embitters the EU-Mercosur trade talks. Sci. Rep. 2021, 11, 13768. [Google Scholar] [CrossRef]
- Siqueira-Gay, J.; Soares-Filho, B.; Sanchez, L.E.; Oviedo, A.; Sonter, L.J. Proposed Legislation to Mine Brazil’s Indigenous Lands Will Threaten Amazon Forests and Their Valuable Ecosystem Services. One Earth 2020, 3, 356–362. [Google Scholar] [CrossRef]
- Conselho Indígena Missionário (CIMA). Violence against Indigenous People. 2019. Available online: https://cimi.org.br/wp-content/uploads/2020/10/Executive-Summary-2019-cimi_ingles.pdf (accessed on 12 March 2021).
- Bachelet, M. Statement by Michelle Bachelet, UN High Comissioner for Human Rights. In Proceedings of the 45th Session on Human Rights Council, Geneva, Switzerland, 14 September–7 October 2020. [Google Scholar]
- Rankins, J. Leaked EU anti-deforestation law omits fragile grasslands and wetlands. The Guardian, 14 September 2021. [Google Scholar]
- Bastiaens, I.; Postnikov, E. Greening up: The effects of environmental standards in EU and US trade agreements. Environ. Politics 2017, 26, 847–869. [Google Scholar] [CrossRef]
- Ferrante, L.; Fearnside, P.M. Brazil threatens Indigenous lands. Science 2020, 368, 481–482. [Google Scholar] [CrossRef]
- LSU Consulting. SIA in Support of the Association Agreement Negotiations between the European Union and Mercosur; London School of Economics: London, UK, 2020. [Google Scholar]
- Francois, J.; Häberli, C.; Manchin, M.; Polanco, R.; Rojas-Romagosa, H.; Tomberger, P. Assessment of the Potential Environmental Impacts and Risks in Switzerland and the MERCOSUR States Resulting from a Free Trade Agreement (FTA) between the EFTA States and MERCOSUR. Available online: https://www.newsd.admin.ch/newsd/message/attachments/61957.pdf (accessed on 1 November 2020).
- Beckman, J.; Hertel, T.; Tyner, W. Validating energy-oriented CGE models. Energy Econ. 2011, 33, 799–806. [Google Scholar] [CrossRef] [Green Version]
- Kehoe, T.J.; Polo, C.; Sancho, F. An evaluation of the performance of an applied general equilibrium model of the Spanish economy. Econ. Theory 1995, 6, 115–141. [Google Scholar] [CrossRef] [Green Version]
- Richards, P.; Arima, E. Capital surpluses in the farming sector and agricultural expansion in Brazil. Environ. Res. Lett. 2018, 13, 075011. [Google Scholar] [CrossRef]
- Rajão, R.; Soares-Filho, B.; Nunes, F.; Börner, J.; Machado, L.; Assis, D.; Oliveira, A.; Pinto, L.; Ribeiro, V.; Rausch, L.; et al. The rotten apples of Brazil’s agribusiness. Science 2020, 369, 246–248. [Google Scholar] [CrossRef] [PubMed]
- Copeland, B.R.; Taylor, M.S. Trade, growth, and the environment. J. Econ. Lit. 2004, 42, 7–71. [Google Scholar] [CrossRef]
- United Nations. Glasgow Leaders’ Declaration on Forests and Land Use. Available online: https://ukcop26.org/glasgow-leaders-declaration-on-forests-and-land-use/ (accessed on 9 November 2021).
- IPEA. Comércio Exterior de Produtos do Agronegócio: Balanço de 2020 e Perspectivas Para 2021; IPEA: Rio de Janeiro, Brazil, 2021. [Google Scholar]
- Walker, R.T.; Simmons, C.; Arima, E.; Galvan-Miyoshi, Y.; Antunes, A.; Waylen, M.; Irigaray, M. Avoiding Amazonian Catastrophes: Prospects for Conservation in the 21st Century. One Earth 2019, 1, 202–215. [Google Scholar] [CrossRef] [Green Version]
Description | Low Deforestation with Multiple Cropping | High Deforestation with Multiple Cropping | High Deforestation and No Double Cropping |
---|---|---|---|
Standard GTAP trade elasticity | S11 | S12 | S13 |
Higher trade elasticities for targeted products | S21 | S22 | S23 |
Region | S11 | S12 | S13 | S21 | S22 | S23 |
---|---|---|---|---|---|---|
EU | 1643 | 1648 | 1648 | 1719 | 1727 | 1728 |
Brazil | 583 | 572 | 570 | 608 | 589 | 587 |
OCSA | 208 | 204 | 204 | 247 | 239 | 239 |
US | −432 | −435 | −435 | −441 | −448 | −448 |
China | −672 | −661 | −660 | −802 | −783 | −781 |
Other | −990 | −986 | −985 | −1080 | −1071 | −1070 |
Total | 341 | 342 | 342 | 251 | 254 | 254 |
Region | Base | S11 | S12 | S13 | S21 | S22 | S23 |
---|---|---|---|---|---|---|---|
US | 1961 | 1859 | 1859 | 1859 | 1578 | 1579 | 1579 |
EU | 100 | 95 | 95 | 95 | 84 | 83 | 83 |
Brazil | 189 | 179 | 179 | 179 | 150 | 150 | 150 |
China | 5 | 5 | 5 | 5 | 4 | 4 | 4 |
OCSA | 225 | 410 | 410 | 410 | 794 | 794 | 794 |
Other | 26 | 24 | 24 | 24 | 20 | 20 | 20 |
Total | 1961 | 1859 | 1859 | 1859 | 1578 | 1579 | 1579 |
Region | Base | S11 | S12 | S13 | S21 | S22 | S23 |
---|---|---|---|---|---|---|---|
US | 476 | 475 | 475 | 475 | 476 | 476 | 476 |
EU | 14,425 | 14,360 | 14,360 | 14,360 | 14,355 | 14,356 | 14,356 |
Brazil | 737 | 749 | 748 | 748 | 753 | 751 | 751 |
China | 56 | 56 | 56 | 56 | 56 | 56 | 56 |
OCSA | 1573 | 1682 | 1682 | 1682 | 1686 | 1686 | 1686 |
Other | 3285 | 3282 | 3282 | 3282 | 3283 | 3283 | 3283 |
Total | 20,551 | 20,604 | 20,604 | 20,604 | 20,608 | 20,608 | 20,608 |
Region | Base | S11 | S12 | S13 | S21 | S22 | S23 |
---|---|---|---|---|---|---|---|
US | 2681 | 2658 | 2658 | 2658 | 2584 | 2584 | 2584 |
EU | 50,122 | 49,629 | 49,629 | 49,629 | 48,057 | 48,057 | 48,057 |
Brazil | 1264 | 1760 | 1760 | 1760 | 3578 | 3578 | 3578 |
China | 218 | 216 | 216 | 216 | 210 | 210 | 210 |
OCSA | 1167 | 1395 | 1395 | 1395 | 2804 | 2804 | 2804 |
Other | 7698 | 7630 | 7629 | 7629 | 7416 | 7416 | 7416 |
Total | 63,150 | 63,287 | 63,287 | 63,287 | 64,649 | 64,649 | 64,649 |
Region | Commodity | S11 | S12 | S13 | S21 | S22 | S23 |
---|---|---|---|---|---|---|---|
EU | Soybeans | −0.761 | −0.766 | −0.767 | −5.718 | −5.747 | −5.750 |
Brazil | 0.173 | 0.211 | 0.214 | −0.064 | 0.027 | 0.036 | |
OCSA | 0.303 | 0.298 | 0.298 | 0.590 | 0.577 | 0.576 | |
EU | Processed ruminant | −0.194 | −0.193 | −0.193 | −0.215 | −0.211 | −0.211 |
Brazil | 0.174 | 0.161 | 0.159 | 0.200 | 0.166 | 0.162 | |
OCSA | 0.217 | 0.219 | 0.219 | 0.156 | 0.159 | 0.160 | |
EU | Processed non ruminant | −0.624 | −0.624 | −0.624 | −0.794 | −0.794 | −0.794 |
Brazil | 1.282 | 1.281 | 1.281 | 1.715 | 1.712 | 1.712 | |
OCSA | 4.359 | 4.360 | 4.360 | 5.455 | 5.457 | 5.457 | |
EU | Beverage and sugar | −0.231 | −0.231 | −0.231 | −1.041 | −1.041 | −1.041 |
Brazil | 1.612 | 1.619 | 1.620 | 5.215 | 5.251 | 5.255 | |
OCSA | 0.741 | 0.741 | 0.741 | 3.908 | 3.907 | 3.907 | |
EU | Sugarcane ethanol | −0.157 | −0.155 | −0.155 | −0.403 | −0.402 | −0.402 |
Brazil | 0.190 | 0.201 | 0.202 | −0.004 | 0.015 | 0.018 | |
OCSA | −0.128 | −0.126 | −0.125 | −0.850 | −0.845 | −0.844 | |
EU | Processed dairy | 0.048 | 0.048 | 0.048 | 0.033 | 0.033 | 0.033 |
Brazil | −0.187 | −0.191 | −0.191 | −0.194 | −0.202 | −0.203 | |
OCSA | −0.453 | −0.452 | −0.452 | −0.499 | −0.496 | −0.496 | |
EU | Affected industries and services | 0.042 | 0.042 | 0.042 | 0.060 | 0.060 | 0.060 |
Brazil | −0.190 | −0.191 | −0.192 | −0.307 | −0.311 | −0.312 | |
OCSA | −0.196 | −0.196 | −0.196 | −0.313 | −0.313 | −0.313 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Arima, E.; Barreto, P.; Taheripour, F.; Aguiar, A. Dynamic Amazonia: The EU–Mercosur Trade Agreement and Deforestation. Land 2021, 10, 1243. https://doi.org/10.3390/land10111243
Arima E, Barreto P, Taheripour F, Aguiar A. Dynamic Amazonia: The EU–Mercosur Trade Agreement and Deforestation. Land. 2021; 10(11):1243. https://doi.org/10.3390/land10111243
Chicago/Turabian StyleArima, Eugenio, Paulo Barreto, Farzad Taheripour, and Angel Aguiar. 2021. "Dynamic Amazonia: The EU–Mercosur Trade Agreement and Deforestation" Land 10, no. 11: 1243. https://doi.org/10.3390/land10111243