Developing a Climate Change Vulnerability Index for Coastal City Sustainability, Mitigation, and Adaptation: A Case Study of Kuala Terengganu, Malaysia
Abstract
:1. Introduction
1.1. Land-Use Change and Destruction of Coastal City Regions
- What type of vulnerabilities exists?
- What are the options to adapt and mitigate vulnerabilities?
- What is the state of planning for adaptation?
1.2. Application of MCDA Model and GIS for Coastal City Vulnerability
2. Materials and Methods
2.1. Study Area
2.2. Data Requirement
2.3. CCVA Model Framework
2.4. Application of the Delphi-AHP Model and GIS Technique
3. Results
3.1. Delphi-AHP Qualitative Weights
3.2. Delphi-AHP Model Sensitive Analysis
3.3. Delphi-AHP Semi Qualitative Weights and GIS Analysis
4. Discussion
4.1. Coastal City Mitigation Policies and Erosion Control Measures
4.2. Implementing Adaptation Plans
- Designate an appropriate federal agency to be responsible for the general direction and coordination of adaptation plans and feasibility studies.
- The final design and construction of protective works in accordance with feasibility studies should be undertaken by a dedicated department. In the case of Malaysia, this would be the Department of Irrigation and Drainage.
- Establish a technical coastal city erosion control center to orchestrate proposed development in critical erosion areas, which requires coordination across all federal and state government agencies.
- Initiate an inter-policy coordination process to negotiate trade-offs between potentially conflicting goals to determine optimal adaption across various socio-economic and environmental criteria.
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Kummu, M.; de Moel, H.; Salvucci, G.; Viviroli, D.; Ward, P.J.; Varis, O. Over the hills and further away from coast: Global geospatial patterns of human and environment over the 20th–21st centuries. Environ. Res. Lett. 2016, 11, 034010. [Google Scholar] [CrossRef]
- Klein, R.J.; Nicholls, R.J. Assessment of coastal vulnerability to climate change. Ambio 1999, 28, 182–187. [Google Scholar]
- Nicholls, R.J.; Wong, P.P.; Burkett, V.; Codignotto, J.; Hay, J.; McLean, R.; Saito, Y. Coastal Systems and Low-Lying Areas; USGS: Reston, VA, USA, 2007. [Google Scholar]
- Bagheri, M.; Ibrahim, Z.Z.; Mansor, S.; Manaf, L.A.; Akhir, M.F.; Talaat, W.I.A.W.; Pour, A.B. Land-Use Suitability Assessment Using Delphi and Analytical Hierarchy Process (D-AHP) Hybrid Model for Coastal City Management: Kuala Terengganu, Peninsular Malaysia. ISPRS Int. J. Geo-Inf. 2021, 10, 621. [Google Scholar] [CrossRef]
- Le, T.D.N. Climate change adaptation in coastal cities of developing countries: Characterizing types of vulnerability and adaptation options. Mitig. Adapt. Strat. Glob. Chang. 2020, 25, 739–761. [Google Scholar] [CrossRef]
- Cradock-Henry, N.A.; Diprose, G.; Frame, B. Towards local-parallel scenarios for climate change impacts, adaptation and vulnerability. Clim. Risk Manag. 2021, 34, 100372. [Google Scholar] [CrossRef]
- Davar, L.; Griggs, G.; Danehkar, A.; Salmanmahiny, A.; Azarnivand, H.; Naimi, B. A Spatial Integrated SLR Adaptive Management Plan Framework (SISAMP) toward Sustainable Coasts. Water 2021, 13, 2263. [Google Scholar] [CrossRef]
- Luetz, J.M. Climate Refugees: Why Measuring the Immeasurable Makes Sense beyond Measure. In Climate Action; Springer: Singapore, 2020; pp. 286–299. [Google Scholar]
- Heang, C.; Birchall, S.J. Community Planning Opportunities: Building Resilience to Climate Variability Using Coastal Naturalization. In Climate Action; Springer: Singapore, 2020; pp. 347–355. [Google Scholar]
- Deshpande, T.; Michael, K.; Bhaskara, K. Barriers and enablers of local adaptive measures: A case study of Bengaluru’s informal settlement dwellers. Local Environ. 2018, 24, 167–179. [Google Scholar] [CrossRef] [Green Version]
- Sterzel, T.; Lüdeke, M.K.B.; Walther, C.; Kok, M.T.; Sietz, D.; Lucas, P. Typology of coastal urban vulnerability under rapid urbanization. PLoS ONE 2020, 15, e0220936. [Google Scholar] [CrossRef] [Green Version]
- Delgado, A.; Rodriguez, D.J.; Amadei, C.A.; Makino, M. Water in Circular Economy and Resilience; International Bank for Reconstruction and Development/The World Bank: Washington, DC, USA, 2021. [Google Scholar]
- Awan, U. Industrial Ecology in Support of Sustainable Development Goals. In Responsible Consumption and Production; Springer: Singapore, 2020; pp. 370–380. [Google Scholar]
- Khedun, C.P.; Singh, V.P. Climate Change, Water, and Health: A Review of Regional Challenges. Water Qual. Expo. Health 2013, 6, 7–17. [Google Scholar] [CrossRef]
- Scheffran, J. Security Risks of Climate Change: Vulnerabilities, Threats, Conflicts and Strategies. In Coping with Global Environmental Change, Disasters and Security; Springer: Singapore, 2011; pp. 735–756. [Google Scholar]
- Patz, J.; Corvalan, C.; Horwitz, P.; Campbell-Lendrum, D.; Watts, N.; Maiero, M.; Cooper, D. Our Planet, Our Health, Our Future. Human Health and the Rio Conventions: Biological Diversity, Climate Change and Desertification; World Health Organization: Geneva, Switzerland, 2012. [Google Scholar]
- Bagheri, M.; Ibrahim, Z.Z.; Mansor, S.; Abd Manaf, L.; Akhir, M.F.; Talaat, W.I.A.W.; Beiranvand Pour, A. Application of Multi-Criteria Decision-Making Model and Expert Choice Software for Coastal City Vulnerability Evaluation. Urban Sci. 2021, 5, 84. [Google Scholar] [CrossRef]
- Akanwa, A.O.; Joe-Ikechebelu, N. The Developing World’s Contribution to Global Warming and the Resulting Consequences of Climate Change in These Regions: A Nigerian Case Study. In Global Warming and Climate Change; IntechOpen: London, UK, 2019. [Google Scholar]
- Wang, J.; Gao, W.; Xu, S.; Yu, L. Evaluation of the combined risk of sea level rise, land subsidence, and storm surges on the coastal areas of Shanghai, China. Clim. Chang. 2012, 115, 537–558. [Google Scholar] [CrossRef]
- Yin, J.; Yin, Z.-E.; Hu, X.-M.; Xu, S.-Y.; Wang, J.; Li, Z.-H.; Zhong, H.-D.; Gan, F.-B. Multiple scenario analyses forecasting the confounding impacts of sea level rise and tides from storm induced coastal flooding in the city of Shanghai, China. Environ. Earth Sci. 2011, 63, 407–414. [Google Scholar] [CrossRef]
- Woodruff, J.D.; Irish, J.L.; Camargo, S.J. Coastal flooding by tropical cyclones and sea-level rise. Nature 2013, 504, 44–52. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chen, R.; Zhang, Y.; Xu, D.; Liu, M. Climate Change and Coastal Megacities: Disaster Risk Assessment and Responses in Shanghai City. In Climate Change, Extreme Events and Disaster Risk Reduction; Springer: Berlin, Germany, 2018; pp. 203–216. [Google Scholar]
- Chan, F.K.S.; Chuah, C.J.; Ziegler, A.; Dąbrowski, M.; Varis, O. Towards resilient flood risk management for Asian coastal cities: Lessons learned from Hong Kong and Singapore. J. Clean. Prod. 2018, 187, 576–589. [Google Scholar] [CrossRef] [Green Version]
- Bagheri, M.; Ibrahim, Z.Z.; Bin Mansor, S.; Manaf, L.A.; Badarulzaman, N.; Vaghefi, N. Shoreline change analysis and erosion prediction using historical data of Kuala Terengganu, Malaysia. Environ. Earth Sci. 2019, 78, 1–21. [Google Scholar] [CrossRef]
- Ariffin, E.H.; Sedrati, M.; Akhir, M.F.; Yaacob, R.; Husain, M.L. Open Sandy Beach Morphology and Morphodynamic as Response to Seasonal Monsoon in Kuala Terengganu, Malaysia. J. Coast. Res. 2016, 75, 1032–1036. [Google Scholar] [CrossRef]
- IPCC. IPCC Fourth Assessment Report: Climate Change 2007. Working Group, I Report the Physical Science Basis. Available online: ipcc.ch/ipccreports/ar4-wg1.htm (accessed on 20 November 2007).
- Boak, E.H.; Turner, I. Shoreline Definition and Detection: A Review. J. Coast. Res. 2005, 214, 688–703. [Google Scholar] [CrossRef] [Green Version]
- Wang, G.; Liu, Y.; Wang, H.; Wang, X. A comprehensive risk analysis of coastal zones in China. Estuar. Coast. Shelf Sci. 2014, 140, 22–31. [Google Scholar] [CrossRef]
- Gallina, V.; Torresan, S.; Zabeo, A.; Critto, A.; Glade, T.; Marcomini, A. A Multi-Risk Methodology for the Assessment of Climate Change Impacts in Coastal Zones. Sustainability 2020, 12, 3697. [Google Scholar] [CrossRef]
- Boateng, I. An assessment of the physical impacts of sea level riseand coastal adaptation: A case study of the eastern coast of Ghana. Clim. Chang. 2012, 114, 273–293. [Google Scholar] [CrossRef]
- Hayrol, A.; Bahaman, A.S.; D’Silva, J.L.; Jegak, U. Global warming at the east coast zone of Peninsular Malaysia. Am. J. Agric. Biol. Sci. 2011, 6, 377–383. [Google Scholar]
- Dube, K.; Nhamo, G.; Chikodzi, D. Flooding trends and their impacts on coastal communities of Western Cape Province, South Africa. GeoJournal 2021, 1–16. [Google Scholar] [CrossRef] [PubMed]
- Mather, A.A.; Stretch, D.D. A perspective on sea level riseand coastal storm surge from Southern and Eastern Africa: A case study near Durban, South Africa. Water 2012, 4, 237–259. [Google Scholar] [CrossRef] [Green Version]
- Anthony, D.U.N.S.T.A.N.; Shaaban, A.; Aung, T.H.; Saleh, E.J.R.I.A.; Hamid, R.A.; Osman, A.R. Sea Level Changes along the Coast of Sandakan Town, Sabah, Malaysia: Projection and Inundation Coverage. In Proceedings of the E-Proceedings of the 36th IAHR World Congress, Hague, The Netherlands, 28 June–3 July 2015; Volume 28. [Google Scholar]
- Ariffin, E.H.; Sedrati, M.; Akhir, M.F.; Norzilah, M.N.M.; Yaacob, R.; Husain, M.L. Short-term observations of beach Morphodynamics during seasonal monsoons: Two examples from Kuala Terengganu coast (Malaysia). J. Coast. Conserv. 2019, 23, 985–994. [Google Scholar] [CrossRef]
- Okoli, C.; Pawlowski, S.D. The Delphi method as a research tool: An example, design considerations, and applications. Inform. Manag. 2004, 42, 15–29. [Google Scholar] [CrossRef] [Green Version]
- Skulmoski, G.; Hartman, F.T.; Krahn, J. The Delphi Method for Graduate Research. J. Inf. Technol. Educ. Res. 2007, 6, 1–21. [Google Scholar] [CrossRef]
- Cole, Z.D.; Donohoe, H.M.; Stellefson, M.L. Internet-Based Delphi Research: Case Based Discussion. Environ. Manag. 2013, 51, 511–523. [Google Scholar] [CrossRef]
- Schmidt, R.; Lyytinen, K.; Keil, M.; Cule, P. Identifying Software Project Risks: An International Delphi Study. J. Manag. Inf. Syst. 2001, 17, 5–36. [Google Scholar] [CrossRef]
- Mukherjee, N.; Huge, J.; Sutherland, W.J.; McNeill, J.; Van Opstal, M.; Dahdouh-Guebas, F.; Koedam, N. The Delphi technique in ecology and biological conservation: Applications and guidelines. Methods Ecol. Evol. 2015, 6, 1097–1109. [Google Scholar] [CrossRef] [Green Version]
- Donohoe, H.M.; Needham, R.D. Moving best practice forward: Delphi characteristics, advantages, potential problems, and solutions. Int. J. Tour. Res. 2009, 11, 415–437. [Google Scholar] [CrossRef]
- Landeta, J.; Barrutia, J.; Lertxundi, A.L. Hybrid Delphi: A methodology to facilitate contribution from experts in professional contexts. Technol. Forecast. Soc. Chang. 2011, 78, 1629–1641. [Google Scholar] [CrossRef]
- Orencio, P.M.; Fujii, M. A localized disaster-resilience index to assess coastal communities based on an analytic hierarchy process (AHP). Int. J. Disaster Risk Reduct. 2013, 3, 62–75. [Google Scholar] [CrossRef]
- Saaty, T.L. Absolute and relative measurement with the AHP. The most livable cities in the United States. Socio-Econ. Plan. Sci. 1986, 20, 327–331. [Google Scholar] [CrossRef]
- Saaty, T.L. What is the analytic hierarchy process? In Mathematical Models for Decision Support; Springer: Berlin/Heidelberg, Germany, 1988; pp. 109–121. [Google Scholar]
- Saaty, T.L. Homogeneity and clustering in AHP ensures the validity of the scale. Eur. J. Oper. Res. 1994, 72, 598–601. [Google Scholar] [CrossRef]
- Saaty, T.L. How to make a decision: The analytic hierarchy process. Eur. J. Oper. Res. 1990, 48, 9–26. [Google Scholar] [CrossRef]
- Saat, T.L.; Vargas, L.G. Uncertainty and rank order in the analytic hierarchy process. Eur. J. Oper. Res. 1987, 32, 107–117. [Google Scholar] [CrossRef]
- Sevkli, M.; Koh, S.C.L.; Zaim, S.; Demirbag, M.; Tatoglu, E. An application of data envelopment analytic hierarchy process for supplier selection: A case study of BEKO in Turkey. Int. J. Prod. Res. 2007, 45, 1973–2003. [Google Scholar] [CrossRef] [Green Version]
- Wang, C.-N.; Tsai, H.-T.; Ho, T.-P.; Nguyen, V.-T.; Huang, Y.-F. Multi-Criteria Decision Making (MCDM) Model for Supplier Evaluation and Selection for Oil Production Projects in Vietnam. Processes 2020, 8, 134. [Google Scholar] [CrossRef] [Green Version]
- Kiker, G.A.; Bridges, T.S.; Varghese, A.; Seager, P.T.P.; Linkov, I. Application of Multicriteria Decision Analysis in Environmental Decision Making. Integr. Environ. Assess. Manag. 2005, 1, 95–108. [Google Scholar] [CrossRef]
- Phua, M.-H.; Minowa, M. A GIS-based multi-criteria decision making approach to forest conservation planning at a landscape scale: A case study in the Kinabalu Area, Sabah, Malaysia. Landsc. Urban Plan. 2005, 71, 207–222. [Google Scholar] [CrossRef]
- Rubino, M.J.; Hess, G.R. Planning open spaces for wildlife 2: Modeling and verifying focal species habitat. Landsc. Urban Plan. 2003, 64, 89–104. [Google Scholar] [CrossRef]
- González, A.; Gilmer, A.; Foley, R.; Sweeney, J.; Fry, J. Applying geographic information systems to support strategic environmental assessment: Opportunities and limitations in the context of Irish land-use plans. Environ. Impact Assess. Rev. 2011, 31, 368–381. [Google Scholar] [CrossRef] [Green Version]
- Vaidya, O.S.; Kumar, S. Analytic hierarchy process: An overview of applications. Eur. J. Oper. Res. 2006, 169, 1–29. [Google Scholar] [CrossRef]
- Saaty, T.L. Decision-making with the AHP: Why is the principal eigenvector necessary. Eur. J. Oper. Res. 2003, 145, 85–91. [Google Scholar] [CrossRef]
- Saaty, T.L. A scaling method for priorities in hierarchical structures. J. Math. Psychol. 1977, 15, 234–281. [Google Scholar] [CrossRef]
- Ramanathan, R. A note on the use of the analytic hierarchy process for environmental impact assessment. J. Environ. Manag. 2001, 63, 27–35. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ishizaka, A.; Labib, A. Analytic hierarchy process and expert choice: Benefits and limitations. OR Insight 2009, 22, 201–220. [Google Scholar] [CrossRef] [Green Version]
- Sadeghi, H.; Rashidinejad, M.; Abdollahi, A. A comprehensive sequential review study through the generation expansion planning. Renew. Sustain. Energy Rev. 2017, 67, 1369–1394. [Google Scholar] [CrossRef]
- Van der Heijden, K.; Bradfield, R.; Burt, G.; Cairns, G.; Wright, G. The Sixth Sense: Accelerating Organizational Learning with Scenarios; John Wiley & Sons: New York, NY, USA, 2009. [Google Scholar]
Primary Data (Delphi-AHP) | Secondary Spatial Data (GIS) | |||
---|---|---|---|---|
| Digital Maps | Year | Resolution | Source |
Topography | 2002 | 1:50,000 | JUPEM | |
Land use | 2008 | 1:100,000 | ||
MUKIM | 2010 | 1:100,000 | ||
Population | 2010 | 1:50,000 | Statistic Department | |
Geology | 2008 | 1:100,000 | Geology Department | |
Soil | 2008 | 1:100,000 | MOA |
Goal | Index | Criteria | Criteria Consistency Ratio | Criteria Weight | Sub-Criteria | Sub-Criteria Consistency Ratio | Sub-Criteria Weight | Alternative | Alternative Weight | |
---|---|---|---|---|---|---|---|---|---|---|
Coastal city vulnerability assessment | Vulnerability Index | Environmental Criteria | River | 0.09 | 0.232 | Seasonal shifts | 0.06 | 0.084 | Merang | 0.053 |
Discharge of water | 0.06 | 0.207 | Batu Rakit | 0.129 | ||||||
The severity of the flood | 0.03 | 0.27 | Kuala Nerus | 0.199 | ||||||
Sedimentology (Sediment rate) | 0.06 | 0.123 | Manir | 0.105 | ||||||
Water from runoff | 0.07 | 0.06 | Pengadang Buluh | 0.439 | ||||||
Relationship between Rainfall and Runoff | 0.06 | 0.256 | Rusila | 0.075 | ||||||
Land Use | 0.04 | 0.201 | Cultivation & Plantation | 0.07 | 0.125 | Merang | 0.101 | |||
Forestry | 0.07 | 0.239 | Batu Rakit | 0.186 | ||||||
Rangeland | 0.07 | 0.046 | Kuala Nerus | 0.218 | ||||||
Industrial, and the commercial development | 0.09 | 0.361 | Manir | 0.075 | ||||||
Watershed | 0.06 | 0.105 | Pengadang Buluh | 0.237 | ||||||
Cultural areas | 0.05 | 0.05 | Nerus | 0.183 | ||||||
Geology | 0.08 | 0.058 | Scale of geomorphology | 0.08 | 0.566 | Merang | 0.101 | |||
Batu Rakit | 0.066 | |||||||||
Waterways | 0.08 | 0.26 | Kuala Nerus | 0.121 | ||||||
Tectonic movement | 0.08 | 0.086 | Manir | 0.211 | ||||||
Pengadang Buluh | 0.435 | |||||||||
Epoch of geology | 0.08 | 0.08 | Nerus | 0.067 | ||||||
Slope | 0.09 | 0.12 | Slope level | 0.08 | 0.582 | Merang | 0.052 | |||
Batu Rakit | 0.204 | |||||||||
The average waterway/floodway slope | 0.07 | 0.161 | Kuala Nerus | 0.118 | ||||||
The slope of land usage on average | 0.09 | 0.197 | Manir | 0.103 | ||||||
Pengadang Buluh | 0.132 | |||||||||
Without-slope regions | 0.04 | 0.06 | Nerus | 0.392 | ||||||
Soil | 0.09 | 0.092 | Type of soil | 0.08 | 0.373 | Merang | 0.075 | |||
Erosion of the Soil | 0.07 | 0.337 | Batu Rakit | 0.1 | ||||||
Influence of the soil | 0.06 | 0.099 | Kuala Nerus | 0.267 | ||||||
Manir | 0.038 | |||||||||
Organic material | 0.09 | 0.045 | Pengadang Buluh | 0.472 | ||||||
Amount of land used for agriculture | 0.07 | 0.145 | Nerus | 0.048 | ||||||
Topography | 0.09 | 0.167 | Vertical categorization | 0.09 | 0.223 | Merang | 0.104 | |||
Batu Rakit | 0.163 | |||||||||
Vertical classification in coastal area | 0.09 | 0.239 | Kuala Nerus | 0.096 | ||||||
Classification area and location | 0.08 | 0.425 | Manir | 0.138 | ||||||
Pengadang Buluh | 0.267 | |||||||||
Average height | 0.08 | 0.113 | Nerus | 0.232 | ||||||
Human Activity Criteria | Road | 0.08 | 0.029 | Type of grid | 0.09 | 0.2 | Merang | 0.082 | ||
The closeness of a water source to a road | 0.09 | 0.148 | Batu Rakit | 0.039 | ||||||
Kuala Nerus | 0.093 | |||||||||
Location of the road to the seaside | 0.09 | 0.607 | Manir | 0.035 | ||||||
Materials Types | 0.09 | 0.045 | Pengadang Buluh | 0.528 | ||||||
Nerus | 0.223 | |||||||||
Population | 0.09 | 0.047 | Density/ha | 0.09 | 0.112 | Merang | 0.063 | |||
Landforms are shaped by density | 0.07 | 0.129 | Batu Rakit | 0.267 | ||||||
Kuala Nerus | 0.207 | |||||||||
The density of the coastline | 0.06 | 0.501 | Manir | 0.069 | ||||||
Density in rural and urban zone | 0.06 | 0.045 | Pengadang Buluh | 0.299 | ||||||
Density in a potentially dangerous location | 0.08 | 0.213 | Nerus | 0.095 | ||||||
Build up | 0.07 | 0.071 | The shape of the land | 0.08 | 0.338 | Merang | 0.055 | |||
Location of the river grid | 0.04 | 0.184 | Batu Rakit | 0.170 | ||||||
Kuala Nerus | 0.172 | |||||||||
The distance from the coast | 0.07 | 0.426 | Manir | 0.072 | ||||||
Materials supply, both local and non-local | 0.07 | 0.052 | Pengadang Buluh | 0.434 | ||||||
Nerus | 0.097 |
Human Activity and Environmental Criteria | |||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
% | Land Use | Topography | Geology | Slope | Soil | Built-Up | Population | Road | Merang | Batu Rakit | Kuala Nerus | Manir | Pengadang Buluh | Nerus | |
River | 10 | 23.5 | 20.7 | 4.2 | 13.8 | 10.4 | 0.9 | 5.5 | 3.5 | 10.2 | 17.6 | 16.5 | 9.5 | 26.4 | 19.9 |
50 | 11.1 | 17.3 | 2.0 | 6.5 | 4.9 | 3.9 | 2.6 | 1.7 | 8.7 | 14.2 | 17.6 | 10.4 | 34.4 | 14.7 | |
90 | 2.3 | 3.6 | 0.5 | 1.4 | 1.1 | 8.3 | 0.6 | 0.4 | 7.3 | 11.2 | 19.7 | 10.8 | 42.2 | 9.4 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bagheri, M.; Zaiton Ibrahim, Z.; Akhir, M.F.; Talaat, W.I.A.W.; Oryani, B.; Rezania, S.; Wolf, I.D.; Pour, A.B. Developing a Climate Change Vulnerability Index for Coastal City Sustainability, Mitigation, and Adaptation: A Case Study of Kuala Terengganu, Malaysia. Land 2021, 10, 1271. https://doi.org/10.3390/land10111271
Bagheri M, Zaiton Ibrahim Z, Akhir MF, Talaat WIAW, Oryani B, Rezania S, Wolf ID, Pour AB. Developing a Climate Change Vulnerability Index for Coastal City Sustainability, Mitigation, and Adaptation: A Case Study of Kuala Terengganu, Malaysia. Land. 2021; 10(11):1271. https://doi.org/10.3390/land10111271
Chicago/Turabian StyleBagheri, Milad, Zelina Zaiton Ibrahim, Mohd Fadzil Akhir, Wan Izatul Asma Wan Talaat, Bahareh Oryani, Shahabaldin Rezania, Isabelle D. Wolf, and Amin Beiranvand Pour. 2021. "Developing a Climate Change Vulnerability Index for Coastal City Sustainability, Mitigation, and Adaptation: A Case Study of Kuala Terengganu, Malaysia" Land 10, no. 11: 1271. https://doi.org/10.3390/land10111271
APA StyleBagheri, M., Zaiton Ibrahim, Z., Akhir, M. F., Talaat, W. I. A. W., Oryani, B., Rezania, S., Wolf, I. D., & Pour, A. B. (2021). Developing a Climate Change Vulnerability Index for Coastal City Sustainability, Mitigation, and Adaptation: A Case Study of Kuala Terengganu, Malaysia. Land, 10(11), 1271. https://doi.org/10.3390/land10111271