Soil Protection in Floodplains—A Review
Abstract
:1. Introduction
- To give an overview on research in floodplains and riparian zones of the world with implication to restoration projects in the last 20 years;
- To assess in which kind and to what extent soils are addressed in the research;
- To recommend further research needs on soil protection in floodplains.
2. Materials and Methods
3. Results
3.1. Overview on Research in Floodplains and Riparian Zones of the World
3.2. Soil Information in the Articles on Soil Properties
3.3. Information on Soils in Articles in Connection with Engineering and Land Management
4. Research Needs on Soil Protection in Floodplains
5. Conclusions
- Research on floodplains and riparian zones of the world is not distributed evenly over the different continents, with the majority of research in this area conducted in North America, especially in the USA. The research on floodplains and riparian zones is also not distributed evenly over the time covered in this review with two-thirds of the research published in the second decade between 2010 and 2020.
- Soils are somehow addressed in most articles, but the kind and extent of provided soil information varies significantly between the articles. Mostly physical soil information is provided, followed by chemical soil information. Only one-fifth provides soil biological information. One-third provides a detailed soil description from a common classification system. Soil information in the field of engineering is limited to physical data only.
- Soils are addressed in the majority of the research, but soil information is often incomplete from a soil scientists’ view. It is recommended to integrate at least a minimum data set on soil information in all research conducted in floodplains and riparian zones. This minimum data set comprises soil data used in the soil protection on construction sites concept: soil types and associated special characteristics (e.g., susceptibility to compaction), coarse fragments, texture and structure of the soil, bulk density, pH, soil organic matter content, water content, rooting depth, and calcium carbonate content. Additionally, the nutrient and/or pollution status might be a useful parameter. Further, at least the use of regional soil databases can give important information on the soils in the study area, if field work is not possible.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
As | Arsenic |
ASC | Australian Soil Classification System |
C | Carbon |
CaCO3 | Calcium carbonate |
Cd | Cadmium |
C/N | Carbon/nitrogen ratio |
CPOM | Coarse particular organic matter |
Cr | Chromium |
Cu | Copper |
DEA | Denitrification enzyme activity |
DOC | Dissolved organic carbon |
DOM | Dissolved organic matter |
DON | Dissolved organic nitrogen |
EC | Electrical conductivity |
Fe | Iron |
Hg | Mercury |
IC | Inorganic carbon |
K | Potassium |
N | Nitrogen |
Ni | Nickel |
NO3− | Nitrate |
NO3−-N | Nitrate nitrogen |
NO2− | Nitrite |
NH4+ | Ammonium |
NH4+-N | Ammonia nitrogen |
N2O | Nitrous oxide |
NO | Nitric oxide |
NZG | New Zealand Soil Classification |
OC | Organic carbon |
OM | Organic matter |
P | Phosphorus |
PB | Lead |
PO43− | Phosphate |
RIC | Refractory index for carbon |
ROC | Recalcitrant organic carbon |
RO | Réferentiel Pédologique (=French Soil Classification) |
S | Sulfur |
Sb | Antimony |
SiBCS | Sistema Brasileiro de Clasifição de Solos (=Brazilian Soil Classification System) |
Sn | Tin |
SOC | Soil organic carbon |
SOM | Soil organic matter |
SRP | Soluble reactive P |
TC | Total carbon |
TDC | Total dissolved carbon |
TDN | Total dissolved nitrogen |
TBGB | Total belowground biomass |
TK | Total potassium |
TN | Total nitrogen |
TOC | Total organic carbon |
TP | Total phosphorus |
V | Vanadium |
WRB | World Reference Base for Soil Resources |
Zn | Zinc |
Appendix A
Source | #Article | Continent | Country | Category | Chemical Properties | Physical Properties | Biological Properties | Detailed Classification | Other Classification | Other Soil Data |
---|---|---|---|---|---|---|---|---|---|---|
Agouridis et al. 2005 | [52] | North America | USA, Kentucky | Management | - | - | - | Hagerstown (Fine, mixed, mesic Typic Hapludalf); McAfee (Fine, mixed, mesic Mollic Hapludalf); Woolper (Fine, mixed, mesic Typic Argiudoll) | - | - |
Amezketa & del Valle de Lersundi 2008 | [53] | Europe | Spain | Management | OM, CaCO3, salinity | Texture, moisture, temperature, EC | - | Loamy-skeletal, mixed, mesic, Aridic Ustorthent; Coarse-loamy, mixed, mesic Aridic Ustifluvent; Fine-salty, mixed, mesic, Aridic Ustifluvents; Entisols | - | - |
Andrews et al. 2011 | [54] | North America | USA, Kentucky | Other | Fertility | Permeability, water holding capacity, rooting zone | - | Fine-loamy, mixed, mesic Dystric Fluventic Eutrochrepts (USDA 1996) | - | - |
Anstead et al. 2012 | [55] | Europe | UK | Engineering | - | Cohesion, texture | - | - | - | - |
Asghari & Cavagnaro 2011 | [56] | Oceania | Australia | Other | pH, plant available P, TC, TN | Texture | - | - | - | - |
Atkinson & Lake 2020 | [57] | North America | USA, Texas | Management | - | Erodibility | - | - | - | - |
Bariteau et al. 2013 | [58] | North America | Canada | Engineering | - | Texture | - | - | - | - |
Beauchamp et al. 2015 | [59] | North America | USA, Maryland | Management | OM, pH, C/N, plant available macronutrients and micronutrients | Texture | - | - | - | - |
Bedison et al. 2013 | [60] | North America | USA, New Jersey | Other | Mottling | Texture, drainage | - | Mesic Entisols; Histosols; Inceptisols | - | - |
Bissels et al. 2004 | [61] | Europe | Germany | Management | Plant available P and K, TN, TC, CaCO3, OM, C/N | Texture | - | - | Alluvial soils | - |
Botero-Acosta et al. 2017 | [62] | North America | USA, Oklahoma | Engineering | - | Water content, field capacity, wilting point, saturated hydraulic conductivity | - | - | - | STATSGO soil map (soil types); Soil Characterization Database (physical soil properties) |
Brovelli et al. 2012 | [63] | n.a. | n.a. | Other | Various (not further specified) | Various (not further specified) | Various (not further specified) | - | - | - |
Buchanan et al. 2012 | [64] | North America | USA, New York | Management | - | Erodibility, texture | - | - | - | - |
Burger et al. 2010 | [9] | Oceania | Australia | Management | NO3−, NO2−, NH4+, plant available P, EC, pH, TC, TN | - | - | Grey, Yellow, and Brown Sodosols and Chromosols (ASC 1996) | - | - |
Buzhdygan et al. 2016 | [65] | Asia | Ukraine | Other | SOC, pH, TN | Bulk density | - | - | - | - |
Cabezas & Comín 2010 | [66] | Europe | Spain | Other | TOC, TN, C/N, RIC, ROC | Bulk density | - | - | - | - |
Clement et al. 2003 | [36] | Europe | France | Other | Hydromorphological features, OM, pH | Texture, bulk density | Denitrification activity, roots | Fine silty-clay loam, mixed, mesic Typic Haplaquoll (USDA 1990) | - | - |
Das 2016 | [67] | Asia | India | Engineering | - | Shear strength, dry density, Atterberg limits, specific gravity, texture | - | - | - | - |
Davis et al. 2006 | [68] | North America | USA, Nebraska | Other | OM, TN, TK, TP, pH | Temperature, moisture, texture | Soil invertebrates | - | - | Groundwater level |
De Mello et al. 2017 | [69] | South America | Brazil | Management | - | Bulk density, available water capacity, saturated hydraulic conductivity | - | SiBCS (2018) (WRB 2015): Gleissolos (Gleysols); Latossolos Vermelho (Ferralsols); Latossolos Vermelho-Amarelo (Ferralsols); Neosolos Regolíticos (Regosols); Neossolos Flúvicos (Fluvisols); Cambissolos (Cambisols) | - | Number of layers, lower boundary of layers |
Del Tánago & de Jalón 2006 | [70] | n.a. | n.a. | Management | - | Permeability | - | - | - | - |
Dhondt et al. 2006 | [71] | Europe | Belgium | Other | OC, TN, IC, pH, N2O fluxes | Texture | DEA | - | - | - |
Dietrich et al. 2014 | [28] | Europe | Sweden | Management | OM, mass fraction of C and N, isotopic ratios (∆13C; ∆15N), TC = TOC | Texture, water holding capacity | - | - | - | - |
Duong et al. 2014 | [72] | Asia | Vietnam | Engineering | - | Water content, bulk density, saturated shear strength, saturated hydraulic conductivity, dry density, main grain size, effective cohesion, texture | - | - | - | - |
Duró et al. 2020 | [73] | Europe | Netherlands | Engineering | - | Internal friction angle, cohesion, texture, shear stress | - | - | - | - |
Dybala et al. 2019 | [74] | North America | USA, California | Other | TC, carbon stock | Bulk density | - | Cosumnes (Fine, mixed, active, nonacid, thermic Aquic Xerofluvents) | - | - |
Fernandes et al. 2020 | [75] | Europe | Portugal | Engineering | - | Cohesion | - | - | - | - |
Fournier et al. 2015 | [76] | Europe | Switzerland | Other | - | Hydric conditions | Species traits | - | - | - |
Fournier et al. 2013 | [33] | Europe | Switzerland | Other | OM, OM-type, hydromorphological features | Texture, coarse elements | Root density, biological activity features | RP (2009) (WRB 2006): REDOXISOLS fluviques carbonatés (Gleyic Fluvisols (Calcaric)); FLUVIOSOLS brut carbonatés (Regosols (Calcaric)); FLUVIOSOLS typiques carbonatés (Fluvisols (Calcaric)); FLUVIOSOLS typiques redoxiques carbonatés (Fluvisols (Calcaric) with redoximorphic features); REDUCTISOLS fluviques carbonatés (Gleysols (Calcaric)) | - | Soil morphology: soil diversity, soil dynamism, soil typicality |
Franklin et al. 2020 | [77] | Oceania | Australia | Other | TN, TC, NH4+ -N, NO3−-N, pH, OC; (DOM, DOC, DON, C/N, TDC, TDN, inorganic N in leachate) | Texture, moisture | - | Hard pedal mottled-yellow-grey duplex soil (Atlas of Australian Soils 1960–1968); USDA (2014): Paleustalf | - | - |
Gageler et al. 2014 | [78] | Oceania | Australia | Management | TN, SOC, NO3−, NH4+ | Texture, infiltration, bulk density | - | Red Ferrosols; Clay loamy (ASC 1996); WRB (2014): Nitisols | - | - |
Garvin et al. 2017 | [79] | North America | USA, Oklahoma | Other | Cd, Pb, Zn | - | - | - | - | - |
Giese et al. 2000 | [80] | North America | USA, South Carolina | Other | SOC | - | - | Typic Endoaquepts; Typic Fluvaquents; Thapto-Histic Fluvaquents; Grossarenic Hapludults; Arenic Endoaquults | - | - |
Gift et al. 2010 | [3] | North America | USA, Maryland | Other | OM, N2O | Moisture | DEA, root biomass | - | - | - |
Gold et al. 2001 | [81] | North America | USA, various | Other | hydromorphological features | Soil wetness | - | - | Hydric soils | - |
Gumiero & Boz 2017 | [82] | Europe | Italy | Management | Moderately calcareous | Water content, texture, drainage | - | - | - | - |
Guo et al. 2018 | [83] | Asia | China | Other | Organo-chlorine pesticides | Texture | Soil microbial community structure | - | Brown soil | - |
Hale et al. 2018 | [84] | Oceania | Australia | Management | TC, TN, C/N, plant available P, CPOM | - | - | - | - | - |
Hale et al. 2014 | [85] | Oceania | Australia | Management | EC, pH, inorganic N (NO3−, N2O, NH4+), TC, TN, plant available P | Water content, bulk density, texture | - | Various soil types (ASC 1996) | - | - |
Harrison et al. 2011 | [86] | North America | USA, Maryland | Other | N2O, N2 | - | - | - | - | - |
Hasselquist et al. 2017 | [87] | Europe | Sweden | Other | ∆15N, bulk C and N, C/N | Texture | - | - | - | - |
Higgisson et al. 2019 | [88] | Oceania | Australia | Management | - | Particle size | - | - | - | - |
Jansen & Robertson 2001 | [89] | Oceania | Australia | Management | - | Bank stability, soil structure | - | - | - | - |
Janssen et al. 2019 | [90] | Europe | France, Switzerland | Engineering | - | - | - | - | - | - |
Juracek & Drake 2016 | [91] | North America | USA, Kansas | Other | Pb, Zn | Particle size | - | - | - | - |
Kauffman et al. 2004 | [35] | North America | USA, Oregon | Management | SOM, mineral N (NO3−-N, NH4+ -N) | Texture, bulk density, porosity, infiltration rates, moisture | TBGB, net potential nitrification, net potential N mineralization | Cryofluvents | - | - |
Korol et al. 2019 | [92] | North America | USA, various | Management | pH, OM, NO3−, NH4+, TC, TN, SRP | Bulk density, moisture | Denitrification potential, DEA, potential C mineralization | - | - | - |
Langendoen et al. 2009 | [93] | North America | USA, Mississippi | Engineering | - | Shear strength, pore-water pressure, cohesion, friction angle, bulk density, texture, saturated hydraulic conductivity | - | - | - | - |
Larsen & Greco 2002 | [94] | North America | USA, California | Engineering | - | Bank cohesion, texture | - | - | - | - |
Laub et al. 2013 | [25] | North America | USA, Maryland | Management | SOM | Bulk density, moisture, texture | Root biomass | Zekiah (Coarse-loamy, siliceous, active, acid, mesic Typic Fluvaquents); Issue (Coarse-loamy, mixed, active, mesic Fluvaquentic Dystrudepts); Hatboro (Fine-loamy, mixed, active, nonacid, mesic Fluvaquentic Endoaquepts); Fallsington (Fine-loamy, mixed, active, mesic Typic Endoaquults), Widewater (Fine-loamy, mixed, active, acid, mesic Fluvaquentic Endoaquepts); Codorus (Fine-loamy, mixed, active, mesic Fluvaquentic Dystrudepts); Lindside (Fine-silty, mixed, active, mesic Fluvaquentic Eutrudepts) | - | - |
Lee et al. 2011 | [95] | Asia | South Korea | Other | - | - | - | - | - | Soil information (= soil properties; not further specified) from soil maps is used in model |
Li et al. 2006 | [96] | Asia | China | Engineering | - | Moisture, shear stress | - | - | - | - |
Lindow et al. 2009 | [97] | n.a. | n.a. | Engineering | - | Texture, hydraulic conductivity, van Genuchten parameters, effective cohesion, internal friction angle, residual and saturated water content | - | - | - | - |
Maffra & Sutili 2020 | [98] | South America | Brazil | Engineering | - | - | - | - | - | - |
Maroto et al. 2017 | [99] | Europe | Spain | Engineering | - | Texture | - | - | - | Poorly developed soil |
Marquez et al. 2017 | [100] | North America | USA, Iowa | Other | - | - | - | Coland (Fine-loamy, mixed, superactive, mesic Cumulic Endoaquoll) | - | - |
Matheson et al. 2002 | [101] | Oceania | New Zealand | Other | NO3−, NH4+ | Bulk density, moisture content | - | NZG (1948): Waingaro steepland soil (northern yellow-brown earth); USDA (1975): Umbric Dystrochrept | - | - |
Meals & Hopkins 2002 | [102] | North America | USA, Vermont | Management | - | - | - | - | Alluvial and lacustrine soils | - |
Meynendonckx et al. 2006 | [103] | Europe | Belgium | Other | - | Drainage, texture | - | - | - | - |
Neilen et al. 2017 | [104] | Oceania | Australia | Other | NO3−-N, NH4+ -N, DON, DOC, SRP in leachate | - | - | Haplic, Mesotrophic, Red Ferrosols (ASC 2016) | - | - |
Orr et al. 2007 | [105] | North America | USA, Wisconsin | Other | OM, NO3−-N | Moisture, texture | Actual denitrification potential, DEA | - | - | - |
Peter et al. 2012 | [106] | Europe | Switzerland | Other | - | Texture | - | - | - | - |
Petrone & Preti 2010 | [107] | South America | Nicaragua | Engineering | - | Texture | - | - | - | - |
Pinto et al. 2016 | [108] | Europe | Portugal | Engineering | - | “physical riverbank conditions” not further specified | - | - | - | - |
Rahe et al. 2015 | [109] | North America | USA, Illinois | Management | TC, TN, C/N, plant available P, CPOM | Infiltration, bulk density, moisture, texture, drainage | - | Swanwick (Fine-silty, spolic, mixed, active, nonacid, mesic Anthroportic Udorthents); Lenzburg (Fine-loamy, spolic, mixed, active, calcareous, mesic Anthroportic Udorthents) | - | - |
Rassam & Pagendam 2009 | [110] | Oceania | Australia | Management | - | Hydraulic conductivity (subsoil) | Denitrification rates | - | - | - |
Recking et al. 2019 | [32] | Europe | “alpine context” | Engineering | - | Cohesion, texture | - | - | - | - |
Reisinger et al. 2013 | [111] | North America | USA, Kansas | Other | - | - | - | Ivan (Fine-silty, mixed, superactive, mesic Cumulic Hapludolls) | - | - |
Remo et al. 2017 | [112] | North America | USA, Illinois | Management | - | Texture, drainage class, water retention capacity | - | Soil order (not further specified) | - | Data obtained from SSURGO |
Rheinhardt et al. 2012 | [113] | North America | USA, North Carolina | Other | SOM, SOC content | Bulk density | - | - | - | - |
Rimondi et al. 2019 | [114] | Europe | Italy | Other | Hg, As, Cd, Pb, Sb, Cr, Zn, Cu, Sn, V | - | - | - | - | - |
Rosenblatt et al. 2001 | [115] | North America | USA, Rhode Island | Management | - | - | - | Inceptisols; Histosols; Entisols | - | - |
Rosenfeld et al. 2011 | [116] | Europe/North America | Sweden, Finland, Canada | Management | - | - | - | - | - | - |
Saad et al. 2018 | [117] | South America | Brazil | Management | - | Erodibility of soil classes, texture | - | SiBCS (2018): Argissolo Vermelho-Amarelo; Cambissolo Húmico; Neossolo Litólico; Neossolo Flúvico; Cambissolo Háplico USDA (2014): Ultisol; Inceptisol; Udorthent; Fluvent USDA (1996): Ochrept | - | - |
Samaritani et al. 2011 | [118] | Europe | Switzerland | Other | pH, TN, TOC, TIC, available P, C pools and fluxes | Texture, temperature | - | - | - | - |
Sgouridis et al. 2011 | [119] | Europe | UK | Other | - | Texture (topsoil) | - | Pelo-stagnogley soils; Stagnogley soils; Brown rendzinas; Gleyic brown calcareous earths; Grey rendzinas | - | - |
Shah et al. 2010 | [120] | North America | USA, New Mexico | Other | - | - | - | Typic Ustifluvents (Gila-Vinton-Brazito association) | - | - |
Silk et al. 2006 | [121] | North America | USA, California | Other | Bioavailable Cu, oxide-bound Cu, pH | - | - | - | - | - |
Smith et al. 2012 | [37] | Oceania | Australia | Other | NO3−, NO2−, NH4+, TC, TN, chemical nature of soil C | Texture, bulk density, gravimetric moisture | Potential mineralizable N, net nitrification | Red Chromosol (ASC 1996) | - | - |
Sutton-Grier et al. 2009 | [38] | North America | USA, North Carolina | Other | SOM, NO3−-N, NH4+ -N, inorganic P, C/N | Bulk density | Microbial biomass C, DEA | Monacan (Fine-loamy, mixed, active, thermic Fluvaquentic Eutrudepts) | - | - |
Tang et al. 2016 | [122] | Europe | Netherlands | Other | OM, plant available P, amorphous Fe, Fe-bound P, aluminum-bound P | Bulk density, texture | - | - | - | - |
Tererai et al. 2015 | [123] | Africa | South Africa | Other | - | - | - | - | Deep greyish alluvial soils | - |
Theriot et al. 2013 | [124] | North America | USA, Arkansas | Other | TC, TN, TP | Bulk density, moisture | Microbial biomass N, potential mineralizable N, potential denitrification | - | - | - |
Tian et al. 2004 | [125] | North America | USA, North Carolina | Management | pH, TN, TC, NO3− | - | Microbial biomass, denitrifier density, ammonium oxidizer density | - | - | - |
Tomer et al. 2015 | [126] | North America | USA, Iowa, Illinois | Management | - | - | - | Tama (Typic Argiudolls); Saude (Typic Hapludolls); Webster (Typic Endoaquolls); Osco (Mollic Hapludalfs) | Hydric soils | - |
Unghire et al. 2011 | [4] | North America | USA, North Carolina | Management | SOM, inorganic nutrients (NO2−, NO3−, inorganic P) | Moisture, bulk density, clay content | - | Cartecay (Coarse-loamy, mixed, semiactive, nonacid, thermic Aquic Udifluvents); Chewacla (Fine-loamy, mixed, active, thermic Fluvaquentic Dystrudepts) | - | - |
Vandecasteele et al. 2004 | [127] | Europe | Belgium | Other | Cd, Cr, Zn, Cu, Ni, Pb, P, S, TN, CaCO3, OC, pH | EC, texture | - | - | - | - |
Walker et al. 2002 | [128] | North America | USA, Georgia | Other | NO3−, NH4+, NH3, NO, N2O | Water content | - | Saunook (Fine-loamy, mixed, superactive, mesic Humic Hapludults) | - | - |
Walker et al. 2009 | [129] | North America | USA, North Carolina | Other | NO3−, NH4+, NO2−, TN, TC | Moisture | - | Rosman (Coarse-loamy, mixed, superactive, mesic Fluventic Humudepts) | - | - |
Wang et al. 2019 | [130] | Asia | China | Other | pH, SOM, TN, TP, TK, available N/P/K | Texture, water content | Soil microbial number (bacteria, actinomycete, fungi), soil enzyme activity, operational taxonomic units, phylogenetic diversity | |||
Wang et al. 2014 | [131] | Asia | China | Other | NH4+ -N, NO3−-N, NO2−-N, TN, PO43− in water | Texture | Diversity and distribution of microbial community | - | - | - |
Weller & Baker 2014 | [132] | North America | USA, various | Other | NO3− | - | - | - | - | - |
Welsh et al. 2017 | [133] | North America | USA, North Carolina | Other | pH, OM, NO3−, NH4+, TC, TN, SRP | Moisture, texture | DEA | - | - | - |
Welsh et al. 2019 | [134] | North America | USA, North Carolina | Other | - | Texture | - | - | - | - |
Xiong et al. 2015 | [135] | Asia | China | Other | pH, OM, TN | Texture, moisture, bulk density | - | - | - | - |
Ye et al. 2019 | [136] | Asia | China | Other | Hg, As, Cr, Cd, Pb, Cu, Fe, Mn, Zn, SOM, TP, pH | Moisture, texture | - | - | - | - |
Young et al. 2013 | [137] | North America | USA, Vermont | Other | TP, pH, OM, different P speciations | - | - | - | - | - |
Zaimes et al. 2006 | [138] | North America | USA, Iowa | Management | - | Texture, bulk density, permeability | - | Spillville (Fine loamy, mixed, superactive, mesic Cumulic Hapludolls); Coland (Fine-loamy, mixed, mesic, superactive Cumulic Endoaquolls) | - | - |
Zhang et al. 2018 | [39] | Asia | China | Engineering | - | Texture, shear strength | Root system, root biomass | - | - | - |
Zhao et al. 2013 | [139] | Asia | China | Management | - | Erodibility | - | - | - | Soil map (1: 1,000,000); China soil scientific database (soil properties not further specified) |
References
- Christiansen, T.; Azlak, M.; Ivits-Wasser, E. Floodplains: A Natural System to Preserve and Restore; EEA Report 24/2019; European Environment Agency: Luxembourg, 2020. [Google Scholar]
- Malmqvist, B.; Rundle, S. Threats to the running water ecosystems of the world. Environ. Conserv. 2002, 29, 134–153. [Google Scholar] [CrossRef]
- Gift, D.M.; Groffman, P.M.; Kaushal, S.S.; Mayer, P.M. Denitrification Potential, Root Biomass, and Organic Matter in Degraded and Restored Urban Riparian Zones. Restor. Ecol. 2010, 18, 113–120. [Google Scholar] [CrossRef]
- Unghire, J.M.; Sutton-Grier, A.E.; Flanagan, N.E.; Richardson, C.J. Spatial Impacts of Stream and Wetland Restoration on Riparian Soil Properties in the North Carolina Piedmont. Restor. Ecol. 2010, 19, 738–746. [Google Scholar] [CrossRef]
- Junk, W.J.; Welcomme, R. Floodplains. In Wetlands and Shallow Continental Water Bodies; Patten, B.C., Ed.; SPB Academic Publishers: The Hague, The Netherlands, 1990; Volume 1, pp. 491–524. ISBN 905-103-146-0. [Google Scholar]
- Thoms, M. Floodplain–river ecosystems: Lateral connections and the implications of human interference. Geomorphology 2003, 56, 335–349. [Google Scholar] [CrossRef]
- Nilsson, C.; Berggren, K. Alterations of Riparian Ecosystems Caused by River Regulation: Dam operations have caused global-scale ecological changes in riparian ecosystems. How to protect river environments and human needs of rivers remains one of the most important questions of our time. Bioscience 2000, 50, 783–792. [Google Scholar] [CrossRef]
- Naiman, R.J.; Bilby, R.E.; Bisson, P.A. Riparian Ecology and Management in the Pacific Coastal Rain Forest. Bioscience 2000, 50, 996–1011. [Google Scholar] [CrossRef]
- Burger, B.; Reich, P.; Cavagnaro, T.R. Trajectories of change: Riparian vegetation and soil conditions following livestock removal and replanting. Austral. Ecol. 2010, 35, 980–987. [Google Scholar] [CrossRef]
- Tockner, K.; Stanford, J.A. Riverine flood plains: Present state and future trends. Environ. Conserv. 2002, 29, 308–330. [Google Scholar] [CrossRef] [Green Version]
- Palmer, M.A.; Ruhi, A. Linkages between flow regime, biota, and ecosystem processes: Implications for river restoration. Science 2019, 365, eaaw2087. [Google Scholar] [CrossRef] [Green Version]
- Vanneuville, W.; Wolters, H.; Scholz, M.; Werner, B.; Uhel, R. Flood Risks and Environmental Vulnerability—Exploring the Synergies between Floodplain Restoration, Water Policies and Thematic Policies; EEA Report 1/2016; European Environment Agency: Luxembourg, 2016. [Google Scholar]
- Boettinger, J.L. Alluvium and alluvial soils. In Encyclopedia of Soils in the Environment; Hillel, D., Ed.; Elsevier: Oxford, UK, 2005; pp. 45–49. [Google Scholar] [CrossRef]
- Gerrard, J. Alluvial Soils; Van Nostrand Reinhold Co.: New York, NY, USA, 1987; ISBN 044-222-742-6. [Google Scholar]
- IUSS Working Group WRB. World Reference Base for Soil Resources 2014, Update 2015. International Soil Classification System for Naming Soils and Creating Legends for Soil Maps; World Soil Resources Reports 106; FAO: Rome, Italy, 2015. [Google Scholar]
- Soil Survey Staff. Keys to Soil Taxonomy, 12th ed.; United States Department of Agriculture—Natural Resources Conservation Service: Washington, DC, USA, 2014.
- Daniels, J. Floodplain aggradation and pedogenesis in a semiarid environment. Geomorphology 2003, 56, 225–242. [Google Scholar] [CrossRef]
- Bullinger-Weber, G.; Gobat, J.-M. Identification of facies models in alluvial soil formation: The case of a Swiss alpine floodplain. Geomorphology 2006, 74, 181–195. [Google Scholar] [CrossRef] [Green Version]
- Palmer, M.; Bernhardt, E.; Allan, J.D.; Lake, P.; Alexander, G.; Brooks, S.; Carr, J.; Clayton, S.; Dahm, C.N.; Follstad Shah, J.; et al. Standards for ecologically successful river restoration. J. Appl. Ecol. 2005, 42, 208–217. [Google Scholar] [CrossRef]
- Roni, P.; Hanson, K.; Beechie, T. Global Review of the Physical and Biological Effectiveness of Stream Habitat Rehabilitation Techniques. N. Am. J. Fish. Manag. 2008, 28, 856–890. [Google Scholar] [CrossRef]
- Hornung, L.K.; Podschun, S.A.; Pusch, M. Linking ecosystem services and measures in river and floodplain management. Ecosyst. People 2019, 15, 214–231. [Google Scholar] [CrossRef] [Green Version]
- European Centre for River Restoration. Regional and National Policies. Available online: https://www.ecrr.org/River-Restoration/Regional-and-national-policies (accessed on 4 December 2020).
- Bruland, G.L.; Richardson, C.J. Spatial Variability of Soil Properties in Created, Restored, and Paired Natural Wetlands. Soil Sci. Soc. Am. J. 2005, 69, 273–284. [Google Scholar] [CrossRef]
- Jähnig, S.C.; Brabec, K.; Buffagni, A.; Erba, S.; Lorenz, A.W.; Ofenböck, T.; Verdonschot, P.F.M.; Hering, D. A comparative analysis of restoration measures and their effects on hydromorphology and benthic invertebrates in 26 central and southern European rivers. J. Appl. Ecol. 2010, 47, 671–680. [Google Scholar] [CrossRef]
- Laub, B.G.; McDonough, O.T.; Needelman, B.A.; Palmer, M.A. Comparison of Designed Channel Restoration and Riparian Buffer Restoration Effects on Riparian Soils. Restor. Ecol. 2013, 21, 695–703. [Google Scholar] [CrossRef]
- Ballantine, K.; Schneider, R. Fifty-five years of soil development in restored freshwater depressional wetlands. Ecol. Appl. 2009, 19, 1467–1480. [Google Scholar] [CrossRef] [Green Version]
- Cole, C.A.; Kentula, M.E. Monitoring and Assessment—What to Measure … and Why. In Wetlands: Integrating Multidisciplinary Concepts; LePage, B.A., Ed.; Springer: Dordrecht, The Netherlands, 2011; pp. 137–152. ISBN 978-94-007-0551-7. [Google Scholar]
- Dietrich, A.L.; Lind, L.; Nilsson, C.; Jansson, R. The Use of Phytometers for Evaluating Restoration Effects on Riparian Soil Fertility. J. Environ. Qual. 2014, 43, 1916–1925. [Google Scholar] [CrossRef]
- Haines-Young, R.; Potschin, M.B. Common International Classification of Ecosystem Services (CICES) V5.1 and Guidance on the Application of the Revised Structure; CICES: Sale, UK, 2018. [Google Scholar]
- Pickering, C.; Byrne, J. The benefits of publishing systematic quantitative literature reviews for PhD candidates and other early-career researchers. High. Educ. Res. Dev. 2014, 33, 534–548. [Google Scholar] [CrossRef] [Green Version]
- Moher, D.; Liberati, A.; Tetzlaff, J.; Altman, D.G.; The PRISMA Group. Preferred reporting items for systematic reviews and meta-analyses: The PRISMA statement. PLoS Med. 2009, 6, e1000097. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Recking, A.; Piton, G.; Montabonnet, L.; Posi, S.; Evette, A. Design of fascines for riverbank protection in alpine rivers: Insight from flume experiments. Ecol. Eng. 2019, 138, 323–333. [Google Scholar] [CrossRef] [Green Version]
- Schultz, J. The Ecozones of the World, 2nd ed.; Springer: Berlin/Heidelberg, Germany, 2005; ISBN 978-2-540-28527-4. [Google Scholar]
- Fournier, B.; Guenat, C.; Bullingerweber, G.; Mitchell, E.A.D. Spatio-temporal heterogeneity of riparian soil morphology in a restored floodplain. Hydrol. Earth Syst. Sci. 2013, 17, 4031–4042. [Google Scholar] [CrossRef] [Green Version]
- Kauffman, J.B.; Thorpe, A.S.; Brookshire, E.N.J. Livestock exclusion and belowground ecosystem responses in riparian meadows of Eastern Oregon. Ecol. Appl. 2004, 14, 1671–1679. [Google Scholar] [CrossRef]
- Clement, J.C.; Holmes, R.M.; Peterson, B.J.; Pinay, G. Isotopic investigation of denitrification in a riparian ecosystem in western France. J. Appl. Ecol. 2003, 40, 1035–1048. [Google Scholar] [CrossRef]
- Smith, M.; Conte, P.; Berns, A.E.; Thomson, J.R.; Cavagnaro, T.R. Spatial patterns of, and environmental controls on, soil properties at a riparian–paddock interface. Soil Biol. Biochem. 2012, 49, 38–45. [Google Scholar] [CrossRef]
- Sutton-Grier, A.E.; Ho, M.; Richardson, C.J. Organic amendments improve soil conditions and denitrification in a restored riparian wetland. Wetlands 2009, 29, 343–352. [Google Scholar] [CrossRef]
- Zhang, D.; Cheng, J.; Liu, Y.; Zhang, H.; Ma, L.; Mei, X.; Sun, Y. Spatio-Temporal Dynamic Architecture of Living Brush Mattress: Root System and Soil Shear Strength in Riverbanks. Forests 2018, 9, 493. [Google Scholar] [CrossRef] [Green Version]
- Kuykendall, H. Soil Quality Physical Indicators: Selecting Dynamic Soil Properties to Assess Soil Function; Soil Quality Technical Note No. 10; United States Department of Agriculture—Natural Resources Conservation Service: Washington, DC, USA, 2008.
- Karlen, D.L.; Mausbach, M.J.; Doran, J.W.; Cline, R.G.; Harris, R.F.; Schuman, G.E. Soil Quality: A Concept, Definition, and Framework for Evaluation (A Guest Editorial). Soil Sci. Soc. Am. J. 1997, 61, 4–10. [Google Scholar] [CrossRef] [Green Version]
- National Soil Survey Center. Soil Quality Information Sheet. Indicators for Soils Quality Evaluation; United States Department of Agriculture—Natural Resources Conservation Service: Washington, DC, USA, 1996.
- Häusler, S.; Salm, C. Bodenschutz beim Bauen (Soil Protection and Construction); Leitfaden Umwelt Nummer 10; BUWAL Bundesamt für Umwelt, Wald und Landschaft: Bern, Switzerland, 2001. [Google Scholar]
- Soil Geographic Databases. Available online: https://www.isric.org/index.php/explore/soil-geographic-databases (accessed on 4 December 2020).
- WoSIS Soil Profile Database. Available online: https://www.isric.org/index.php/explore/wosis (accessed on 4 December 2020).
- New Edition of Soil Property Estimates for the World with Associated Web Platform Released (SoilGrids250m). Available online: https://www.isric.org/news/new-edition-soil-property-estimates-world-associated-web-platform-released-soilgrids250m (accessed on 4 December 2020).
- Bellini, E. Boden und Bauen. Stand der Technik und Praktiken (Soil and Construction. State of the Knowledge); Umwelt-Wissen Nr. 1508; BAFU Bundesamt für Umwelt: Bern, Switzerland, 2015. [Google Scholar]
- Bundesverband Boden. Bodenkundliche Baubegleitung BBB (Soil Protection on Construction Sites). Leitfaden für die Praxis. BVB-Merkblatt. Band 2; Erich Schmidt Verlag: Berlin, Germany, 2013. [Google Scholar]
- Fisher, J.; Cortina-Segarra, J.; Grace, M.; Moreno-Mateos, D.; Rodíguez Gonzáles, P.; Baker, S.; Frouz, J.; Klimkowska, A.; Andres, P.; Kyriazopoulos, A.; et al. What Is Hampering Current Restoration Effectiveness? An EKLIPSE Expert Working Group Report; UK Centre for Ecology & Hydrology: Wallingford, UK, 2019. [Google Scholar]
- United States Department of Agriculture; Natural Resources Conservation Service. Site Assessment and Investigation. In Stream Restoration Design National Engineering Handbook (Part 654); USDA, NRCS, Eds.; United States Department of Agriculture—Natural Resources Conservation Service: Washington, DC, USA, 2007. [Google Scholar]
- Rey, F.; Bifulco, C.; Bischetti, G.B.; Bourrier, F.; De Cesare, G.; Florineth, F.; Graf, F.; Marden, M.; Mickovski, S.B.; Phillips, C.J.; et al. Soil and water bioengineering: Practice and research needs for reconciling natural hazard control and ecological restoration. Sci. Total Environ. 2019, 648, 1210–1218. [Google Scholar] [CrossRef]
- Agouridis, C.T.; Edwards, D.R.; Workman, S.R.; Bicudo, J.R.; Koostra, B.K.; VanZant, E.S.; Taraba, J.L. Streambank erosion associated with grazing practices in the humid region. Trans. ASAE 2005, 48, 181–190. [Google Scholar] [CrossRef]
- Amézketa, E.; del Valle de Lersundi, J. Soil classification and salinity mapping for determining restoration potential of cropped riparian areas. Land Degrad. Dev. 2008, 19, 153–164. [Google Scholar] [CrossRef]
- Andrews, D.M.; Barton, C.D.; Kolka, R.K.; Rhoades, C.C.; Dattilo, A.J. Soil and Water Characteristics in Restored Canebrake and Forest Riparian Zones1. JAWRA J. Am. Water Resour. Assoc. 2011, 47, 772–784. [Google Scholar] [CrossRef]
- Anstead, L.; Boar, R.R.; Tovey, N.K. The effectiveness of a soil bioengineering solution for river bank stabilisation during flood and drought conditions: Two case studies from East Anglia. Area 2012, 44, 479–488. [Google Scholar] [CrossRef]
- Asghari, H.R.; Cavagnaro, T.R. Arbuscular mycorrhizas enhance plant interception of leached nutrients. Funct. Plant Biol. 2011, 38, 219–226. [Google Scholar] [CrossRef] [PubMed]
- Atkinson, S.F.; Lake, M.C. Prioritizing riparian corridors for ecosystem restoration in urbanizing watersheds. PeerJ 2020, 8, e8174. [Google Scholar] [CrossRef] [Green Version]
- Bariteau, L.; Bouchard, D.; Gagnon, G.; Levasseur, M.; Lapointe, S.; Bérubé, M. A riverbank erosion control method with environmental value. Ecol. Eng. 2013, 58, 384–392. [Google Scholar] [CrossRef]
- Beauchamp, V.B.; Swan, C.M.; Szlavecz, K.; Hu, J. Riparian community structure and soil properties of restored urban streams. Ecohydrology 2015, 8, 880–895. [Google Scholar] [CrossRef]
- Bedison, J.E.; Scatena, F.N.; Mead, J.V. Influences on the spatial pattern of soil carbon and nitrogen in forested and non-forested riparian zones in the Atlantic Coastal Plain of the Delaware River Basin. For. Ecol. Manag. 2013, 302, 200–209. [Google Scholar] [CrossRef]
- Bissels, S.; Hölzel, N.; Donath, T.W.; Otte, A. Evaluation of restoration success in alluvial grasslands under contrasting flooding regimes. Biol. Conserv. 2004, 118, 641–650. [Google Scholar] [CrossRef]
- Botero-Acosta, A.; Chu, M.L.; Guzman, J.A.; Starks, P.J.; Moriasi, D.N. Riparian erosion vulnerability model based on environmental features. J. Environ. Manag. 2017, 203, 592–602. [Google Scholar] [CrossRef] [PubMed]
- Brovelli, A.; Batlle-Aguilar, J.; Barry, D.A. Analysis of carbon and nitrogen dynamics in riparian soils: Model development. Sci. Total. Environ. 2012, 429, 231–245. [Google Scholar] [CrossRef] [PubMed]
- Buchanan, B.P.; Walter, M.T.; Nagle, G.N.; Schneider, R.L. Monitoring and assessment of a river restoration project in central New York. River Res. Appl. 2010, 28, 216–233. [Google Scholar] [CrossRef]
- Buzhdygan, O.Y.; Rudenko, S.S.; Kazanci, C.; Patten, B.C. Effect of invasive black locust (Robinia pseudoacacia L.) on nitrogen cycle in floodplain ecosystem. Ecol. Model. 2016, 319, 170–177. [Google Scholar] [CrossRef]
- Cabezas, Á.; Comín, F.A. Carbon and nitrogen accretion in the topsoil of the Middle Ebro River Floodplains (NE Spain): Implications for their ecological restoration. Ecol. Eng. 2010, 36, 640–652. [Google Scholar] [CrossRef]
- Das, U.K. A Case Study on Performance of Jia Bharali River Bank Protection Measure Using Geotextile Bags. Int. J. Geosynth. Ground Eng. 2016, 2, 2. [Google Scholar] [CrossRef] [Green Version]
- Davis, C.A.; Austin, J.E.; Buhl, D.A. Factors influencing soil invertebrate communities in riparian grasslands of the central platte river floodplain. Wetlands 2006, 26, 438–454. [Google Scholar] [CrossRef]
- De Mello, K.; Randhir, T.O.; Valente, R.A.; Vettorazzi, C.A. Riparian restoration for protecting water quality in tropical agricultural watersheds. Ecol. Eng. 2017, 108, 514–524. [Google Scholar] [CrossRef]
- Del Tánago, M.G.; De Jalón, D.G. Attributes for assessing the environmental quality of riparian zones. Limnetica 2006, 25, 389–402. [Google Scholar]
- Dhondt, K.; Boeckx, P.; Verhoest, N.E.C.; Hofman, G.; Van Cleemput, O. Assessment of Temporal and Spatial Variation of Nitrate Removal in Riparian Zones. Environ. Monit. Assess. 2006, 116, 197–215. [Google Scholar] [CrossRef]
- Duong, T.T.; Komine, H.; Do, M.D.; Murakami, S. Riverbank stability assessment under flooding conditions in the Red River of Hanoi, Vietnam. Comput. Geotech. 2014, 61, 178–189. [Google Scholar] [CrossRef]
- Duró, G.; Crosato, A.; Kleinhans, M.G.; Winkels, T.G.; Woolderink, H.A.G.; Uijttewaal, W.S.J. Distinct patterns of bank erosion in a navigable regulated river. Earth Surf. Process. Landf. 2019, 45, 361–374. [Google Scholar] [CrossRef]
- Dybala, K.E.; Steger, K.; Walsh, R.G.; Smart, D.R.; Gardali, T.; Seavy, N.E. Optimizing carbon storage and biodiversity co-benefits in reforested riparian zones. J. Appl. Ecol. 2019, 56, 343–353. [Google Scholar] [CrossRef]
- Fernandes, L.F.S.; Pinto, A.A.; Terêncio, D.P.; Pacheco, F.A.L.; Cortes, R.M. Combination of Ecological Engineering Procedures Applied to Morphological Stabilization of Estuarine Banks after Dredging. Water 2020, 12, 391. [Google Scholar] [CrossRef] [Green Version]
- Fournier, B.; Gillet, F.; Le Bayon, R.-C.; Mitchell, E.A.D.; Moretti, M. Functional responses of multitaxa communities to disturbance and stress gradients in a restored floodplain. J. Appl. Ecol. 2015, 52, 1364–1373. [Google Scholar] [CrossRef]
- Franklin, H.M.; Carroll, A.R.; Chen, C.; Maxwell, P.; Burford, M.A. Plant source and soil interact to determine characteristics of dissolved organic matter leached into waterways from riparian leaf litter. Sci. Total Environ. 2020, 703, 134530. [Google Scholar] [CrossRef]
- Gageler, R.; Bonner, M.; Kirchhof, G.; Amos, M.; Robinson, N.; Schmidt, S.; Shoo, L.P. Early Response of Soil Properties and Function to Riparian Rainforest Restoration. PLoS ONE 2014, 9, e104198. [Google Scholar] [CrossRef]
- Garvin, E.M.; Bridge, C.F.; Garvin, M.S. Screening Level Assessment of Metal Concentrations in Streambed Sediments and Floodplain Soils within the Grand Lake Watershed in Northeastern Oklahoma, USA. Arch. Environ. Contam. Toxicol. 2017, 72, 349–363. [Google Scholar] [CrossRef]
- Giese, L.A.; Aust, W.M.; Trettin, C.C.; Kolka, R.K. Spatial and temporal patterns of carbon storage and species richness in three South Carolina coastal plain riparian forests. Ecol. Eng. 2000, 15, S157–S170. [Google Scholar] [CrossRef] [Green Version]
- Gold, A.J.; Groffman, P.M.; Addy, K.; Kellogg, D.Q.; Stolt, M.; Rosenblatt, A.E. Landscape attributes as controls on groithd water nitrate removal capacity of riparian zones. JAWRA J. Am. Water Resour. Assoc. 2001, 37, 1457–1464. [Google Scholar] [CrossRef]
- Gumiero, B.; Boz, B. How to stop nitrogen leaking from a Cross compliant buffer strip? Ecol. Eng. 2017, 103, 446–454. [Google Scholar] [CrossRef]
- Guo, F.; Sun, L.; Hu, X.; Luo, Q. Correlation analysis of OCPs (organo-chlorine pesticides) and microbial community diversity in the riparian zone of Liaohe River Conservation Area. Fresenius Environ. Bull. 2018, 27, 6844–6852. [Google Scholar]
- Hale, R.; Reich, P.; Daniel, T.; Lake, P.S.; Cavagnaro, T.R. Assessing changes in structural vegetation and soil properties following riparian restoration. Agric. Ecosyst. Environ. 2018, 252, 22–29. [Google Scholar] [CrossRef]
- Hale, R.; Reich, P.; Daniel, T.; Lake, P.S.; Cavagnaro, T.R. Scales that matter: Guiding effective monitoring of soil properties in restored riparian zones. Geoderma 2014, 228, 173–181. [Google Scholar] [CrossRef]
- Harrison, M.D.; Groffman, P.M.; Mayer, P.M.; Kaushal, S.S.; Newcomer, T.A. Denitrification in Alluvial Wetlands in an Urban Landscape. J. Environ. Qual. 2011, 40, 634–646. [Google Scholar] [CrossRef] [Green Version]
- Hasselquist, E.M.; Hasselquist, N.J.; Sparks, J.P.; Nilsson, C. Recovery of nitrogen cycling in riparian zones after stream restoration using δ 15N along a 25-year chronosequence in northern Sweden. Plant Soil 2017, 410, 423–436. [Google Scholar] [CrossRef] [Green Version]
- Higgisson, W.P.; Downey, P.O.; Dyer, F.J. Changes in Vegetation and Geomorphological Condition 10 Years after Riparian Restoration. Water 2019, 11, 1252. [Google Scholar] [CrossRef] [Green Version]
- Jansen, A.; Robertson, A.I. Relationships between livestock management and the ecological condition of riparian habitats along an Australian floodplain river. J. Appl. Ecol. 2001, 38, 63–75. [Google Scholar]
- Janssen, P.; Cavaillé, P.; Bray, F.; Evette, A. Soil bioengineering techniques enhance riparian habitat quality and multi-taxonomic diversity in the foothills of the Alps and Jura Mountains. Ecol. Eng. 2019, 133, 1–9. [Google Scholar] [CrossRef]
- Juracek, K.E.; Drake, K.D. Mining-Related Sediment and Soil Contamination in a Large Superfund Site: Characterization, Habitat Implications, and Remediation. Environ. Manag. 2016, 58, 721–740. [Google Scholar] [CrossRef]
- Korol, A.R.; Noe, G.B.; Ahn, C. Controls of the spatial variability of denitrification potential in nontidal floodplains of the Chesapeake Bay watershed, USA. Geoderma 2019, 338, 14–29. [Google Scholar] [CrossRef]
- Langendoen, E.J.; Lowrance, R.R.; Simon, A. Assessing the impact of riparian processes on streambank stability. Ecohydrology 2009, 2, 360–369. [Google Scholar] [CrossRef]
- Larsen, E.W.; Greco, S.E. Modeling Channel Management Impacts on River Migration: A Case Study of Woodson Bridge State Recreation Area, Sacramento River, California, USA. Environ. Manag. 2002, 30, 209–224. [Google Scholar] [CrossRef] [PubMed]
- Lee, E.-J.; Choi, K.-S.; Kim, T.-G. Estimation of the Pollutant Removal Efficiency in a Buffer Strip Using a SWAT Model. Environ. Eng. Res. 2011, 16, 61–67. [Google Scholar] [CrossRef]
- Li, X.; Zhang, L.; Zhang, Z. Soil bioengineering and the ecological restoration of riverbanks at the Airport Town, Shanghai, China. Ecol. Eng. 2006, 26, 304–314. [Google Scholar] [CrossRef]
- Lindow, N.; Fox, G.A.; Evans, R.O. Seepage erosion in layered stream bank material. Earth Surf. Process. Landf. 2009, 34, 1693–1701. [Google Scholar] [CrossRef]
- Maffra, C.; Sutili, F. The use of soil bioengineering to overcome erosion problems in a pipeline river crossing in South America. Innov. Infrastruct. Solut. 2020, 5, 1–8. [Google Scholar] [CrossRef]
- Maroto, R.; Robredo, J.C.; García, J.L.; Giménez, M.; Tardío, G. Eresma river slope: Stabilization and restoration project (Coca, Segovia, Spain). Procedia Environ. Sci. Eng. Manag. 2017, 4, 245–254. [Google Scholar]
- Márquez, C.O.; García, V.J.; Schultz, R.C.; Isenhart, T.M. Assessment of Soil Aggradation through Soil Aggregation and Particulate Organic Matter by Riparian Switchgrass Buffers. Agronomy 2017, 7, 76. [Google Scholar] [CrossRef] [Green Version]
- Matheson, F.E.; Nguyen, M.L.; Cooper, A.B.; Burt, T.P.; Bull, D.C. Fate of 15N-nitrate in unplanted, planted and harvested riparian wetland soil microcosms. Ecol. Eng. 2002, 19, 249–264. [Google Scholar] [CrossRef]
- Meals, D.; Hopkins, R. Phosphorus reductions following riparian restoration in two agricultural watersheds in Vermont, USA. Water Sci. Technol. 2002, 45, 51–60. [Google Scholar] [CrossRef] [PubMed]
- Meynendonckx, J.; Heuvelmans, G.; Muys, B.; Feyen, J. Effects of watershed and riparian zone characteristics on nutrient concentrations in the River Scheldt Basin. Hydrol. Earth Syst. Sci. 2006, 10, 913–922. [Google Scholar] [CrossRef] [Green Version]
- Neilen, A.D.; Chen, C.R.; Parker, B.M.; Faggotter, S.J.; Burford, M.A. Differences in nitrate and phosphorus export between wooded and grassed riparian zones from farmland to receiving waterways under varying rainfall conditions. Sci. Total. Environ. 2017, 598, 188–197. [Google Scholar] [CrossRef] [PubMed]
- Orr, C.H.; Stanley, E.H.; Wilson, K.A.; Finlay, J.C. Effects of restoration and reflooding on soil denitrification in a leveed midwestern floodplain. Ecol. Appl. 2007, 17, 2365–2376. [Google Scholar] [CrossRef] [PubMed]
- Peter, S.; Rechsteiner, R.; Lehmann, M.F.; Brankatschk, R.; Vogt, T.; Diem, S.; Wehrli, B.; Tockner, K.; Durisch-Kaiser, E. Nitrate removal in a restored riparian groundwater system: Functioning and importance of individual riparian zones. Biogeosciences 2012, 9, 4295–4307. [Google Scholar] [CrossRef] [Green Version]
- Petrone, A.; Preti, F. Soil bioengineering for risk mitigation and environmental restoration in a humid tropical area. Hydrol. Earth Syst. Sci. 2010, 14, 239–250. [Google Scholar] [CrossRef] [Green Version]
- Pinto, A.; Fernandes, L.F.S.; Maia, R. Monitoring Methodology of Interventions for Riverbanks Stabilization: Assessment of Technical Solutions Performance. Water Resour. Manag. 2016, 30, 5281–5298. [Google Scholar] [CrossRef]
- Rahe, N.H.; Williard, K.W.; Schoonover, J.E. Restoration of Riparian Buffer Function in Reclaimed Surface Mine Soils. JAWRA J. Am. Water Resour. Assoc. 2015, 51, 898–909. [Google Scholar] [CrossRef]
- Rassam, D.W.; Pagendam, D. Development and application of the Riparian Mapping Tool to identify priority rehabilitation areas for nitrogen removal in the Tully-Murray basin, Queensland, Australia. Mar. Freshw. Res. 2009, 60, 1165–1175. [Google Scholar] [CrossRef]
- Reisinger, A.J.; Blair, J.M.; Rice, C.W.; Dodds, W.K. Woody Vegetation Removal Stimulates Riparian and Benthic Denitrification in Tallgrass Prairie. Ecosystems 2013, 16, 547–560. [Google Scholar] [CrossRef]
- Remo, J.W.F.; Guida, R.J.; Secchi, S. Screening the Suitability of Levee Protected Areas for Strategic Floodplain Reconnection Along the LaGrange Segment of the Illinois River, USA. River Res. Appl. 2016, 33, 863–878. [Google Scholar] [CrossRef]
- Rheinhardt, R.D.; Brinson, M.; Meyer, G.; Miller, K. Integrating forest biomass and distance from channel to develop an indicator of riparian condition. Ecol. Indic. 2012, 23, 46–55. [Google Scholar] [CrossRef]
- Rimondi, V.; Costagliola, P.; Lattanzi, P.; Morelli, G.; Cara, G.; Cencetti, C.; Fagotti, C.; Fredduzzi, A.; Marchetti, G.; Sconocchia, A.; et al. A 200 km-long mercury contamination of the Paglia and Tiber floodplain: Monitoring results and implications for environmental management. Environ. Pollut. 2019, 255, 113191. [Google Scholar] [CrossRef]
- Rosenblatt, A.E.; Gold, A.J.; Stolt, M.H.; Groffman, P.M.; Kellogg, D.Q. Identifying Riparian Sinks for Watershed Nitrate using Soil Surveys. J. Environ. Qual. 2001, 30, 1596–1604. [Google Scholar] [CrossRef] [PubMed]
- Rosenfeld, J.S.; Hogan, D.; Palm, D.; Lundquist, H.; Nilsson, C.; Beechie, T.J. Contrasting Landscape Influences on Sediment Supply and Stream Restoration Priorities in Northern Fennoscandia (Sweden and Finland) and Coastal British Columbia. Environ. Manag. 2010, 47, 28–39. [Google Scholar] [CrossRef]
- Saad, S.I.; Da Silva, J.M.; Silva, M.L.N.; Guimarães, J.L.B.; Júnior, W.C.S.; Figueiredo, R.D.O.; Da Rocha, H.R. Analyzing ecological restoration strategies for water and soil conservation. PLoS ONE 2018, 13, e0192325. [Google Scholar] [CrossRef] [Green Version]
- Samaritani, E.; Shrestha, J.N.B.; Fournier, B.; Frossard, E.; Gillet, F.; Guenat, C.; Niklaus, P.A.; Pasquale, N.; Tockner, K.; Mitchell, E.A.D.; et al. Heterogeneity of soil carbon pools and fluxes in a channelized and a restored floodplain section (Thur River, Switzerland). Hydrol. Earth Syst. Sci. 2011, 15, 1757–1769. [Google Scholar] [CrossRef] [Green Version]
- Sgouridis, F.; Heppell, C.M.; Wharton, G.; Lansdown, K.; Trimmer, M. Denitrification and dissimilatory nitrate reduction to ammonium (DNRA) in a temperate re-connected floodplain. Water Res. 2011, 45, 4909–4922. [Google Scholar] [CrossRef]
- Shah, J.J.F.; Harner, M.J.; Tibbets, T.M. Elaeagnus angustifolia Elevates Soil Inorganic Nitrogen Pools in Riparian Ecosystems. Ecosystems 2010, 13, 46–61. [Google Scholar] [CrossRef]
- Silk, W.K.; Bambic, D.G.; O’Dell, R.E.; Green, P.G. Seasonal and spatial patterns of metals at a restored copper mine site II. Copper in riparian soils and Bromus carinatus shoots. Environ. Pollut. 2006, 144, 783–789. [Google Scholar] [CrossRef]
- Tang, Y.; Van Kempen, M.M.; Van Der Heide, T.; Manschot, J.J.; Roelofs, J.G.; Lamers, L.P.M.; Smolders, A.J.P. A tool for easily predicting short-term phosphorus mobilization from flooded soils. Ecol. Eng. 2016, 94, 1–6. [Google Scholar] [CrossRef]
- Tererai, F.; Gaertner, M.; Jacobs, S.M.; Richardson, D.M. Eucalyptus Camaldulensis Invasion in Riparian Zones Reveals Few Significant Effects on Soil Physico-Chemical Properties. River Res. Appl. 2015, 31, 590–601. [Google Scholar] [CrossRef]
- Theriot, J.M.; Conkle, J.L.; Pezeshki, S.R.; Delaune, R.D.; White, J.R. Will hydrologic restoration of Mississippi River riparian wetlands improve their critical biogeochemical functions? Ecol. Eng. 2013, 60, 192–198. [Google Scholar] [CrossRef]
- Tian, G.L.; Vose, J.M.; Coleman, D.C.; Geron, C.D.; Walker, J.T. Evaluation of the effectiveness of riparian zone restoration in the southern Appalachians by assessing soil microbial populations. Appl. Soil Ecol. 2004, 26, 63–68. [Google Scholar] [CrossRef] [Green Version]
- Tomer, M.D.; Boomer, K.M.B.; Porter, S.A.; Gelder, B.K.; James, D.E.; McLellan, E. Agricultural Conservation Planning Framework: 2. Classification of Riparian Buffer Design Types with Application to Assess and Map Stream Corridors. J. Environ. Qual. 2015, 44, 768–779. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Vandecasteele, B.; Quataert, P.; De Vos, B.; Tack, F.M.G. Assessment of the pollution status of alluvial plains: A case study for the dredged sediment-derived soils along the Leie River. Arch. Environ. Contam. Toxicol. 2004, 47, 14–22. [Google Scholar] [CrossRef] [Green Version]
- Walker, J.; Geron, C.D.; Vose, J.M.; Swank, W.T. Nitrogen trace gas emissions from a riparian ecosystem in southern Appalachia. Chemosphere 2002, 49, 1389–1398. [Google Scholar] [CrossRef]
- Walker, J.; Vose, J.M.; Knoepp, J.; Geron, C.D. Recovery of Nitrogen Pools and Processes in Degraded Riparian Zones in the Southern Appalachians. J. Environ. Qual. 2009, 38, 1391–1399. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.; Wang, D.M.; Wang, B. Effects of hydrological environmental gradient on soil and microbial properties in Lijiang riparian zones of China. Fresenius Environ. Bull. 2019, 28, 1297–1307. [Google Scholar]
- Wang, Z.; Wang, Z.; Pei, Y. Nitrogen removal and microbial communities in a three-stage system simulating a riparian environment. Bioprocess Biosyst. Eng. 2013, 37, 1105–1114. [Google Scholar] [CrossRef]
- Weller, D.E.; Baker, M.E. Cropland Riparian Buffers throughout Chesapeake Bay Watershed: Spatial Patterns and Effects on Nitrate Loads Delivered to Streams. JAWRA J. Am. Water Resour. Assoc. 2014, 50, 696–712. [Google Scholar] [CrossRef]
- Welsh, M.K.; McMillan, S.K.; Vidon, P.G. Denitrification along the Stream-Riparian Continuum in Restored and Unrestored Agricultural Streams. J. Environ. Manag. 2017, 46, 1010–1019. [Google Scholar] [CrossRef] [PubMed]
- Welsh, M.K.; Vidon, P.G.; McMillan, S.K. Changes in riparian hydrology and biogeochemistry following storm events at a restored agricultural stream. Environ. Sci. Process. Impacts 2019, 21, 677–691. [Google Scholar] [CrossRef] [PubMed]
- Xiong, Z.; Li, S.; Yao, L.; Liu, G.; Zhang, Q.; Liu, W. Topography and land use effects on spatial variability of soil denitrification and related soil properties in riparian wetlands. Ecol. Eng. 2015, 83, 437–443. [Google Scholar] [CrossRef]
- Ye, C.; Butler, O.M.; Du, M.; Liu, W.Z.; Zhang, Q.F. Spatio-temporal dynamics, drivers and potential sources of heavy metal pollution in riparian soils along a 600 kilometre stream gradient in Central China. Sci. Total. Environ. 2019, 651, 1935–1945. [Google Scholar] [CrossRef]
- Young, E.O.; Ross, D.S.; Cade-Menun, B.J.; Liu, C.W. Phosphorus Speciation in Riparian Soils: A Phosphorus-31 Nuclear Magnetic Resonance Spectroscopy and Enzyme Hydrolysis Study. Soil Sci. Soc. Am. J. 2013, 77, 1636–1647. [Google Scholar] [CrossRef]
- Zaimes, G.N.; Schultz, R.C.; Isenhart, T.M. Riparian land uses and precipitation influences on stream bank erosion in central Iowa. JAWRA J. Am. Water Resour. Assoc. 2006, 42, 83–97. [Google Scholar] [CrossRef]
- Zhao, P.; Xia, B.; Hu, Y.; Yang, Y. A spatial multi-criteria planning scheme for evaluating riparian buffer restoration priorities. Ecol. Eng. 2013, 54, 155–164. [Google Scholar] [CrossRef]
Africa | Asia | Europe | North America | South America | Oceania 2 | Not Specified | Total |
---|---|---|---|---|---|---|---|
1 | 12 | 25 1 | 44 1 | 4 | 12 | 3 | 100 |
USA | Australia | China | Switzerland |
---|---|---|---|
41 | 11 | 8 | 5 |
Physical Properties | Chemical Properties | Biological Properties | Detailed Classification | Other Soil Classification | Other Soil Information | No Soil Information |
---|---|---|---|---|---|---|
76 | 56 | 21 | 32 | 6 | 9 | 3 |
Physical + Chemical + Biological Properties + Classification | Physical + Chemical + Properties + Classification | Physical Properties + Classification | Chemical Properties + Classification | Biological Properties + Classification | Classification Only |
---|---|---|---|---|---|
6 | 12 | 5 | 3 | 0 | 6 |
Physical + Chemical + Biological Properties | Physical + Chemical + Properties | Physical + Biological Properties | Chemical + Biological Properties | Biological Properties Only | Chemical Properties Only | Physical Properties Only |
---|---|---|---|---|---|---|
11 | 16 | 3 | 1 | 0 | 7 | 24 1 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
El Hourani, M.; Broll, G. Soil Protection in Floodplains—A Review. Land 2021, 10, 149. https://doi.org/10.3390/land10020149
El Hourani M, Broll G. Soil Protection in Floodplains—A Review. Land. 2021; 10(2):149. https://doi.org/10.3390/land10020149
Chicago/Turabian StyleEl Hourani, Mariam, and Gabriele Broll. 2021. "Soil Protection in Floodplains—A Review" Land 10, no. 2: 149. https://doi.org/10.3390/land10020149
APA StyleEl Hourani, M., & Broll, G. (2021). Soil Protection in Floodplains—A Review. Land, 10(2), 149. https://doi.org/10.3390/land10020149