A Positive-Unlabeled Learning Algorithm for Urban Flood Susceptibility Modeling
Abstract
:1. Introduction
2. Materials and Methods
2.1. Positive and Background Learning with Constraints
2.2. Study Area and Dataset
2.3. Model Development
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Nkeki, F.N.; Bello, E.I.; Agbaje, I.G. Flood risk mapping and urban infrastructural susceptibility assessment using a GIS and analytic hierarchical raster fusion approach in the Ona River Basin, Nigeria. Int. J. Disaster Risk Reduct. 2022, 77, 103097. [Google Scholar] [CrossRef]
- Huang, H.; Chen, X.; Zhu, Z.; Xie, Y.; Liu, L.; Wang, X.; Wang, X.; Liu, K. The changing pattern of urban flooding in Guangzhou, China. Sci. Total Environ. 2018, 622–623, 394–401. [Google Scholar] [CrossRef]
- Qi, M.; Huang, H.; Liu, L.; Chen, X. Spatial heterogeneity of controlling factors’ impact on urban pluvial flooding in Cincinnati, US. Appl. Geogr. 2020, 125, 102362. [Google Scholar] [CrossRef]
- Rahmati, O.; Pourghasemi, H.R.; Zeinivand, H. Flood susceptibility mapping using frequency ratio and weights-of-evidence models in the Golastan Province, Iran. Geocarto Int. 2016, 31, 42–70. [Google Scholar] [CrossRef]
- Das, S.; Gupta, A. Multi-criteria decision based geospatial mapping of flood susceptibility and temporal hydro-geomorphic changes in the Subarnarekha basin, India. Geosci. Front. 2021, 12, 101206. [Google Scholar] [CrossRef]
- Singha, P.; Das, P.; Talukdar, S.; Pal, S. Modeling livelihood vulnerability in erosion and flooding induced river island in Ganges riparian corridor, India. Ecol. Indic. 2020, 119, 106825. [Google Scholar] [CrossRef]
- Khosravi, K.; Shahabi, H.; Pham, B.T.; Adamowski, J.; Shirzadi, A.; Pradhan, B.; Dou, J.; Ly, H.-B.; Gróf, G.; Ho, H.L.; et al. A comparative assessment of flood susceptibility modeling using Multi-Criteria Decision-Making Analysis and Machine Learning Methods. J. Hydrol. 2019, 573, 311–323. [Google Scholar] [CrossRef]
- Al-Juaidi, A.E.M.; Nassar, A.M.; Al-Juaidi, O.E.M. Evaluation of flood susceptibility mapping using logistic regression and GIS conditioning factors. Arab. J. Geosci. 2018, 11, 765. [Google Scholar] [CrossRef]
- Priscillia, S.; Schillaci, C.; Lipani, A. Flood susceptibility assessment using artificial neural networks in Indonesia. Artif. Intell. Geosci. 2021, 2, 215–222. [Google Scholar] [CrossRef]
- Woznicki, S.A.; Baynes, J.; Panlasigui, S.; Mehaffey, M.; Neale, A. Development of a spatially complete floodplain map of the conterminous United States using random forest. Sci. Total Environ. 2019, 647, 942–953. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Fang, Z.; Hong, H.; Peng, L. Flood susceptibility mapping using convolutional neural network frameworks. J. Hydrol. 2020, 582, 124482. [Google Scholar] [CrossRef]
- Nguyen, H.D. Flood susceptibility assessment using hybrid machine learning and remote sensing in Quang Tri province, Vietnam. Trans. GIS 2022, 1–26. [Google Scholar] [CrossRef]
- Liu, J.; Wang, J.; Xiong, J.; Cheng, W.; Li, Y.; Cao, Y.; He, Y.; Duan, Y.; He, W.; Yang, G. Assessment of flood susceptibility mapping using support vector machine, logistic regression and their ensemble techniques in the Belt and Road region. Geocarto Int. 2022, 1–30. [Google Scholar] [CrossRef]
- Ekmekcioğlu, Ö.; Koc, K.; Özger, M.; Işık, Z. Exploring the additional value of class imbalance distributions on interpretable flash flood susceptibility prediction in the Black Warrior River basin, Alabama, United States. J. Hydrol. 2022, 610, 127877. [Google Scholar] [CrossRef]
- Avand, M.; Moradi, H.; Lasboyee, M.R. Spatial modeling of flood probability using geo-environmental variables and machine learning models, case study: Tajan watershed, Iran. Adv. Space Res. 2021, 67, 3169–3186. [Google Scholar] [CrossRef]
- Li, X.; Yan, D.; Wang, K.; Weng, B.; Qin, T.; Liu, S. Flood Risk Assessment of Global Watersheds Based on Multiple Machine Learning Models. Water 2019, 11, 1654. [Google Scholar] [CrossRef] [Green Version]
- Elkan, C.; Noto, K. Learning classifiers from only positive and unlabeled data. In Proceedings of the 14th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, Las Vegas, NV, USA, 24–27 August 2008; pp. 213–220. [Google Scholar]
- Hastie, T.; Fithian, W. Inference from presence-only data; the ongoing controversy. Ecography 2013, 36, 864–867. [Google Scholar] [CrossRef] [PubMed]
- Ward, G.; Hastie, T.; Barry, S.; Elith, J.; Leathwick, J.R. Presence-only data and the EM algorithm. Biometrics 2009, 65, 554–563. [Google Scholar] [CrossRef] [Green Version]
- Chapi, K.; Singh, V.P.; Shirzadi, A.; Shahabi, H.; Bui, D.T.; Pham, B.T.; Khosravi, K. A novel hybrid artificial intelligence approach for flood susceptibility assessment. Environ. Model. Softw. 2017, 95, 229–245. [Google Scholar] [CrossRef]
- Lancaster, T.; Imbens, G. Case-control studies with contaminated controls. J. Econ. 1996, 71, 145–160. [Google Scholar] [CrossRef]
- van Engelen, J.E.; Hoos, H.H. A survey on semi-supervised learning. Mach. Learn. 2020, 109, 373–440. [Google Scholar] [CrossRef] [Green Version]
- Zhao, G.; Pang, B.; Xu, Z.; Peng, D.; Xu, L. Assessment of urban flood susceptibility using semi-supervised machine learning model. Sci. Total Environ. 2019, 659, 940–949. [Google Scholar] [CrossRef] [PubMed]
- Bekker, J.; Davis, J. Learning from positive and unlabeled data: A survey. Mach. Learn. 2020, 109, 719–760. [Google Scholar] [CrossRef] [Green Version]
- Li, W.; Guo, Q.; Elkan, C. Can we model the probability of presence of species without absence data? Ecography 2011, 34, 1096–1105. [Google Scholar] [CrossRef]
- Li, W.; Guo, Q.; Elkan, C. One-Class Remote Sensing Classification from Positive and Unlabeled Background Data. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2021, 14, 730–746. [Google Scholar] [CrossRef]
- Yang, L.; Scheffran, J.; Qin, H.; You, Q. Climate-related flood risks and urban responses in the Pearl River Delta, China. Reg. Environ. Change 2015, 15, 379–391. [Google Scholar] [CrossRef]
- Midi, H.; Sarkar, S.K.; Rana, S. Collinearity diagnostics of binary logistic regression model. J. Interdiscip. Math. 2010, 13, 253–267. [Google Scholar] [CrossRef]
- Abadi, M.; Agarwal, A.; Barham, P.; Brevdo, E.; Chen, Z.; Citro, C.; Corrado, G.S.; Davis, A.; Dean, J.; Devin, M.; et al. TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. arXiv 2016, arXiv:1603.04467. [Google Scholar]
- Kingma, D.P.; Ba, J. Adam: A Method for Stochastic Optimization. In Proceedings of the 3rd International Conference for Learning Representations, San Diego, CA, USA, 7–9 May 2015; pp. 1–15. [Google Scholar]
- Davis, J.; Goadrich, M. The relationship between Precision-Recall and ROC curves. In Proceedings of the 23rd International Conference on Machine Learning, Pittsburgh, PA, USA, 25–29 June 2006; pp. 233–240. [Google Scholar]
- Goutte, C.; Gaussier, E. A Probabilistic Interpretation of Precision, Recall and F-Score, with Implication for Evaluation. In Proceedings of the Advances in Information Retrieval, Berlin/Heidelberg, Germany, 14–18 April 2005; pp. 345–359. [Google Scholar]
- Jiménez-Valverde, A. Insights into the area under the receiver operating characteristic curve (AUC) as a discrimination measure in species distribution modelling. Glob. Ecol. Biogeogr. 2012, 21, 498–507. [Google Scholar] [CrossRef]
- Li, W.; Guo, Q. Plotting receiver operating characteristic and precision–recall curves from presence and background data. Ecol. Evol. 2021, 11, 10192–10206. [Google Scholar] [CrossRef]
- Li, W.; Guo, Q. How to assess the prediction accuracy of species presence–absence models without absence data? Ecography 2013, 36, 788–799. [Google Scholar] [CrossRef]
- Pradhan, B.; Lee, S. Landslide susceptibility assessment and factor effect analysis: Backpropagation artificial neural networks and their comparison with frequency ratio and bivariate logistic regression modelling. Environ. Model. Softw. 2010, 25, 747–759. [Google Scholar] [CrossRef]
- Altmann, A.; Toloşi, L.; Sander, O.; Lengauer, T. Permutation importance: A corrected feature importance measure. Bioinformatics 2010, 26, 1340–1347. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Breiman, L. Random Forests. Mach. Learn. 2001, 45, 5–32. [Google Scholar] [CrossRef] [Green Version]
- Lobo, J.M.; Jiménez-Valverde, A.; Real, R. AUC: A misleading measure of the performance of predictive distribution models. Glob. Ecol. Biogeogr. 2008, 17, 145–151. [Google Scholar] [CrossRef]
- Hossain, M.K.; Meng, Q. A fine-scale spatial analytics of the assessment and mapping of buildings and population at different risk levels of urban flood. Land Use Policy 2020, 99, 104829. [Google Scholar] [CrossRef]
- Wang, G.; Liu, L.; Shi, P.; Zhang, G.; Liu, J. Flood Risk Assessment of Metro System Using Improved Trapezoidal Fuzzy AHP: A Case Study of Guangzhou. Remote Sens. 2021, 13, 5154. [Google Scholar] [CrossRef]
- Barbosa, A.E.; Fernandes, J.N.; David, L.M. Key issues for sustainable urban stormwater management. Water Res. 2012, 46, 6787–6798. [Google Scholar] [CrossRef]
- Goonetilleke, A.; Thomas, E.; Ginn, S.; Gilbert, D. Understanding the role of land use in urban stormwater quality management. J. Environ. Manag. 2005, 74, 31–42. [Google Scholar] [CrossRef]
ANN | PBLC | |||||||||
---|---|---|---|---|---|---|---|---|---|---|
Repetition | Prmin | Prave | Prmax | AUC | Fpb | Prmin | Prave | Prmax | AUC | Fpb |
1 | 0.0000 | 0.1794 | 0.8162 | 0.8893 | 0.6887 | 0.0014 | 0.2691 | 0.9818 | 0.8888 | 0.8127 |
2 | 0.0013 | 0.1788 | 0.8112 | 0.8789 | 0.6891 | 0.0000 | 0.2075 | 0.9695 | 0.8777 | 0.7634 |
3 | 0.0000 | 0.1742 | 0.6983 | 0.9033 | 0.7313 | 0.0006 | 0.2410 | 0.9723 | 0.9058 | 0.9299 |
4 | 0.0000 | 0.1807 | 0.7597 | 0.9021 | 0.8465 | 0.0000 | 0.2463 | 0.9770 | 0.9015 | 0.8905 |
5 | 0.0000 | 0.1648 | 0.7855 | 0.8892 | 0.6601 | 0.0000 | 0.2219 | 0.9704 | 0.8842 | 0.7722 |
6 | 0.0014 | 0.1701 | 0.7232 | 0.9017 | 0.7130 | 0.0000 | 0.2391 | 0.9817 | 0.9021 | 0.8848 |
7 | 0.0000 | 0.1645 | 0.6877 | 0.9093 | 0.8100 | 0.0000 | 0.2200 | 0.9862 | 0.9095 | 0.8968 |
8 | 0.0015 | 0.1814 | 0.7775 | 0.9109 | 0.8411 | 0.0000 | 0.2473 | 0.9620 | 0.9063 | 0.8811 |
9 | 0.0017 | 0.1657 | 0.7724 | 0.9027 | 0.6635 | 0.0000 | 0.2499 | 0.9843 | 0.9010 | 0.8811 |
10 | 0.0027 | 0.1610 | 0.7264 | 0.8967 | 0.6019 | 0.0000 | 0.2665 | 0.9897 | 0.8967 | 0.9010 |
AVE | 0.0009 | 0.1721 | 0.7558 | 0.8984 | 0.7245 | 0.0002 | 0.2409 | 0.9775 | 0.8974 | 0.8614 |
STD | 0.0010 | 0.0078 | 0.0450 | 0.0100 | 0.0826 | 0.0005 | 0.0198 | 0.0087 | 0.0105 | 0.0574 |
ANN | PBLC | |||||
---|---|---|---|---|---|---|
Susceptibility | Percentage of Flood Points (%) | Percentage of Area (%) | Ratio | Percentage of Flood Points (%) | Percentage of Area (%) | Ratio |
Very low | 7.69 | 79.10 | 0.0972 | 7.69 | 79.49 | 0.0968 |
Low | 18.88 | 7.54 | 2.503 | 9.09 | 3.63 | 2.5048 |
Moderate | 53.15 | 11.59 | 4.5873 | 11.19 | 3.96 | 2.8268 |
High | 20.28 | 1.77 | 11.4786 | 20.98 | 5.94 | 3.5345 |
Very high | 0 | 0 | NA | 51.05 | 6.99 | 7.3084 |
Susceptibility | Yuexiu | Haizhu | Liwan | Tianhe | Baiyun | Huangpu | Huadu | Panyu | Nansha | Conghua | Zengcheng |
---|---|---|---|---|---|---|---|---|---|---|---|
Very low | 20.57 | 34.13 | 17.03 | 36.20 | 57.83 | 68.47 | 77.96 | 58.08 | 80.84 | 96.42 | 87.53 |
Low | 7.86 | 7.69 | 7.18 | 7.47 | 4.60 | 5.66 | 4.20 | 7.94 | 5.52 | 1.30 | 2.32 |
Moderate | 11.78 | 9.59 | 10.90 | 8.96 | 5.20 | 6.36 | 4.37 | 8.90 | 5.87 | 1.06 | 2.63 |
High | 25.16 | 17.89 | 22.41 | 16.13 | 10.51 | 9.63 | 6.60 | 12.56 | 6.07 | 0.93 | 4.10 |
Very high | 34.64 | 30.69 | 42.47 | 31.25 | 21.87 | 9.87 | 6.87 | 12.54 | 1.71 | 0.29 | 3.43 |
Total | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, W.; Liu, Y.; Liu, Z.; Gao, Z.; Huang, H.; Huang, W. A Positive-Unlabeled Learning Algorithm for Urban Flood Susceptibility Modeling. Land 2022, 11, 1971. https://doi.org/10.3390/land11111971
Li W, Liu Y, Liu Z, Gao Z, Huang H, Huang W. A Positive-Unlabeled Learning Algorithm for Urban Flood Susceptibility Modeling. Land. 2022; 11(11):1971. https://doi.org/10.3390/land11111971
Chicago/Turabian StyleLi, Wenkai, Yuanchi Liu, Ziyue Liu, Zhen Gao, Huabing Huang, and Weijun Huang. 2022. "A Positive-Unlabeled Learning Algorithm for Urban Flood Susceptibility Modeling" Land 11, no. 11: 1971. https://doi.org/10.3390/land11111971
APA StyleLi, W., Liu, Y., Liu, Z., Gao, Z., Huang, H., & Huang, W. (2022). A Positive-Unlabeled Learning Algorithm for Urban Flood Susceptibility Modeling. Land, 11(11), 1971. https://doi.org/10.3390/land11111971