The Trade-Offs/Synergies and Their Spatial-Temporal Characteristics between Ecosystem Services and Human Well-Being Linked to Land-Use Change in the Capital Region of China
Abstract
:1. Introduction
2. Study Area and Data
2.1. Study Area
2.2. Data
3. Methods
3.1. Land Use Transfer Matrix
3.2. Land-Use Intensity
3.3. ES Assessment
- (1)
- Water yield
- (2)
- Soil conservation
- (3)
- Carbon sequestration
- (4)
- Natural landscape recreation
3.4. Hotspot Analysis of Ecosystem Services
3.5. The Assessment of HWB
3.6. The Analysis of Trade-Offs/Synergies
- (1)
- Correlation analysis
- (2)
- t-Test
4. Results
4.1. Land-Use Change
4.1.1. Land-Use Structure Change
4.1.2. Land Use Transformation
4.1.3. Land-Use Intensity Change
4.2. Spatiotemporal Change of Ecosystem Services
4.3. The Spatiotemporal Change of Human Well-Being
4.4. Analysis of Trade-Offs/Synergies among Land-Use Intensity, Ecosystem Services, and Human Well-Being
4.4.1. Identification of Hotspots for ESs
4.4.2. The Trade-Offs/Synergies between LUI and ESs
4.4.3. The Trade-Offs/Synergies between LUI and HWB
4.4.4. The Trade-Offs/Synergies between ESs and HWB
4.4.5. The Analysis of Trade-Off/Synergies among LUI, ESs, and HWB
5. Discussion
5.1. Interpretation of the Results
5.2. Limitations of Methods
5.3. Recommendations
- (1)
- The land-use structure should be adjusted in coastal regions of northern Hebei;
- (2)
- The government should concentrate on improving the overall HWB in northern Hebei and the surroundings of Shijiazhuang, the capital of Hebei Province;
- (3)
- The local government should commit to protecting the environment to improve the ability of ES supply, especially the integrity of ESs.
6. Conclusions
- (1).
- Although there is a large transformation in land-use types, a series of ecological protection policies have maintained the balance of land-use structure;
- (2).
- The overall ESs of Hebei were improved, and the areas of improvement were mainly concentrated in the surrounding areas of Beijing and the piedmont plain of Taihang Mountain;
- (3).
- LUI and ES mainly presented a synergistic relationship, while HWB and LUI mainly presented a trade-off relationship, and ES and HWB also present a trade-off relationship;
- (4).
- To achieve sustainable development, region 1 needs to adjust land-use structure, region 2 needs to protect the ecological environment to improve the supply of ESs, and region 3 needs to commit to improving the comprehensive regional HWB.
Author Contributions
Funding
Conflicts of Interest
References
- Ali, S.; Jan, I. Impact of climate change on world’s economy and hydrological system. Int. J. Environ. Clim. Change 2021, 11, 78–84. [Google Scholar] [CrossRef]
- Maku, O.E.; Alimi, O.Y.; Ogwumike, F.O. Transmission mechanism of globalization and its impact on human welfare development in Sub-Saharan African countries. Izvestiya 2021, 65, 45–64. [Google Scholar] [CrossRef]
- Dasgupta, P.; Managi, S.; Kumar, P. The inclusive wealth index and sustainable development goals. Sustain. Sci. 2021, 17, 899–903. [Google Scholar] [CrossRef]
- Zheng, H.; Wang, L.; Wu, T. Coordinating ecosystem service trade-offs to achieve win–win outcomes: A review of the approaches. J. Environ. Sci. 2019, 82, 105–114. [Google Scholar] [CrossRef] [PubMed]
- Torres, A.V.; Tiwari, C.; Atkinson, S.F. Progress in ecosystem services research: A guide for scholars and practitioners. Ecosyst. Serv. 2021, 49, 101267. [Google Scholar]
- MEA. Ecosystems and human well-being: Synthesis/millennium ecosystem assessment. World Health 2005, 1134, 25–60. [Google Scholar]
- Reyes-Riveros, R.; Altamirano, A.; Barrera, F.; Rozas, D.; Meli, P. Linking public urban green spaces and human well-being: A systematic review. Urban For. Urban Green. 2021, 61, 127105. [Google Scholar] [CrossRef]
- Loveridge, R.; Sallu, S.; Persha, I.; Marshall, A.R. Measuring human wellbeing: A protocol for selecting local indicators. Environ. Sci. Policy 2020, 114, 461–469. [Google Scholar] [CrossRef]
- Xu, Z.; Fan, W.; Wei, H.; Zhang, P.; Ren, J.; Gao, Z.; Ulgiati, S.; Kong, W.; Dong, X. Evaluation and simulation of the impact of land use change on ecosystem services based on a carbon flow model: A case study of the Manas River basin of Xinjiang, China. Sci. Total Environ. 2019, 652, 117. [Google Scholar] [CrossRef]
- Yang, S.; Zhao, W.; Liu, Y.; Cherubini, F.; Pereira, P. Prioritizing sustainable development goals and linking them to ecosystem services: A global expert’s knowledge evaluation. Geogr. Sustain. 2020, 12, 321–330. [Google Scholar] [CrossRef]
- Paul, R.J.; Douglas, B.T.; Bennett, E.M.; Cumming, G.S.; Cork, S.J.; John, A.; Dobson, A.P.; Peterson, G.D. Trade-offs across space, time, and ecosystem services. Ecol. Soc. 2005, 11, 709–723. [Google Scholar]
- Garland, T. Trade-offs. Curr. Biol. 2014, 24, R60–R61. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lasaulce, S.; Zhang, C.; Varma, V.; Morarescu, I.C. Analysis of the tradeoff between health and economic impacts of the COVID-19 epidemic. Front. Public Health 2021, 9, 620770. [Google Scholar] [CrossRef] [PubMed]
- Deng, X.; Li, Z.; Gibson, J. A review on trade-off analysis of ecosystem services for sustainable land-use management. J. Geogr. Sci. 2016, 26, 953–968. [Google Scholar] [CrossRef] [Green Version]
- Belt, M.; Bowen, T.; Slee, K.; Forgie, V. Flood protection: Highlighting an investment trap between built and natural capital. JAWRA J. Am. Water Resour. Assoc. 2013, 49, 681–692. [Google Scholar] [CrossRef]
- Deng, C.; Liu, J.; Nie, X.; Li, Z.; Xiao, L. How trade-offs between ecological construction and urbanization expansion affect ecosystem services. Ecol. Indic. 2021, 122, 107253. [Google Scholar] [CrossRef]
- Cavender-Bares, J.; Polasky, S.; King, E.; Balvanera, P. Insight, part of a special feature on ecosystem service trade-offs across global contexts and scales a sustainability framework for assessing trade-offs in ecosystem services. Ecol. Soc. 2015, 20, 22. [Google Scholar]
- Yu, H.; Xie, W.; Sun, L.; Wang, Y. Identifying the regional disparities of ecosystem services from a supply-demand perspective. Resour. Conserv. Recycl. 2021, 169, 105557. [Google Scholar] [CrossRef]
- Marino, D.; Palmieri, M.; Marucci, A.; Tufano, M. Comparison between demand and supply of some ecosystem services in national parks: A spatial analysis conducted using italian case studies. Conserv. Soc. 2021, 1, 4. [Google Scholar] [CrossRef]
- Mutzel, A.; Blom, M.; Spagopoulou, F.; Wright, J.; Dingemanse, N.J.; Kempenaers, B. Temporal trade-offs between nestling provisioning and defence against nest predators in blue tits. Anim. Behav. 2013, 85, 1459–1469. [Google Scholar] [CrossRef] [Green Version]
- Wood, S.; Dupras, J. Increasing functional diversity of the urban canopy for climate resilience: Potential tradeoffs with ecosystem services? Urban For. Urban Green. 2020, 58, 126972. [Google Scholar] [CrossRef]
- Wang, Y.; Dai, E. Spatial-temporal changes in ecosystem services and the trade-off relationship in mountain regions: A case study of hengduan mountain region in Southwest China. J. Clean. Prod. 2020, 264, 121573. [Google Scholar] [CrossRef]
- Haines-Young, R.; Potschin, M.; Kienast, F. Indicators of ecosystem service potential at European scales: Mapping marginal changes and trade-offs. Ecol. Indic. 2012, 21, 39–53. [Google Scholar] [CrossRef]
- Zhang, Z.; Liu, Y.; Wang, Y.; Liu, Y.; Zhang, Y. What factors affect the synergy and tradeoff between ecosystem services, and how, from a geospatial perspective? J. Clean. Prod. 2020, 257, 120454. [Google Scholar] [CrossRef]
- Seppelt, R.; Lautenbach, S.; Volk, M. Identifying trade-offs between ecosystem services, land use, and biodiversity: A plea for combining scenario analysis and optimization on different spatial scales. Curr. Opin. Environ. Sustain. 2013, 5, 458–463. [Google Scholar] [CrossRef]
- Wang, P.; Zhang, L.; Li, Y.; Jiao, L.; Wang, H.; Yan, J.; Lu, Y.; Fu, B. Spatio-temporal characteristics of the trade-off and synergy relationships among multiple ecosystem services in the upper reaches of Hanjiang River basin. Acta Geogr. Sin. 2017, 72, 2064–2078. [Google Scholar]
- Chen, L.; Pei, S.; Liu, X.; Qiao, Q.; Liu, C. Mapping and analysing tradeoffs, synergies and losses among multiple ecosystem services across a transitional area in Beijing, China. Ecol. Indic. 2021, 123, 107329. [Google Scholar] [CrossRef]
- Ji, Z.; Wei, H.; Xue, D.; Liu, M.; Cai, E.; Chen, W.; Feng, X.; Li, J.; Lu, J.; Guo, Y. Trade-off and projecting effects of land use change on ecosystem services under different policies scenarios: A case study in Central China. Int. J. Environ. Res. Public Health 2021, 18, 3552. [Google Scholar] [CrossRef]
- Locatelli, E.; Imbach, P.; Wunder, S. Synergies and trade-offs between ecosystem services in Costa Rica. Environ. Conserv. 2013, 41, 27–36. [Google Scholar]
- Dai, E.; Wang, X.; Zhu, J.; Zhao, D. Methods, tools and research framework of ecosystem service trade-offs. Geogr. Res. 2016, 35, 1005–1016. [Google Scholar]
- Dade, M.C.; Mitchell, M.G.E.; Mcalpine, C.A.; Rhodes, J.R. Assessing ecosystem service trade-offs and synergies: The need for a more mechanistic approach. AMBIO A J. Hum. Environ. 2018, 48, 1116–1128. [Google Scholar] [CrossRef] [PubMed]
- King, E.; Cavender-Bares, J.; Balvanera, P.; Mwampamba, T.H.; Polasky, S. Trade-offs in ecosystem services and varying stakeholder preferences: Evaluating conflicts, obstacles, and opportunities. Ecol. Soc. 2015, 20, 25. [Google Scholar] [CrossRef] [Green Version]
- Global land project. In World Social Science Report; OECD: Paris, France, 2013; pp. 538–539.
- Barraquand, F.; Martinet, V. Biological conservation in dynamic agricultural landscapes: Effectiveness of public policies and trade-offs with agricultural production. Ecol. Econ. 2011, 70, 910–920. [Google Scholar] [CrossRef]
- Butler, J.; Wong, G.Y.; Metcalfe, D.J.; Honzák, M.; Pert, P.L.; Rao, N.; Grieken, M.V.; Lawson, T.; Bruce, C.; Kroon, F.J. An analysis of trade-offs between multiple ecosystem services and stakeholders linked to land use and water quality management in the Great Barrier Reef, Australia. Agric. Ecosyst. Environ. 2013, 180, 176–191. [Google Scholar] [CrossRef]
- Yuan, Z.; Zhou, L.; Sun, D.; Hu, F. Impacts of urban expansion on the loss and fragmentation of cropland in the major grain production areas of China. Land 2022, 11, 130. [Google Scholar] [CrossRef]
- Wang, P.; Zeng, C.; Song, Y.; Guo, L.; Liu, W.; Zhang, W. The spatial effect of administrative division on land-use intensity. Land 2021, 10, 543. [Google Scholar]
- Liu, D.; Zhang, J.; Gong, J.; Qian, C. Spatial and temporal relations among land-use intensity, ecosystem services, and human well-being in the Longzhong loess hilly region: A case study of the Anding district, Gansu province. Acta Ecol. Sin. 2019, 39, 637–648. [Google Scholar]
- Sharp, R.; Chaplin-Kramer, R.; Wood, S.; Guerry, A.; Douglass, J. Invest User’s Guide. 2018. Available online: https://invest-userguide.readthedocs.io/en/latest/ (accessed on 14 April 2022).
- Zhang, L.; Hickel, K.; Dawes, W.R.; Chiew, F.H.S.; Western, A.W.; Briggs, P.R. A rational function approach for estimating mean annual evapotranspiration. Water Resour. Res. 2004, 40, 89–97. [Google Scholar] [CrossRef]
- Donohue, R.J.; Roderick, M.L.; McVicar, T.R. Roots, storms and soil pores: Incorporating key ecohydrological processes into Budyko’s hydrological model. J. Hydrol. 2012, 436–437, 35–50. [Google Scholar] [CrossRef]
- Gao, H.; Li, Z.; Li, P.; Jia, L.; Xu, G.; Ren, Z.; Pang, G.; Zhao, B. The capacity of soil loss control in the loess plateau based on soil erosion control degree. Acta Geogr. Sin. 2015, 70, 1503–1515. [Google Scholar] [CrossRef] [Green Version]
- Wallis, T.W.R.; Griffiths, J.F. An assessment of the weather generator (WXGEN) used in the erosion/productivity impact calculator (EPIC). Agric. For. Meteorol. 1995, 73, 115–133. [Google Scholar] [CrossRef]
- Zhang, H.; Yang, Q.; Li, R.; Liu, Q.; Moore, D.; He, P.; Ritsema, C.J.; Geissen, V. Extension of a GIS procedure for calculating the RUSLE equation LS factor. Comput. Geosci. 2013, 52, 177–188. [Google Scholar] [CrossRef]
- Qi, S.H.; Jiang, M.X.; Yu, X.B. Evaluating soil erosion in Jiangxi province with Usle model and remote sensing technology during 1995~2005. China Environ. Sci. 2011, 37, 1197–1203. [Google Scholar]
- Lufafa, A.; Tenywa, M.M.; Isabirye, M.; Majaliwa, M.J.G.; Woomer, P.L. Prediction of soil erosion in a Lake Victoria basin catchment using a GIS-based universal soil loss model. Agric. Syst. 2003, 76, 883–894. [Google Scholar] [CrossRef]
- Babbar, D.; Areendran, G.; Sahana, M.; Sarma, K.; Sivadas, A. Assessment and prediction of carbon sequestration using Markov chain and invest model in Sariska Tiger Reserve, India. J. Clean. Prod. 2020, 278, 123333. [Google Scholar] [CrossRef]
- Mancilla-Ruiz, D.; de la Barrera, F.; Gonzalez, S.; Huaico, A. The effects of a megafire on ecosystem services and the pace of landscape recovery. Land 2021, 10, 1388. [Google Scholar] [CrossRef]
- Liu, R.; Dong, X.; Wang, X.-C.; Zhang, P.; Liu, M.; Zhang, Y. Study on the relationship among the urbanization process, ecosystem services and human well-being in an arid region in the context of carbon flow: Taking the Manas River basin as an example. Ecol. Indic. 2021, 132, 108248. [Google Scholar] [CrossRef]
- Jw, A.; Wza, B.; Stap, C.; Wy, A.; Wl, A. A multiscale analysis of urbanization effects on ecosystem services supply in an urban megaregion. Sci. Total Environ. 2019, 662, 824–833. [Google Scholar]
- Varela-Candamio, L.; Novo-Corti, I.; Barreiro-Gen, M. Do studies level and age matter in learning and social relationship in the assessment of web 3.0? A case study for ‘digital natives’ in Spain. Comput. Hum. Behav. 2014, 30, 595–605. [Google Scholar] [CrossRef]
- Chu, X.; Deng, X.; Jin, G.; Wang, Z.; Li, Z. Ecological security assessment based on ecological footprint approach in Beijing-Tianjin-Hebei region, China. Phys. Chem. Earth 2017, 101, 43–51. [Google Scholar] [CrossRef]
- Wu, J.; Jin, X.; Feng, Z.; Chen, T.; Wang, C.; Feng, D.; Lv, J. Relationship of ecosystem services in the Beijing-Tianjin-Hebei region based on the production possibility frontier. Land 2021, 10, 881. [Google Scholar] [CrossRef]
- Hu, C.; Hu, B.; Shi, X.; Wu, Y. The roles of Beijing-Tianjin-Hebei coordinated development strategy in industrial energy and related pollutant emission intensities. Sustainability 2020, 12, 7973. [Google Scholar] [CrossRef]
- Feng, Z.; Jin, X.; Chen, T.; Wu, J. Understanding trade-offs and synergies of ecosystem services to support the decision-making in the Beijing-Tianjin-Hebei region. Land Use Policy 2021, 106, 105446. [Google Scholar] [CrossRef]
- Zhang, Y.; Wu, D. Multi-scale analysis of ecosystem service trade-offs and associated influencing factors in Beijing-Tianjin-Hebei region. Areal Res. Dev. 2019, 38, 141–147. [Google Scholar]
- Zhang, L.; Peng, J.; Liu, Y.; Wu, J. Coupling ecosystem services supply and human ecological demand to identify landscape ecological security pattern: A case study in Beijing-Tianjin-Hebei region, China. Urban Ecosyst. 2017, 20, 701–714. [Google Scholar] [CrossRef]
- Min, L.; Gang, W.; Zhang, Y. Strategy research on the integration of ecological security of Beijing, Tianjin and Hebei. For. Econ. 2017. Available online: https://www.cnki.com.cn/Article/CJFDTotal-LYJJ201707008.htm (accessed on 14 April 2022).
- Vallet, A.; Locatelli, B.; Levrel, H.; Wunder, S.; Seppelt, R.; Scholes, R.J.; Oszwald, J. Relationships between ecosystem services: Comparing methods for assessing tradeoffs and synergies. Ecol. Econ. 2018, 150, 96–106. [Google Scholar] [CrossRef]
- Hossain, M.S.; Dearing, J.A.; Rahman, M.M.; Salehin, M. Recent changes in ecosystem services and human well-being in the Bangladesh coastal zone. Reg. Environ. Change 2016, 16, 429–443. [Google Scholar] [CrossRef] [Green Version]
- Howe, C.; Suich, H.; Vira, B.; Mace, G.M. Creating win-wins from trade-offs? Ecosystem services for human well-being: A meta-analysis of ecosystem service trade-offs and synergies in the real world. Glob. Environ. Change 2014, 28, 263–275. [Google Scholar]
- Wei, H.; Liu, H.; Xu, Z.; Ren, J.; Lu, N.; Fan, W.; Zhang, P.; Dong, X. Linking ecosystem services supply, social demand and human well-being in a typical mountain-oasis-desert area, Xinjiang, China. Ecosyst. Serv. 2018, 31, 44–57. [Google Scholar] [CrossRef]
Type | Resolution | Source | Websites |
---|---|---|---|
Meteorological data | 1000 m × 1000 m | National Meteorological Science Data Center | http://cdc.nmic.cn (accessed on 14 April 2022) |
DEM | 1000 m × 1000 m | International Scientific Data Service Platform | http://datamirror.csdb.cn (accessed on 14 April 2022) |
Land-use data | 1000 m × 1000 m | Institute of Geographic Sciences and Natural Resources Research | http://www.resdc.cn/ (accessed on 14 April 2022) |
Evapotranspiration data | 1000 m × 1000 m | MOD16A3 | http://www.geodata.cn (accessed on 14 April 2022) |
Soil data | 1000 m × 1000 m | Harmonized World Soil Database version 1.1 | http://www.fao.org (accessed on 14 April 2022) |
NDVI | 1000 m × 1000 m | Institute of Geographic Sciences and Natural Resources Research | http://www.resdc.cn/ (accessed on 14 April 2022) |
Statistic data | Hebei Statistical Yearbook | http://tjj.hebei.gov.cn/ (accessed on 14 April 2022) | |
Boundary data | National Earth System Science Data Center | http://www.resdc.cn/ (accessed on 14 April 2022) |
Land-Use Type | Farmland | Forest | Grassland | Water Body | Urban Land | Bare Land |
---|---|---|---|---|---|---|
Land-use intensity coefficient | 3 | 2 | 2.5 | 2 | 4 | 1 |
Factor Arrangement | Target Arrangement | Indicator Arrangement |
---|---|---|
Basic material needs of maintaining a high-quality life | Economic development | Gross domestic product |
Health | Body health | Number of beds in hospitals and health centers |
Safety | Social security | Number of beds in social welfare institutions |
Good relationships | Educational level | Number of students in ordinary secondary schools |
The freedom of choice and action | Economic freedom | Household deposits in financial institutions at the end of the year |
Time | Item | Farmland | Forest | Grassland | Water Body | Urban Land | Bare Land |
---|---|---|---|---|---|---|---|
2000 | Areas/km2 | 97,231 | 35,993 | 33,040 | 3766 | 13,302 | 1938 |
Proportion/% | 52.48 | 19.43 | 17.83 | 2.03 | 7.18 | 1.05 | |
2015 | Areas/km2 | 96,076 | 36,001 | 32,825 | 3714 | 14,793 | 1861 |
Proportion/% | 51.86 | 19.43 | 17.71 | 2.01 | 7.98 | 1.01 |
All Types of Land in 2015/km2 | ||||||
---|---|---|---|---|---|---|
All Types of Land in 2000/km2 | Farmland | Forest | Grassland | Water Body | Urban Land | Bare Land |
Farmland | 95,782 | 42 | 5 | 115 | 1283 | 4 |
Forest | 16 | 35,905 | 4 | 5 | 63 | 0 |
Grassland | 72 | 28 | 32,807 | 27 | 105 | 1 |
Water body | 154 | 22 | 2 | 3536 | 45 | 7 |
Urban land | 6 | 2 | 3 | 9 | 13,282 | 0 |
Bare land | 46 | 2 | 4 | 21 | 15 | 1850 |
LUI-ES | Type | Proportion | |
---|---|---|---|
Trade-off | Weak trade-off | 4.42% | 7.92% |
Medium trade-off | 1.83% | ||
Strong trade-off | 1.67% | ||
Synergy | Weak synergy | 37.40% | 71.18% |
Medium synergy | 15.00% | ||
Strong synergy | 18.78% | ||
Non-relationship | Non-relationship | 21% | 21% |
Total | Total | 100% | 100% |
HWB-LUI | Type | Proportion | |
---|---|---|---|
Trade-off | Weak trade-off | 11.02% | 32.82% |
Medium trade-off | 3.97% | ||
Strong trade-off | 17.83% | ||
Synergy | Weak synergy | 4.83% | 19.60% |
Medium synergy | 7.42% | ||
Strong synergy | 7.35% | ||
Non-relationship | Non-relationship | 48% | 48% |
Total | Total | 100% | 100% |
ES-HWB | Type | Proportion | |
---|---|---|---|
Trade-off | Weak trade-off | 11.59% | 54.48% |
Medium trade-off | 7.71% | ||
Strong trade-off | 35.18% | ||
Synergy | Weak synergy | 16.96% | 30.37% |
Medium synergy | 5.59% | ||
Strong synergy | 7.82% | ||
Non-relationship | Non-relationship | 15.15% | 15.15% |
Total | Total | 100% | 100% |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, M.; Dong, X.; Wang, X.; Zhao, B.; Wei, H.; Fan, W.; Zhang, C. The Trade-Offs/Synergies and Their Spatial-Temporal Characteristics between Ecosystem Services and Human Well-Being Linked to Land-Use Change in the Capital Region of China. Land 2022, 11, 749. https://doi.org/10.3390/land11050749
Liu M, Dong X, Wang X, Zhao B, Wei H, Fan W, Zhang C. The Trade-Offs/Synergies and Their Spatial-Temporal Characteristics between Ecosystem Services and Human Well-Being Linked to Land-Use Change in the Capital Region of China. Land. 2022; 11(5):749. https://doi.org/10.3390/land11050749
Chicago/Turabian StyleLiu, Mengxue, Xiaobin Dong, Xuechao Wang, Bingyu Zhao, Hejie Wei, Weiguo Fan, and Chenyang Zhang. 2022. "The Trade-Offs/Synergies and Their Spatial-Temporal Characteristics between Ecosystem Services and Human Well-Being Linked to Land-Use Change in the Capital Region of China" Land 11, no. 5: 749. https://doi.org/10.3390/land11050749
APA StyleLiu, M., Dong, X., Wang, X., Zhao, B., Wei, H., Fan, W., & Zhang, C. (2022). The Trade-Offs/Synergies and Their Spatial-Temporal Characteristics between Ecosystem Services and Human Well-Being Linked to Land-Use Change in the Capital Region of China. Land, 11(5), 749. https://doi.org/10.3390/land11050749