Evaluation of Leaf Litter Mulching and Incorporation on Skid Trails for the Recovery of Soil Physico-Chemical and Biological Properties of Mixed Broadleaved Forests
Abstract
:1. Introduction
2. Materials and Methods
2.1. Site Description
2.2. Experimental Design
2.3. Data Collection and Laboratory Analysis
2.4. Statistical Analysis
3. Results
3.1. Soil Physico-Chemical Properties
3.2. Soil Biological and Microbial Properties
4. Discussion
4.1. Soil Physical Properties
4.2. Soil Chemical, Biological and Microbial Properties
5. Conclusions
- Application of the harvesting residues and organic mulch before the forestry vehicle traffic or incorporation instead of mulching after harvesting operations;
- Litter incorporation into the soil with the application of an amount ranging between 6–9 Mg ha−1 as an effective method to restore the compaction-induced soil to the same conditions before the logging operations on the skid trails;
- Mulching and incorporation of organic materials on the skid trails to mitigate surface runoff and rill and interrill erosion.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Picchio, R.; Mederski, P.S.; Tavankar, F. How and How Much, Do harvesting activities affect forest soil, regeneration and stands? Curr. For. Rep. 2020, 6, 115–128. [Google Scholar] [CrossRef] [Green Version]
- Picchio, R.; Latterini, F.; Mederski, P.S.; Venanzi, R.; Karaszewski, Z.; Bembenek, M.; Croce, M. Comparing accuracy of three methods based on the GIS environment for determining winching areas. Electronics 2019, 8, 53. [Google Scholar] [CrossRef] [Green Version]
- Jourgholami, M.; Feghhi, J.; Picchio, R.; Tavankar, F.; Venanzi, R. Efficiency of leaf litter mulch in the restoration of soil physiochemical properties and enzyme activities in temporary skid roads in mixed high forests. Catena 2021, 198, 105012. [Google Scholar] [CrossRef]
- DeArmond, D.; Ferraz, J.; Higuchi, N. Natural Recovery of Skid Trails. A Review. Can. J. For. Res. 2021. [Google Scholar] [CrossRef]
- Sohrabi, H.; Jourgholami, M.; Jafari, M.; Shabanian, N.; Venanzi, R.; Tavankar, F.; Picchio, R. Soil recovery assessment after timber harvesting based on the sustainable forest operation (SFO) perspective in iranian temperate forests. Sustainability 2020, 12, 2874. [Google Scholar] [CrossRef] [Green Version]
- Sohrabi, H.; Jourgholami, M.; Jafari, M.; Tavankar, F.; Venanzi, R.; Picchio, R. Earthworms as an ecological indicator of soil recovery after mechanized logging operations in mixed beech forests. Forests 2021, 12, 18. [Google Scholar] [CrossRef]
- Meyer, C.; Lüscher, P.; Schulin, R. Enhancing the regeneration of compacted forest soils by planting black alder in skid lane tracks. Eur. J. For. Res. 2014, 133, 453–465. [Google Scholar] [CrossRef]
- Picchio, R.; Pignatti, G.; Marchi, E.; Latterini, F.; Benanchi, M.; Foderi, C.; Venanzi, R.; Verani, S. The application of two approaches using GIS technology implementation in forest road network planning in an Italian mountain setting. Forests 2018, 9, 277. [Google Scholar] [CrossRef] [Green Version]
- Mohieddinne, H.; Brasseur, B.; Spicher, F.; Gallet-Moron, E.; Buridant, J.; Kobaissi, A.; Horen, H. Physical recovery of forest soil after compaction by heavy machines, revealed by penetration resistance over multiple decades. For. Ecol. Manag. 2019, 449, 117472. [Google Scholar] [CrossRef]
- Bottinelli, N.; Hallaire, V.; Goutal, N.; Bonnaud, P.; Ranger, J. Impact of heavy traffic on soil macroporosity of two silty forest soils: Initial effect and short-term recovery. Geoderma 2014, 217, 10–17. [Google Scholar] [CrossRef]
- Sohrabi, H.; Jourgholami, M.; Tavankar, F.; Venanzi, R.; Picchio, R. Post-harvest evaluation of soil physical properties and natural regeneration growth in steep-slope terrains. Forests 2019, 10, 1034. [Google Scholar] [CrossRef] [Green Version]
- Picchio, R.; Mercurio, R.; Venanzi, R.; Gratani, L.; Giallonardo, T.; Lo Monaco, A.; Frattaroli, A.R. Strip clear-cutting application and logging typologies for renaturalization of pine afforestation—A case study. Forests 2018, 9, 366. [Google Scholar] [CrossRef] [Green Version]
- Goutal, N.; Boivin, P.; Ranger, J. Assessment of the natural recovery rate of soil specific volume following forest soil compaction. Soil Sci. Soc. Am. J. 2012, 76, 1426–1435. [Google Scholar] [CrossRef]
- Fernández, J.L.F.; Hartmann, P.; Schäffer, J.; Puhlmann, H.; von Wilpert, K. Initial recovery of compacted soil—planting and technical treatments decrease CO 2 concentrations in soil and promote root growth. Ann. For. Sci. 2017, 74, 73. [Google Scholar] [CrossRef] [Green Version]
- Hansson, L.; Šimůnek, J.; Ring, E.; Bishop, K.; Gärdenäs, A.I. Soil compaction effects on root-zone hydrology and vegetation in boreal forest clearcuts. Soil Sci. Soc. Am. J. 2019, 83, S105–S115. [Google Scholar] [CrossRef] [Green Version]
- Jourgholami, M.; Khoramizadeh, A.; Zenner, E.K. Effects of soil compaction on seedling morphology, growth, and architecture of chestnut-leaved oak (Quercus castaneifolia). iFor.-Biogeosci. For. 2016, 10, 145. [Google Scholar] [CrossRef]
- Jourgholami, M.; Fathi, K.; Labelle, E.R. Effects of litter and straw mulch amendments on compacted soil properties and Caucasian alder (Alnus subcordata) growth. New For. 2020, 51, 349–365. [Google Scholar] [CrossRef]
- Labelle, E.R.; Kammermeier, M. Above- and belowground growth response of Picea abies seedlings exposed to varying levels of soil relative bulk density. Eur. J. For. Res. 2019, 138, 705–722. [Google Scholar] [CrossRef] [Green Version]
- Tavankar, F.; Picchio, R.; Nikooy, M.; Jourgholami, M.; Naghdi, R.; Latterini, F.; Venanzi, R. Soil natural recovery process and Fagus orientalis lipsky seedling growth after timber extraction by wheeled skidder. Land 2021, 10, 113. [Google Scholar] [CrossRef]
- Oliveira, I.R.; Bordron, B.; Laclau, J.-P.; Paula, R.R.; Ferraz, A.V.; Gonçalves, J.L.M.; Le Maire, G.; Bouillet, J.-P. Nutrient deficiency enhances the rate of short-term belowground transfer of nitrogen from Acacia mangium to Eucalyptus trees in mixed-species plantations. For. Ecol. Manag. 2021, 491, 119192. [Google Scholar] [CrossRef]
- Hagen-Thorn, A.; Callesen, I.; Armolaitis, K.; Nihlgård, B. The impact of six European tree species on the chemistry of mineral topsoil in forest plantations on former agricultural land. For. Ecol. Manag. 2004, 195, 373–384. [Google Scholar] [CrossRef]
- Aponte, C.; García, L.V.; Marañón, T. Tree species effects on nutrient cycling and soil biota: A feedback mechanism favouring species coexistence. For. Ecol. Manag. 2013, 309, 36–46. [Google Scholar] [CrossRef] [Green Version]
- Jourgholami, M.; Nasirian, A.; Labelle, E.R. Ecological restoration of compacted soil following the application of different leaf litter mulches on the skid trail over a five-year period. Sustainability 2018, 10, 2148. [Google Scholar] [CrossRef] [Green Version]
- Langenbruch, C.; Helfrich, M.; Flessa, H. Effects of beech (Fagus sylvatica), ash (Fraxinus excelsior) and lime (Tilia spec.) on soil chemical properties in a mixed deciduous forest. Plant Soil 2012, 352, 389–403. [Google Scholar] [CrossRef] [Green Version]
- Lucas-Borja, M.E.; de Santiago, J.H.; Yang, Y.; Shen, Y.; Candel-Pérez, D. Nutrient, metal contents and microbiological properties of litter and soil along a tree age gradient in Mediterranean forest ecosystems. Sci. Total Environ. 2019, 650, 749–758. [Google Scholar] [CrossRef] [PubMed]
- Jourgholami, M.; Labelle, E.R.; Feghhi, J. Efficacy of leaf litter mulch to mitigate runoff and sediment yield following mechanized operations in the Hyrcanian mixed forests. J. Soils Sediments 2019, 19, 2076–2088. [Google Scholar] [CrossRef]
- Zhu, L.; Wang, X.; Chen, F.; Li, C.; Wu, L. Effects of the successive planting of Eucalyptus urophylla on soil bacterial and fungal community structure, diversity, microbial biomass, and enzyme activity. Land Degrad. Dev. 2019, 30, 636–646. [Google Scholar] [CrossRef]
- Mayer, M.; Prescott, C.E.; Abaker, W.E.A.; Augusto, L.; Cécillon, L.; Ferreira, G.W.D.; James, J.; Jandl, R.; Katzensteiner, K.; Laclau, J.P.; et al. Influence of forest management activities on soil organic carbon stocks: A knowledge synthesis. For. Ecol. Manag. 2020, 466, 118127. [Google Scholar] [CrossRef]
- Abari, M.E.; Majnounian, B.; Malekian, A.; Jourgholami, M. Effects of forest harvesting on runoff and sediment characteristics in the Hyrcanian forests, northern Iran. Eur. J. For. Res. 2017, 136, 375–386. [Google Scholar] [CrossRef]
- Jourgholami, M.; Labelle, E.R. Effects of plot length and soil texture on runoff and sediment yield occurring on machine-trafficked soils in a mixed deciduous forest. Ann. For. Sci. 2020, 77, 1–11. [Google Scholar] [CrossRef]
- Prats, S.A.; Malvar, M.C.; Wagenbrenner, J.W. Compaction and cover effects on runoff and erosion in post-fire salvage logged areas in the Valley Fire, California. Hydrol. Process. 2021, 35, e13997. [Google Scholar] [CrossRef]
- Sayer, E.J. Using experimental manipulation to assess the roles of leaf litter in the functioning of forest ecosystems. Biol. Rev. 2006, 81, 1–31. [Google Scholar] [CrossRef] [PubMed]
- Marty, C.; Houle, D.; Gagnon, C.; Courchesne, F. The relationships of soil total nitrogen concentrations, pools and C: N ratios with climate, vegetation types and nitrate deposition in temperate and boreal forests of eastern Canada. Catena 2017, 152, 163–172. [Google Scholar] [CrossRef]
- Ampoorter, E.; De Schrijver, A.; De Frenne, P.; Hermy, M.; Verheyen, K. Experimental assessment of ecological restoration options for compacted forest soils. Ecol. Eng. 2011, 37, 1734–1746. [Google Scholar] [CrossRef]
- Diao, M.; Yang, K.; Zhu, J.; Li, M.; Xu, S. Native broad-leaved tree species play key roles on maintaining soil chemical and microbial properties in a temperate secondary forest, Northeast China. For. Ecol. Manag. 2020, 462, 117971. [Google Scholar] [CrossRef]
- Yang, K.; Zhu, J.-J. Impact of tree litter decomposition on soil biochemical properties obtained from a temperate secondary forest in Northeast China. J. Soils Sediments 2015, 15, 13–23. [Google Scholar] [CrossRef]
- Vauramo, S.; Setälä, H. Decomposition of labile and recalcitrant litter types under different plant communities in urban soils. Urban Ecosyst. 2011, 14, 59–70. [Google Scholar] [CrossRef] [Green Version]
- Li, R.; Li, Q.; Pan, L. Review of organic mulching effects on soil and water loss. Arch. Agron. Soil Sci. 2021, 67, 136–151. [Google Scholar] [CrossRef]
- Jourgholami, M.; Karami, S.; Tavankar, F.; Lo Monaco, A.; Picchio, R. Effects of slope gradient on runoff and sediment yield on machine-induced compacted soil in temperate forests. Forests 2021, 12, 49. [Google Scholar] [CrossRef]
- Jourgholami, M.; Khajavi, S.; Labelle, E.R. Recovery of forest soil chemical properties following soil rehabilitation treatments: An assessment six years after machine impact. Croat. J. For. Eng. 2020, 41, 163–175. [Google Scholar] [CrossRef] [Green Version]
- Kranz, C.N.; McLaughlin, R.A.; Johnson, A.; Miller, G.; Heitman, J.L. The effects of compost incorporation on soil physical properties in urban soils–A concise review. J. Environ. Manag. 2020, 261, 110209. [Google Scholar] [CrossRef]
- Chen, B.; Liu, E.; Tian, Q.; Yan, C.; Zhang, Y. Soil nitrogen dynamics and crop residues. A review. Agron. Sustain. Dev. 2014, 34, 429–442. [Google Scholar] [CrossRef] [Green Version]
- Coppens, F.; Garnier, P.; Findeling, A.; Merckx, R.; Recous, S. Decomposition of mulched versus incorporated crop residues: Modelling with PASTIS clarifies interactions between residue quality and location. Soil Biol. Biochem. 2007, 39, 2339–2350. [Google Scholar] [CrossRef]
- Cogger, C.; Hummel, R.; Hart, J.; Bary, A. Soil and redosier dogwood response to incorporated and surface-applied compost. HortScience 2008, 43, 2143–2150. [Google Scholar] [CrossRef] [Green Version]
- Zagyvai-Kiss, K.A.; Kalicz, P.; Szilágyi, J.; Gribovszki, Z. On the specific water holding capacity of litter for three forest ecosystems in the eastern foothills of the Alps. Agric. For. Meteorol. 2019, 278, 107656. [Google Scholar] [CrossRef]
- Mulumba, L.N.; Lal, R. Mulching effects on selected soil physical properties. Soil Tillage Res. 2008, 98, 106–111. [Google Scholar] [CrossRef]
- Gee, G.W.; Bauder, J.W. Particle-size analysis. In Methods of Soil Analysis, Part 1. Physical and Mineralogical Methods, 2nd ed.; Klute, A., Ed.; Soil Science Society of America: Madison, WI, USA, 1986; pp. 383–411. [Google Scholar]
- Danielson, R.E.; Southerland, P.L. Porosity. In Methods of Soil Analysis, Part I. Physical and Mineralogical Methods, 2nd ed.; Klute, A., Ed.; Soil Science Society of America: Madison, WI, USA, 1986; pp. 443–460. [Google Scholar]
- Kemper, W.D.; Rosenau, R.C. Aggregate stability and size distribution. In Methods of Soil Analysis, Part 1. Physical and Mineralogical Methods, 2nd ed.; Klute, A., Ed.; Soil Science Society of America: Madison, WI, USA, 1986; pp. 425–442. [Google Scholar]
- Walkley, A.; Black, I.A. An examination of the Degtjareff method for determining soil organic matter, and a proposed modification of the chromic acid titration method. Soil Sci. 1934, 37, 29–38. [Google Scholar] [CrossRef]
- Kooch, Y.; Zaccone, C.; Lamersdorf, N.P.; Tonon, G. Pit and mound influence on soil features in an Oriental Beech (Fagus orientalis Lipsky) forest. Eur. J. For. Res. 2014, 133, 347–354. [Google Scholar] [CrossRef]
- Salehi, A.; Ghorbanzadeh, N.; Kahneh, E. Earthworm biomass and abundance, soil chemical and physical properties under different poplar plantations in the north of Iran. J. For. Sci. 2013, 59, 223–229. [Google Scholar] [CrossRef] [Green Version]
- Kooch, Y.; Tavakoli, M.; Akbarinia, M. Tree species could have substantial consequences on topsoil fauna: A feedback of land degradation/restoration. Eur. J. For. Res. 2018, 137, 793–805. [Google Scholar] [CrossRef]
- Neatrour, M.A.; Jones, R.H.; Golladay, S.W. Correlations between soil nutrient availability and fine-root biomass at two spatial scales in forested wetlands with contrasting hydrological regimes. Can. J. For. Res. 2005, 35, 2934–2941. [Google Scholar] [CrossRef]
- Shah, N.W.; Nisbet, T.R. The effects of forest clearance for peatland restoration on water quality. Sci. Total Environ. 2019, 693, 133617. [Google Scholar] [CrossRef] [PubMed]
- Kaila, A.; Sarkkola, S.; Laurén, A.; Ukonmaanaho, L.; Koivusalo, H.; Xiao, L.; O’Driscoll, C.; Tervahauta, A.; Nieminen, M. Phosphorus export from drained Scots pine mires after clear-felling and bioenergy harvesting. For. Ecol. Manag. 2014, 325, 99–107. [Google Scholar] [CrossRef]
- Jourgholami, M.; Khajavi, S.; Labelle, E.R. Mulching and water diversion structures on skid trails: Response of soil physical properties six years after harvesting. Ecol. Eng. 2018, 123, 1–9. [Google Scholar] [CrossRef]
- Krishna, M.P.; Mohan, M. Litter decomposition in forest ecosystems: A review. Energy Ecol. Environ. 2017, 2, 236–249. [Google Scholar] [CrossRef]
- Althoff, P.S.; Todd, T.C.; Thien, S.J.; Callaham Jr, M.A. Response of soil microbial and invertebrate communities to tracked vehicle disturbance in tallgrass prairie. Appl. Soil Ecol. 2009, 43, 122–130. [Google Scholar] [CrossRef]
- Maggard, A.O.; Will, R.E.; Hennessey, T.C.; McKinley, C.R.; Cole, J.C. Tree-based mulches influence soil properties and plant growth. Horttechnology 2012, 22, 353–361. [Google Scholar]
- Kader, M.A.; Senge, M.; Mojid, M.A.; Ito, K. Recent advances in mulching materials and methods for modifying soil environment. Soil Tillage Res. 2017, 168, 155–166. [Google Scholar] [CrossRef]
- Lopez-Vicente, M.; Sun, X.; Onda, Y.; Kato, H.; Gomi, T.; Hiraoka, M. Effect of tree thinning and skidding trails on hydrological connectivity in two Japanese forest catchments. Geomorphology 2017, 292, 104–114.63. [Google Scholar] [CrossRef] [Green Version]
- Bagarello, V.; Ferro, V. Analysis of soil loss data from plots of differing length for the Sparacia experimental area, Sicily, Italy. Biosyst. Eng. 2010, 105, 411–422. [Google Scholar] [CrossRef]
Soil Properties | Treatments | F Test | p Value | |||||||
---|---|---|---|---|---|---|---|---|---|---|
UND | LM3 | LM6 | LM9 | LI3 | LI6 | LI9 | UNT | |||
Bulk density (g cm−3) | 1.01 ± 0.04f | 1.24 ± 0.06b | 1.23 ± 0.05b | 1.21 ± 0.06bc | 1.16 ± 0.06cd | 1.12 ± 0.05de | 1.08 ± 0.04e | 1.33 ± 0.05a | 58.50 | 0.00 |
Total porosity (%) | 61.89 ± 1.69a | 53.21 ± 2.18e | 53.58 ± 1.99e | 54.34 ± 2.29de | 56.23 ± 2.08cd | 57.73 ± 1.92bc | 59.25 ± 1.5b | 49.81 ± 1.72f | 58.49 | 0.00 |
Macroporosity (%) | 44.06 ± 1.68a | 38.76 ± 1.99c | 38.3 ± 1.86c | 38.84 ± 1.96c | 39.67 ± 2.41bc | 40.54 ± 2.22bc | 41.68 ± 2.12b | 35.24 ± 2.16d | 23.76 | 0.00 |
Penetration resistance (MPa) | 0.97 ± 0.08e | 1.38 ± 0.11b | 1.36 ± 0.1bc | 1.29 ± 0.09cd | 1.28 ± 0.07cd | 1.27 ± 0.07cd | 1.22 ± 0.09d | 1.49 ± 0.11a | 41.94 | 0.00 |
Soil moisture (%) | 41.42 ± 3.19a | 34.33 ± 2.72cd | 35.49 ± 3.55bc | 37.43 ± 2.75b | 31.81 ± 2.71de | 32.71 ± 2.72de | 34.29 ± 2.23cd | 29.51 ± 3.38e | 23.09 | 0.00 |
Aggregate stability (%) | 50.76 ± 2.47a | 39.37 ± 2.78ef | 40.71 ± 2.74de | 43.16 ± 2.41cd | 43.28 ± 2.69cd | 44.06 ± 2.16bc | 46.55 ± 2.63b | 36.76 ± 1.84f | 45.65 | 0.00 |
Sand (%) | 7.1 ± 0.38g | 12.6 ± 0.64b | 11.5 ± 0.78c | 9.1 ± 0.3e | 10.7 ± 0.4d | 10.2 ± 0.36d | 8.5 ± 0.49f | 14.5 ± 0.43a | 342.93 | 0.00 |
Silt (%) | 54.2 ± 2.07b | 53.3 ± 1.75b | 47.8 ± 1.71d | 44.5 ± 1.22f | 49.7 ± 1.78c | 47.2 ± 1.34de | 45.7 ± 1.44ef | 56.6 ± 1.57a | 107.54 | 0.00 |
Clay (%) | 38.7 ± 2.43c | 34.1 ± 2.28d | 40.7 ± 2.27bc | 46.4 ± 1.44a | 39.6 ± 2.08c | 42.6 ± 1.55b | 45.8 ± 1.91a | 28.9 ± 1.8e | 129.13 | 0.00 |
Soil Properties | Treatments | F Test | p Value | |||||||
---|---|---|---|---|---|---|---|---|---|---|
UND | LM3 | LM6 | LM9 | LI3 | LI6 | LI9 | UNT | |||
pH (1:2.5 H2O) | 5.46 ± 0.22d | 5.86 ± 0.08ab | 5.82 ± 0.08ab | 5.74 ± 0.15b | 5.77 ± 0.08b | 5.72 ± 0.14bc | 5.57 ± 0.17cd | 5.94 ± 0.08a | 20.34 | 0.00 |
C (%) | 9.56 ± 1.56a | 4.36 ± 0.53b | 4.24 ± 0.72bc | 3.73 ± 0.63cd | 3.33 ± 0.70cd | 3.25 ± 0.63d | 2.89 ± 0.75d | 1.16 ± 0.68e | 127.63 | 0.00 |
N (%) | 0.41 ± 0.04a | 0.23 ± 0.07de | 0.24 ± 0.07de | 0.27 ± 0.07bc | 0.28 ± 0.07bc | 0.29 ± 0.09bc | 0.33 ± 0.08b | 0.17 ± 0.05e | 15.63 | 0.00 |
C/N ratio | 23.56 ± 4.63a | 21.08 ± 7.70ab | 19.24 ± 6.47ab | 14.95 ± 5.59bc | 12.6 ± 4.03c | 12.2 ± 4.14c | 9.02 ± 2.82c | 8.75 ± 8.40c | 13.95 | 0.00 |
C storage (Mg ha−1) | 97.12 ± 19.44a | 54.04 ± 6.81b | 52.08 ± 8.55b | 45.19 ± 8.19bc | 38.67 ± 8.37cd | 36.54 ± 7.94cd | 31.26 ± 8.26d | 15.35 ± 8.77e | 81.70 | 0.00 |
N storage (Mg ha−1) | 4.15 ± 0.52a | 2.87 ± 0.95bc | 2.95 ± 0.87bc | 3.26 ± 0.78ab | 3.25 ± 0.86ab | 3.27 ± 1.06ab | 3.56 ± 0.84ab | 2.27 ± 0.75c | 6.27 | 0.00 |
Available P (mg kg−1) | 23.25 ± 4.62a | 13.46 ± 2.63cd | 13.54 ± 2.69cd | 14.63 ± 3.45cd | 15.45 ± 3.46bc | 15.78 ± 3.85bc | 17.61 ± 3.77b | 11.18 ± 2.57d | 16.57 | 0.00 |
Available K (mg kg−1) | 247.96 ± 31.95a | 140.66 ± 24.69bc | 136.96 ± 22.81cd | 147.26 ± 33.45bc | 159.16 ± 27.74bc | 160.28 ± 23.77bc | 170.36 ± 27.32b | 107.85 ± 20.02d | 34.64 | 0.00 |
Available Ca (mg kg−1) | 193.56 ± 35.83a | 96.28 ± 15.18de | 100.96 ± 12.87cd | 109.62 ± 22.55cd | 121.86 ± 19.32bc | 123.54 ± 17.59bc | 140.27 ± 30.43b | 78.32 ± 18.19e | 35.74 | 0.00 |
Available Mg (mg kg−1) | 48.54 ± 8.90a | 24.67 ± 5.53cd | 24.46 ± 5.91c | 26.82 ± 4.83c | 29.75 ± 6.09bc | 31.43 ± 5.19bc | 34.69 ± 8.05b | 17.54 ± 4.33d | 32.14 | 0.00 |
Soil Properties | Treatments | F Test | p Value | |||||||
---|---|---|---|---|---|---|---|---|---|---|
UND | LM3 | LM6 | LM9 | LI3 | LI6 | LI9 | UNT | |||
Earthworm density (n m−2) | 2.93 ± 0.49a | 1.08 ± 0.14d | 1.13 ± 0.17d | 1.25 ± 0.16cd | 1.43 ± 0.17bc | 1.46 ± 0.18bc | 1.67 ± 0.29b | 0.68 ± 0.21e | 104.14 | 0.00 |
Earthworm dry mass (mg m−2) | 43.41 ± 7.35a | 16.57 ± 2.11d | 17.14 ± 2.16d | 18.75 ± 2.61cd | 21.41 ± 2.35bc | 22.08 ± 2.0bc | 25.37 ± 4.52b | 11.27 ± 2.92e | 102.58 | 0.00 |
Fine root biomass (g m−2) | 86.21 ± 15.11a | 33.64 ± 8.10d | 34.82 ± 7.97d | 36.54 ± 9.41cd | 39.17 ± 10.05cd | 47.54 ± 9.80bc | 55.47 ± 10.55b | 27.84 ± 7.45d | 51.79 | 0.00 |
SMR | 0.42 ± 0.08a | 0.18 ± 0.05cd | 0.19 ± 0.07cd | 0.21 ± 0.05bc | 0.23 ± 0.08bc | 0.24 ± 0.08bc | 0.27 ± 0.05b | 0.13 ± 0.03d | 26.90 | 0.00 |
Soil Properties | TP | MP | PR | SM | AS | SAND | SILT | CLAY | pH | Cs | Ns |
---|---|---|---|---|---|---|---|---|---|---|---|
BD | −1.0 ** | −0.88 ** | 0.72 ** | −0.32 ** | −0.74 ** | 0.83 ** | 0.32 ** | −0.56 ** | 0.73 ** | −0.54 ** | −0.56 ** |
MP | 1 | −0.63 ** | 0.32 ** | 0.64 ** | −0.72 ** | −0.27 ** | 0.48 ** | −0.65 ** | 0.53 ** | 0.52 ** | |
PR | 1 | −0.43 ** | −0.68 ** | 0.77 ** | 0.11 | −0.38 ** | 0.58 ** | −0.69 ** | −0.58 ** | ||
SM | 1 | 0.58 ** | −0.52 ** | 0.02 | 0.19 * | −0.41 ** | 0.64 ** | 0.34 ** | |||
AS | 1 | −0.79 ** | −0.19 * | 0.45 ** | −0.70 ** | 0.57 ** | 0.52 ** | ||||
SAND | 1 | 0.48 ** | −0.75 ** | 0.71 ** | −0.59 ** | −0.64 ** | |||||
SILT | 1 | −0.94 ** | 0.23 * | 0.18 * | −0.14 | ||||||
CLAY | 1 | −0.45 ** | 0.09 | 0.35 ** | |||||||
pH | 1 | −0.49 ** | −0.47 ** | ||||||||
Cs | 1 | 0.53 ** | |||||||||
Soil Properties | CNs | Cseq | Nseq | P | K | Ca | Mg | ED | EB | FRB | SMR |
BD | −0.19 * | −0.42 ** | −0.33 ** | −0.57 ** | −0.63 ** | −0.65 ** | −0.69 ** | −0.73 ** | −0.73 ** | −0.69 ** | −0.65 ** |
MP | 0.24 ** | 0.44 ** | .031 ** | 0.48 ** | 0.58 ** | 0.58 ** | 0.62 ** | 0.64 ** | 0.65 ** | 0.58 ** | 0.56 ** |
PR | −0.27 ** | −0.63 ** | −0.43 ** | −0.64 ** | −0.67 ** | −0.66 ** | −0.68 ** | −0.77 ** | −0.76 ** | −0.71 ** | −0.68 ** |
SM | 0.39 ** | 0.64 ** | 0.27 ** | 0.34 ** | 0.58 ** | 0.51 ** | 0.43 ** | 0.58 ** | 0.57 ** | 0.50 ** | 0.38 ** |
AS | 0.19 * | 0.49 ** | 0.35 ** | 0.51 ** | 0.74 ** | 0.68 ** | 0.66 ** | 0.79 ** | 0.79 ** | 0.67 ** | 0.58 ** |
SAND | −0.20 * | −0.53 ** | −0.48 ** | −0.62 ** | −0.68 ** | −0.72 ** | −0.72 ** | −0.78 ** | −0.77 ** | −0.71 ** | −0.69 ** |
SILT | 0.14 | 0.18 * | −0.11 | −0.04 | 0.04 | −0.03 | −0.05 | 0.04 | 0.05 | 0.06 | −0.05 |
CLAY | −0.02 | 0.07 | 0.27 ** | 0.27 ** | 0.23 * | 0.30 ** | 0.32 ** | 0.28 ** | 0.27 ** | 0.23 * | 0.31 ** |
pH | −0.17 | −0.41 ** | −0.31 ** | −0.43 ** | −0.62 ** | −0.58 ** | −0.59 ** | −0.68 ** | −0.68 ** | −0.69 ** | −0.43 ** |
Cs | 0.66 ** | 0.98 ** | 0.41 ** | 0.59 ** | 0.69 ** | 0.64 ** | 0.64 ** | 0.75 ** | 0.76 ** | 0.67 ** | 0.66 ** |
Ns | −0.20 * | 0.48 ** | 0.96 ** | 0.67 ** | 0.62 ** | 0.63 ** | 0.64 ** | 0.67 ** | 0.67 ** | 0.67 ** | 0.64 ** |
CNs | 1 | 0.70 ** | −0.31 ** | 0.12 | 0.23 * | 0.17 | 0.18 * | 0.25 ** | 0.25 ** | 0.16 | 0.21 * |
Cseq | 1 | 0.39 ** | 0.54 ** | 0.64 ** | 0.57 ** | 0.58 ** | 0.68 ** | 0.68 ** | 0.58 ** | 0.59 ** | |
Nseq | 1 | 0.57 ** | 0.49 ** | 0.50 ** | 0.50 ** | 0.51 ** | 0.52 ** | 0.52 ** | 0.52 ** | ||
P | 1 | 0.58 ** | 0.70 ** | 0.60 ** | 0.68 ** | 0.70 ** | 0.69 ** | 0.68 ** | |||
K | 1 | 0.81 ** | 0.70 ** | 0.78 ** | 0.79 ** | 0.71 ** | 0.63 ** | ||||
Ca | 1 | 0.64 ** | 0.79 ** | 0.81 ** | 0.72 ** | 0.63 ** | |||||
Mg | 1 | 0.76 ** | 0.78 ** | 0.77 ** | 0.65 ** | ||||||
ED | 1 | 0.98 ** | 0.87 ** | 0.72 ** | |||||||
EB | 1 | 0.88 ** | 0.71 ** | ||||||||
FRB | 1 | 0.71 ** | |||||||||
SMR | 1 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jourgholami, M.; Khoramizadeh, A.; Lo Monaco, A.; Venanzi, R.; Latterini, F.; Tavankar, F.; Picchio, R. Evaluation of Leaf Litter Mulching and Incorporation on Skid Trails for the Recovery of Soil Physico-Chemical and Biological Properties of Mixed Broadleaved Forests. Land 2021, 10, 625. https://doi.org/10.3390/land10060625
Jourgholami M, Khoramizadeh A, Lo Monaco A, Venanzi R, Latterini F, Tavankar F, Picchio R. Evaluation of Leaf Litter Mulching and Incorporation on Skid Trails for the Recovery of Soil Physico-Chemical and Biological Properties of Mixed Broadleaved Forests. Land. 2021; 10(6):625. https://doi.org/10.3390/land10060625
Chicago/Turabian StyleJourgholami, Meghdad, Azadeh Khoramizadeh, Angela Lo Monaco, Rachele Venanzi, Francesco Latterini, Farzam Tavankar, and Rodolfo Picchio. 2021. "Evaluation of Leaf Litter Mulching and Incorporation on Skid Trails for the Recovery of Soil Physico-Chemical and Biological Properties of Mixed Broadleaved Forests" Land 10, no. 6: 625. https://doi.org/10.3390/land10060625
APA StyleJourgholami, M., Khoramizadeh, A., Lo Monaco, A., Venanzi, R., Latterini, F., Tavankar, F., & Picchio, R. (2021). Evaluation of Leaf Litter Mulching and Incorporation on Skid Trails for the Recovery of Soil Physico-Chemical and Biological Properties of Mixed Broadleaved Forests. Land, 10(6), 625. https://doi.org/10.3390/land10060625