Application of Harmony Search Algorithm to Slope Stability Analysis
Abstract
:1. Introduction
2. The Harmony Search (HS) Algorithm
3. Case Study
4. Modelling by the HS Algorithm
5. Results and Discussion
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Alonso, E.E.; Pinyol, N.M. Criteria for rapid sliding I. A review of Vaiont case. Eng. Geol. 2010, 114, 198–210. [Google Scholar] [CrossRef] [Green Version]
- Hungr, O.; Leroueil, S.; Picarelli, L. The Varnes classification of landslide type, an update. Landslide 2014, 11, 167–194. [Google Scholar] [CrossRef]
- Iverson, R.M.; George, D.L.; Allstadt, K.; Reid, M.E.; Collins, B.D.; Vallance, J.W.; Schilling, S.P.; Godt, J.W.; Cannon, C.M.; Magirl, C.S.; et al. Landslide mobility and hazards: Implications of the 2014 Oso disaster. EPSL Earth Planet. Sci. Lett. 2015, 412, 197–208. [Google Scholar] [CrossRef] [Green Version]
- Conte, E.; Donato, A.; Pugliese, L.; Troncone, A. Analysis of the Maierato landslide (Calabria, Southern Italy). Landslides 2018, 15, 1935–1950. [Google Scholar] [CrossRef]
- Leroueil, S. Natural slopes and cuts: Movement and failure mechanisms. Géotechnique 2001, 51, 197–243. [Google Scholar] [CrossRef]
- Pirulli, M.; Pastor, M. Numerical study on the entrainment of bed material into rapid landslides. Géotechnique 2012, 62, 959–972. [Google Scholar] [CrossRef]
- Yerro, A.; Alonso, E.E.; Pinyol, N.M. Run-out of landslides in brittle soils. Comput. Geotech. 2016, 80, 427–439. [Google Scholar] [CrossRef] [Green Version]
- Calvetti, F.; di Prisco, C.; Vairaktaris, E. DEM assessment of impact forces of dry granular masses on rigid barriers. Acta Geotech. 2017, 12, 129–144. [Google Scholar] [CrossRef]
- Conte, E.; Pugliese, L.; Troncone, A. Post-failure stage simulation of a landslide using the material point method. Eng. Geol. 2019, 253, 149–159. [Google Scholar] [CrossRef]
- Troncone, A.; Conte, E.; Pugliese, L. Analysis of the Slope Response to an Increase in Pore Water Pressure Using the Material Point Method. Water 2019, 11, 1446. [Google Scholar] [CrossRef] [Green Version]
- Yerro, A.; Soga, K.; Bray, J. Runout evaluation of Oso landslide with the material point method. Can. Geotech. J. 2019, 56, 1304–1317. [Google Scholar] [CrossRef] [Green Version]
- Conte, E.; Pugliese, L.; Troncone, A. Post-failure analysis of the Maierato landslide using the material point method. Eng. Geol. 2020, 277, 105788. [Google Scholar] [CrossRef]
- Troncone, A.; Pugliese, L.; Conte, E. Run-Out Simulation of a Landslide Triggered by an Increase in the Groundwater Level Using the Material Point Method. Water 2020, 12, 2817. [Google Scholar] [CrossRef]
- Choudhury, R.; Flentje, P.; Bhattacharya, G. Geotechnical Slope Analysis; CRC Press: Boca Raton, FL, USA, 2009. [Google Scholar]
- Conte, E.; Troncone, A. An analytical method for predicting the mobility of slow moving landslides owing to groundwater fluctuations. J. Geotech. Geoenviron. Eng. ASCE 2011, 137, 777–784. [Google Scholar] [CrossRef]
- Conte, E.; Troncone, A. Stability analysis of infinite clayey slopes subjected to pore pressure changes. Géotechnique 2012, 62, 87–91. [Google Scholar] [CrossRef]
- Conte, E.; Troncone, A. A method for the analysis of soil slips triggered by rainfall. Geotechnique 2012, 62, 187–192. [Google Scholar] [CrossRef]
- Conte, E.; Troncone, A. Simplified approach for the analysis of rainfall-induced landslides. J. Geotech. Geoenviron. Eng. ASCE 2012, 138, 398–406. [Google Scholar] [CrossRef]
- Duncan, J.M.; Wright, S.G.; Brandon, T.L. Soil Strength and Slope Stability, 2nd ed.; Wiley: Hoboken, NJ, USA, 2014. [Google Scholar]
- Troncone, A.; Pugliese, L.; Parise, A.; Conte, E. Prediction of Slow-Moving Landslide Mobility Due to Rainfall Using a Two-Wedges Model. Water 2021, 13, 2030. [Google Scholar] [CrossRef]
- Troncone, A.; Pugliese, L.; Lamanna, G.; Conte, E. Prediction of rainfall-induced landslide movements in the presence of stabilizing piles. Eng. Geol. 2021, 288, 106143. [Google Scholar] [CrossRef]
- Griffiths, D.V.; Lane, P.A. Slope stability analysis by finite elements. Géotechnique 1999, 49, 387–403. [Google Scholar] [CrossRef]
- Potts, D.M.; Zdravkovic, L. Finite Element Analysis in Geotechnical Engineering: Application; Thomas Telford: London, UK, 2001. [Google Scholar]
- Troncone, A. Numerical analysis of a landslide in soils with strain-softening behaviour. Géotechnique 2005, 55, 585–596. [Google Scholar] [CrossRef]
- Troncone, A.; Conte, E.; Donato, A. Two and three-dimensional numerical analysis of the progressive failure that occurred in an excavation-induced landslide. Eng. Geol. 2014, 183, 265–275. [Google Scholar] [CrossRef]
- Cislaghi, A.; Cohen, D.; Gasser, E.; Bischetti, G.B.; Schwarz, M. Field measurements of passive earth forces in steep, shallow, landslide-prone areas. J. Geophys. Res. Earth Surf. 2019, 124, 838–866. [Google Scholar] [CrossRef]
- Cohen, D.; Schwarz, M. Tree-root control of shallow landslides. Earth Surf. Dyn. 2017, 5, 451–477. [Google Scholar] [CrossRef] [Green Version]
- Rosso, R.; Rulli, M.C.; Vannucchi, G. A physically based model for the hydrologic control on shallow landsliding. Water Resour. Res. 2006, 42, W06410. [Google Scholar] [CrossRef]
- Bordoni, M.; Bonì, R.; Colombo, A.; Lanteri, L.; Meisina, C. A methodology for ground motion area detection (GMA-D) using A-DInSAR time series in landslide investigations. CATENA 2018, 163, 89–110. [Google Scholar] [CrossRef]
- Michalowski, R.L. Stability charts for uniform slopes. J. Geotech. Geoenviron. Eng. 2002, 128, 351–355. [Google Scholar] [CrossRef]
- Kang, F.; Li, J. Artificial bee colony algorithm optimized support vector regression for system reliability analysis of slopes. J. Comput. Civ. Eng. 2016, 30, 04015040. [Google Scholar] [CrossRef]
- Li, D.Q.; Yang, Z.Y.; Cao, Z.J.; Au, S.K.; Phoon, K.K. System reliability analysis of slope stability using generalized subset simulation. Appl. Math. Model. 2017, 46, 650–664. [Google Scholar] [CrossRef]
- Mahdiyar, A.; Hasanipanah, M.; Armaghani, D.J.; Gordan, B.; Abdullah, A.; Arab, H.; Majid, M.Z.A. A Monte Carlo technique in safety assessment of slope under seismic condition. Eng. Comput. 2017, 33, 807–817. [Google Scholar] [CrossRef]
- Wang, Y.; Cao, Z.; Au, S.K. Practical reliability analysis of slope stability by advanced Monte Carlo simulations in a spreadsheet. Can. Geotech. J. 2011, 48, 162–172. [Google Scholar] [CrossRef]
- Koopialipoor, M.; Armaghani, D.J.; Hedayat, A.; Marto, A.; Gordan, B. Applying various hybrid intelligent systems to evaluate and predict slope stability under static and dynamic conditions. Soft Comput. 2019, 23, 5913–5929. [Google Scholar] [CrossRef]
- Mishra, M.; Gunturi, V.R.; Miranda, T.F.D.S. Slope stability analysis using recent metaheuristic techniques: A comprehensive survey. SN Appl. Sci. 2019, 1, 1674. [Google Scholar] [CrossRef] [Green Version]
- Yuan, C.; Moayedi, H. The performance of six neural-evolutionary classification techniques combined with multi-layer perception in two-layered cohesive slope stability analysis and failure recognition. Eng. Comput. 2020, 36, 1705–1714. [Google Scholar] [CrossRef]
- Mishra, M.; Ramana, G.V.; Maity, D. Multiverse optimisation algorithm for capturing the critical slip surface in slope stability analysis. Geotech. Geol. Eng. 2020, 38, 459–474. [Google Scholar] [CrossRef]
- Mikaeil, R.; Haghshenas, S.S.; Hoseinie, S.H. Rock penetrability classification using artificial bee colony (ABC) algorithm and self-organizing map. Geotech. Geol. Eng. 2018, 36, 1309–1318. [Google Scholar] [CrossRef]
- Salemi, A.; Mikaeil, R.; Haghshenas, S.S. Integration of finite difference method and genetic algorithm to seismic analysis of circular shallow tunnels (Case study: Tabriz urban railway tunnels). KSCE J. Civ. Eng. 2018, 22, 1978–1990. [Google Scholar] [CrossRef]
- Haghshenas, S.S.; Faradonbeh, R.S.; Mikaeil, R.; Haghshenas, S.S.; Taheri, A.; Saghatforoush, A.; Dormishi, A. A new conventional criterion for the performance evaluation of gang saw machines. Measurement 2019, 146, 159–170. [Google Scholar] [CrossRef]
- Hosseini, S.M.; Ataei, M.; Khalokakaei, R.; Mikaeil, R.; Haghshenas, S.S. Study of the effect of the cooling and lubricant fluid on the cutting performance of dimension stone through artificial intelligence models. Int. J. Eng. Sci. Technol. 2020, 23, 71–81. [Google Scholar] [CrossRef]
- Mikaeil, R.; Bakhshinezhad, H.; Haghshenas, S.S.; Ataei, M. Stability analysis of tunnel support systems using numerical and intelligent simulations (case study: Kouhin Tunnel of Qazvin-Rasht Railway). RGN Zbornik 2019, 34, 1–10. [Google Scholar] [CrossRef] [Green Version]
- Mikaeil, R.; Haghshenas, S.S.; Sedaghati, Z. Geotechnical risk evaluation of tunneling projects using optimization techniques (case study: The second part of Emamzade Hashem tunnel). Nat. Hazards 2019, 97, 1099–1113. [Google Scholar] [CrossRef]
- Dormishi, A.; Ataei, M.; Mikaeil, R.; Khalokakaei, R.; Haghshenas, S.S. Evaluation of gang saws’ performance in the carbonate rock cutting process using feasibility of intelligent approaches. Int. J. Eng. Sci. Technol. 2019, 22, 990–1000. [Google Scholar] [CrossRef]
- Noori, A.M.; Mikaeil, R.; Mokhtarian, M.; Haghshenas, S.S.; Foroughi, M. Feasibility of intelligent models for prediction of utilization factor of TBM. Geotech. Geol. Eng. 2020, 38, 3125–3143. [Google Scholar] [CrossRef]
- Keshtegar, B.; Correia, J.A.; Trung, N.T. Optimisation of nanocomposite pipes under internal fluid reinforced by FRP and CNTs under seismic load. IJHM Int. J. Hydromechatron. 2020, 3, 213–227. [Google Scholar] [CrossRef]
- Geem, Z.W.; Kim, J.H.; Loganathan, G.V. A new heuristic optimization algorithm: Harmony search. Simulation 2001, 76, 60–68. [Google Scholar] [CrossRef]
- Lee, K.S.; Geem, Z.W. A new structural optimization method based on the harmony search algorithm. Comput Struct. 2004, 82, 781–798. [Google Scholar] [CrossRef]
- Lee, K.S.; Geem, Z.W. A new meta-heuristic algorithm for continuous engineering optimization: Harmony search theory and practice. Comput. Methods Appl. Mech. Eng. 2005, 194, 3902–3933. [Google Scholar] [CrossRef]
- Geem, Z.W. Optimal cost design of water distribution networks using harmony search. Eng. Optim. 2006, 38, 259–277. [Google Scholar] [CrossRef]
- Geem, Z.W. Harmony search optimisation to the pump-included water distribution network design. Civ. Eng. Environ. Syst. 2009, 26, 211–221. [Google Scholar] [CrossRef]
- Geem, Z.W.; Cho, Y.H. Optimal design of water distribution networks using parameter-setting-free harmony search for two major parameters. J. Water Resour. Plan. Manag. 2011, 137, 377–380. [Google Scholar] [CrossRef]
- Moayedikia, A.; Ong, K.L.; Boo, Y.L.; Yeoh, W.G.; Jensen, R. Feature selection for high dimensional imbalanced class data using harmony search. Eng. Appl. Artif. Intell. 2017, 57, 38–49. [Google Scholar] [CrossRef] [Green Version]
- De Paola, F.; Galdiero, E.; Giugni, M. Location and setting of valves in water distribution networks using a harmony search approach. J. Water Resour. Plan. Manag. 2017, 143, 04017015. [Google Scholar] [CrossRef]
- Gnawali, K.; Han, K.H.; Geem, Z.W.; Jun, K.S.; Yum, K.T. Economic Dispatch Optimization of Multi-Water Resources: A Case Study of an Island in South Korea. Sustainability 2019, 11, 5964. [Google Scholar] [CrossRef] [Green Version]
- Nazari-Heris, M.; Mohammadi-Ivatloo, B.; Asadi, S.; Geem, Z.W. Large-scale combined heat and power economic dispatch using a novel multi-player harmony search method. Appl. Therm. Eng. 2019, 154, 493–504. [Google Scholar] [CrossRef]
- Wang, X.; Gao, X.Z.; Zenger, K. An Introduction to Harmony Search Optimization Method; Springer International Publishing: New York, NY, USA, 2015; ISBN 978-3-319-08355-1. [Google Scholar] [CrossRef]
- Feng, X. Introduction of Intelligent Rock Mechanics; Science Press: Beijing, China, 2000; pp. 239–241. [Google Scholar]
- Lu, P.; Rosenbaum, M.S. Artificial neural networks and grey systems for the prediction of slope stability. Nat. Hazards 2003, 30, 383–398. [Google Scholar] [CrossRef]
- Li, X. Comparative Studies of Artificial Neural Networks and Adaptive Neuro-Fuzzy Inference System-Based Approach for the Circular Sliding Slopes Stability Analysis. Master’s Thesis, University of South China, Hengyang, China, 2004. [Google Scholar]
- Huang, Z.; Cui, J.; Liu, H. Chaotic neural network method for slope stability prediction. Chin. J. Rock Mech. Eng. 2004, 22, 015. [Google Scholar]
- Sakellariou, M.G.; Ferentinou, M.D. A study of slope stability prediction using neural networks. Geotech. Geol. Eng. 2005, 23, 419. [Google Scholar] [CrossRef]
- Wang, H.B.; Xu, W.Y.; Xu, R.C. Slope stability evaluation using back propagation neural networks. Eng. Geol. 2005, 80, 302–315. [Google Scholar] [CrossRef]
- Samui, P. Slope stability analysis: A support vector machine approach. Environ. Geol. 2008, 56, 255. [Google Scholar] [CrossRef]
- Zhao, H.B. Slope reliability analysis using a support vector machine. Comput. Geotech. 2008, 35, 459–467. [Google Scholar] [CrossRef]
- Das, S.K.; Biswal, R.K.; Sivakugan, N.; Das, B. Classification of slopes and prediction of factor of safety using differential evolution neural networks. Environ. Earth Sci. 2011, 64, 201–210. [Google Scholar] [CrossRef]
- Erzin, Y.; Cetin, T. The prediction of the critical factor of safety of homogeneous finite slopes using neural networks and multiple regressions. Comput. Geosci. 2013, 51, 305–313. [Google Scholar] [CrossRef]
- Liu, Z.; Shao, J.; Xu, W.; Chen, H.; Zhang, Y. An extreme learning machine approach for slope stability evaluation and prediction. Nat. Hazards 2014, 73, 787–804. [Google Scholar] [CrossRef]
- Gordan, B.; Armaghani, D.J.; Hajihassani, M.; Monjezi, M. Prediction of seismic slope stability through combination of particle swarm optimization and neural network. Eng. Comput. 2016, 32, 85–97. [Google Scholar] [CrossRef]
- Hoang, N.D.; Pham, A.D. Hybrid artificial intelligence approach based on metaheuristic and machine learning for slope stability assessment: A multinational data analysis. Expert Syst. Appl. 2016, 46, 60–68. [Google Scholar] [CrossRef]
- Suman, S.; Khan, S.Z.; Das, S.K.; Chand, S.K. Slope stability analysis using artificial intelligence techniques. Nat Hazards 2016, 84, 727–748. [Google Scholar] [CrossRef]
- Verma, A.K.; Singh, T.N.; Chauhan, N.K.; Sarkar, K. A hybrid FEM–ANN approach for slope instability prediction. J. Inst. Eng. India A 2016, 97, 171–180. [Google Scholar] [CrossRef]
- Fattahi, H. Prediction of slope stability using adaptive neuro-fuzzy inference system based on clustering methods. J. Min. Environ. 2017, 8, 163–177. [Google Scholar]
- Rukhaiyar, S.; Alam, M.N.; Samadhiya, N.K. A PSO-ANN hybrid model for predicting factor of safety of slope. J. Geotech. Eng. 2018, 12, 556–566. [Google Scholar] [CrossRef]
- Xue, X. Prediction of slope stability based on hybrid PSO and LSSVM. J. Comput. Civ. Eng. 2017, 31, 04016041. [Google Scholar] [CrossRef]
- Chakraborty, A.; Goswami, D. Prediction of slope stability using multiple linear regression (MLR) and artificial neural network (ANN). Arab. J. Geosci. 2017, 10, 385. [Google Scholar] [CrossRef]
- Feng, X.; Li, S.; Yuan, C.; Zeng, P.; Sun, Y. Prediction of slope stability using naive Bayes classifier. KSCE J. Civ. Eng. 2018, 22, 941–950. [Google Scholar] [CrossRef]
- Salmasi, F.; Jafari, F. A simple direct method for prediction of safety factor of homogeneous finite slopes. Geotech. Geol. Eng. 2019, 37, 3949–3959. [Google Scholar] [CrossRef]
- Sah, N.K.; Sheorey, P.R.; Upadhyaya, L.N. Maximum likelihood estimation of slope stability. Int. J. Rock Mech. Min. 1994, 31, 47–53. [Google Scholar] [CrossRef]
- Lloyd, S.P. Least squares quantization in pcm. IEEE Trans. Inf. Theory 1982, 28, 129–137. [Google Scholar] [CrossRef]
- Guido, G.; Haghshenas, S.S.; Haghshenas, S.S.; Vitale, A.; Astarita, V.; Haghshenas, A.S. Feasibility of Stochastic Models for Evaluation of Potential Factors for Safety: A Case Study in Southern Italy. Sustainability 2020, 12, 7541. [Google Scholar] [CrossRef]
- Hosseini, S.M.; Ataei, M.; Khalokakaei, R.; Mikaeil, R.; Haghshenas, S.S. Investigating the role of coolant and lubricant fluids on the performance of cutting disks (case study: Hard rocks). RGN Zbornik 2019, 34, 13–24. [Google Scholar] [CrossRef]
- Mikaeil, R.; Haghshenas, S.S.; Shirvand, Y.; Hasanluy, M.V.; Roshanaei, V. Risk assessment of geological hazards in a tunneling project using harmony search algorithm (case study: Ardabil-Mianeh railway tunnel). Civ. Eng. J. 2016, 2, 546–554. [Google Scholar] [CrossRef] [Green Version]
- Mikaeil, R.; Ozcelik, Y.; Ataei, M.; Shaffiee Haghshenas, S. Application of harmony search algorithm to evaluate performance of diamond wire saw. J. Min. Environ. 2019, 10, 27–36. [Google Scholar]
References | Geotechnical Properties and Geometry | Slip Surface | Number of Cases | |||||||
---|---|---|---|---|---|---|---|---|---|---|
H | α | c’ | φ’ | γ | ru | PP | PGA | |||
Feng [59] | ● | ● | ● | ● | ● | ● | Circular | 82 cases | ||
Lu and Rosenbaum [60] | ● | ● | ● | ● | ● | ● | Circular | 32 cases | ||
Li [61] | ● | ● | ● | ● | ● | Circular | 59 cases | |||
Huang et al. [62] | ● | ● | ● | ● | ● | ● | Circular | 64 cases | ||
Sakellariou and Ferentinou [63] | ● | ● | ● | ● | ● | ● | Circular | 46 cases | ||
Wang et al. [64] | ● | ● | ● | ● | ● | Circular | 27 cases | |||
Samui et al. [65] | ● | ● | ● | ● | ● | ● | Circular | 46 cases | ||
Zhao [66] | ● | ● | ● | Circular | 10 cases | |||||
Das et al. [67] | ● | ● | ● | ● | ● | ● | Circular | 46 cases | ||
Erzin and Cetin [68] | ● | ● | ● | ● | ● | Circular | 675 modeled cases | |||
Liu et al. [69] | ● | ● | ● | ● | ● | ● | Circular | 97 cases | ||
Gordan et al. [70] | ● | ● | ● | ● | ● | Circular | 699 modeled cases | |||
Hoang and Pham [71] | ● | ● | ● | ● | ● | ● | Circular | 168 cases | ||
Suman et al. [72] | ● | ● | ● | ● | ● | ● | Circular | 103 cases | ||
Verma et al. [73] | ● | ● | ● | ● | Circular | 100 modeled cases | ||||
Fattahi [74] | ● | ● | ● | ● | ● | ● | Circular | 67 cases | ||
Rukhaiyar et al. [75] | ● | ● | ● | ● | ● | ● | Circular | 83 cases | ||
Xue [76] | ● | ● | ● | ● | ● | ● | Circular | 46 cases | ||
Chakraborty and Goswami [77] | ● | ● | ● | ● | ● | ● | Circular | 200 cases | ||
Feng et al. [78] | ● | ● | ● | ● | ● | ● | Circular | 69 cases | ||
Salmasi and Jafari [79] | ● | ● | ● | ● | ● | ● | Circular | 250 cases |
Case No. | Location | Geotechnical Properties and Geometry | FS | |||||
---|---|---|---|---|---|---|---|---|
γ (kN/m3) | c’ (kPa) | φ’ (°) | α (°) | H (m) | ru | |||
1 | Seven Sisters Landslide, Uk | 20.41 | 24.9 | 13 | 22 | 10.67 | 0.35 | 1.4 |
2 | Case 1: The Northolt Slide, UK | 19.63 | 11.97 | 20 | 22 | 12.19 | 0.405 | 1.35 |
3 | Selset Landslide, Yorkshire, Uk | 21.82 | 8.62 | 32 | 28 | 12.8 | 0.49 | 1.03 |
4 | Saskatchewan Dam, Canada | 20.41 | 33.52 | 11 | 16 | 45.72 | 0.2 | 1.28 |
5 | Case 2: The Northolt Slide, UK | 18.84 | 15.32 | 30 | 25 | 10.67 | 0.38 | 1.63 |
6 | River Bank Side, Alberta, Canada | 19.06 | 11.71 | 28 | 35 | 21 | 0.11 | 1.09 |
7 | Unknown | 18.84 | 14.36 | 25 | 20 | 30.5 | 0.45 | 1.11 |
8 | Case 2: Open-Pit Iron Ore Mine, Goa, India | 14 | 11.97 | 26 | 30 | 88 | 0.45 | 0.625 |
9 | Athens Slope, Greece | 18 | 24 | 30.15 | 45 | 20 | 0.12 | 1.12 |
10 | Case 1: Open-Pit Coal Mine, Alberta, Canada | 22.4 | 100 | 45 | 45 | 15 | 0.25 | 1.8 |
11 | Case 2: Open-Pit Coal Mine, Alberta, Canada | 22.4 | 10 | 35 | 45 | 10 | 0.4 | 0.9 |
12 | Case 3: Open-Pit Coal Mine, Newcastle Coalfield, Australia | 20 | 20 | 36 | 45 | 50 | 0.25 | 0.96 |
13 | Case 4: Open-Pit Coal Mine, Newcastle Coalfield, Australia | 20 | 20 | 36 | 45 | 50 | 0.5 | 0.83 |
14 | Case 5: Open-Pit Coal Mine, Newcastle Coalfield, Australia | 20 | 0 | 36 | 45 | 50 | 0.25 | 0.79 |
15 | Case 6: Open-Pit Coal Mine, Newcastle Coalfield, Australia | 20 | 0 | 36 | 45 | 50 | 0.5 | 0.67 |
16 | Case 1: Harbour Slope, Newcastle, Australia | 22 | 0 | 40 | 33 | 8 | 0.35 | 1.45 |
17 | Case 2: Harbour Slope, Newcastle, Australia | 24 | 0 | 40 | 33 | 8 | 0.3 | 1.58 |
18 | Case 3: Harbour Slope, Newcastle, Australia | 20 | 0 | 24.5 | 20 | 8 | 0.35 | 1.37 |
19 | Case 4: Harbour Slope, Newcastle, Australia | 18 | 5 | 30 | 20 | 8 | 0.3 | 2.05 |
No. of Case | Euclidean Distance from | Defined Class | FS | Verification | |
---|---|---|---|---|---|
First Class | Second Class | ||||
1 | 0.659 | 0.268 | 2 | 1.4 | Satisfied |
2 | 0.549 | 0.129 | 2 | 1.35 | Satisfied |
3 | 0.474 | 0.352 | 2 | 1.03 | Satisfied |
4 | 0.848 | 0.592 | 2 | 1.28 | Satisfied |
5 | 0.445 | 0.253 | 2 | 1.63 | Satisfied |
6 | 0.699 | 0.543 | 2 | 1.09 | Satisfied |
7 | 0.529 | 0.169 | 2 | 1.11 | Satisfied |
8 | 0.742 | 0.843 | 1 | 0.625 | Satisfied |
9 | 0. 822 | 0.537 | 2 | 1.12 | Satisfied |
10 | 1. 053 | 1.158 | 1 | 1.8 | Not Satisfied |
11 | 0. 637 | 0.340 | 2 | 0.9 | Not Satisfied |
12 | 0.377 | 0.777 | 1 | 0.96 | Satisfied |
13 | 0.411 | 0.729 | 1 | 0.83 | Satisfied |
14 | 0.357 | 0.798 | 1 | 0.79 | Satisfied |
15 | 0.392 | 0.751 | 1 | 0.67 | Satisfied |
16 | 0.559 | 0.427 | 2 | 1.45 | Satisfied |
17 | 0.605 | 0.481 | 2 | 1.58 | Satisfied |
18 | 0.570 | 0.271 | 2 | 1.37 | Satisfied |
19 | 0.559 | 0.362 | 2 | 2.05 | Satisfied |
Clusters | γ | c’ | φ’ | α | H | ru |
---|---|---|---|---|---|---|
Class 1 (Failed class) | 0.753 | 0.063 | 0.922 | 0.812 | 0.736 | 0.714 |
Class 2 (Stable class) | 0.844 | 0.001 | 0.484 | 0.462 | 0.237 | 0.702 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Haghshenas, S.S.; Haghshenas, S.S.; Geem, Z.W.; Kim, T.-H.; Mikaeil, R.; Pugliese, L.; Troncone, A. Application of Harmony Search Algorithm to Slope Stability Analysis. Land 2021, 10, 1250. https://doi.org/10.3390/land10111250
Haghshenas SS, Haghshenas SS, Geem ZW, Kim T-H, Mikaeil R, Pugliese L, Troncone A. Application of Harmony Search Algorithm to Slope Stability Analysis. Land. 2021; 10(11):1250. https://doi.org/10.3390/land10111250
Chicago/Turabian StyleHaghshenas, Sina Shaffiee, Sami Shaffiee Haghshenas, Zong Woo Geem, Tae-Hyung Kim, Reza Mikaeil, Luigi Pugliese, and Antonello Troncone. 2021. "Application of Harmony Search Algorithm to Slope Stability Analysis" Land 10, no. 11: 1250. https://doi.org/10.3390/land10111250
APA StyleHaghshenas, S. S., Haghshenas, S. S., Geem, Z. W., Kim, T. -H., Mikaeil, R., Pugliese, L., & Troncone, A. (2021). Application of Harmony Search Algorithm to Slope Stability Analysis. Land, 10(11), 1250. https://doi.org/10.3390/land10111250