Hyperspectral PRISMA and Sentinel-2 Preliminary Assessment Comparison in Alba Fucens and Sinuessa Archaeological Sites (Italy)
Abstract
:1. Introduction
2. Materials and Methods
2.1. Alba Fucens Archaeological Site
2.2. Sinuessa Archaeological Site
2.3. Satellite Images and Data Processing
- Level 1 (L1) considers the top-of-atmosphere signal, namely no atmospheric correction has been applied yet. It also contains cloud cover, sun-glint and land classification masks;
- Level 2, divided into three sub-levels 2B, 2C and 2D, considers the atmospheric correction (BOA, bottom-of-atmosphere). In L2C in addition, water vapor, aerosols and cloud characterization maps are taken into account. The applied UTM projection in L2D provides geocoded data [55].
- Data acquisition;
- Pre-processing: orthorectification and georeferencing, AOI selection;
- Processing: band bands evaluation and noise removal, PCA, spectral signatures extraction, ML and SAM classification.
- BM4D for the Gaussian denoising [63] (an evolution to volumetric data, such as a hyperspectral data cube, of the block matching 3D algorithm, a non-local means filtering approach considered to achieve the best performance in image denoising).
- The new variables are uncorrelated (orthogonal);
- They are listed in descending order of their variance.
3. Results
3.1. Bad Bands Evaluation and Noise Removal
- The bad bands selection process automatically eliminates all the images with missing lines, but some bands were carrying good information despite of this. Line restoration allows us to use more bands with potentially useful information that would otherwise be discarded;
- Most of the bands corrupted by the Gaussian Noise were placed in the far-SWIR part of the spectrum, making every band above SWIR 140 (2.27 um) unserviceable, cutting out a spectrum portion useful for soil characterization which is not frequently included in other multispectral or hyperspectral sensors.
3.2. Principal Component Analysis
3.3. PRISMA and Sentinel-2 Spectral Signatures
3.4. Spectral Angle Mapper (SAM) Classification
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Fairclough, G. A New Landscape for Cultural Heritage Management: Characterisation as a Management Tool. In Landscapes Under Pressure: Theory and Practice of Cultural Heritage Research and Preservation; Lozny, L.R., Ed.; Springer US: Boston, MA, 2006; pp. 55–74. ISBN 978-0-387-28461-3. [Google Scholar]
- EBSCOhost|18549570|New Light on an Ancient Landscape: Lidar Survey in the Stonehenge World Heritage Site. Available online: https://www.cambridge.org/core/journals/antiquity/article/abs/new-light-on-an-ancient-landscape-lidar-survey-in-the-stonehenge-world-heritage-site/D65EA1D86301827E17559610FDA3460B (accessed on 21 May 2021).
- ‘The Long Chain’: Archaeology, Historical Landscape Characterization and Time Depth in the Landscape|SpringerLink. Available online: https://link.springer.com/chapter/10.1007/978-94-017-0189-1_16 (accessed on 21 May 2021).
- Turner, S. Ancient Country: The Historic Character of Rural Devon: No. 20, 1st ed.; Devon Archaeological Society: Exeter, UK, 2007; ISBN 978-0-9527899-8-7. [Google Scholar]
- Lasaponara, R.; Masini, N. Advances on Remote Sensing for Archaeology and Cultural Heritage Management Edited By; Aracne: New York, NY, USA, 2008; ISBN 978-88-548-2030-2. [Google Scholar]
- Tapete, D.; Cigna, F. Detection, Morphometric Analysis and Digital Surveying of Archaeological Mounds in Southern Iraq with CartoSat-1 and COSMO-SkyMed DEMs. Land 2022, 11, 1406. [Google Scholar] [CrossRef]
- Carella, E.; Orusa, T.; Viani, A.; Meloni, D.; Borgogno-Mondino, E.; Orusa, R. An Integrated, Tentative Remote-Sensing Approach Based on NDVI Entropy to Model Canine Distemper Virus in Wildlife and to Prompt Science-Based Management Policies. Animals 2022, 12, 1049. [Google Scholar] [CrossRef] [PubMed]
- Zavorotny, V.U.; Voronovich, A.G. Scattering of GPS Signals from the Ocean with Wind Remote Sensing Application. IEEE Trans. Geosci. Remote Sens. 2000, 38, 951–964. [Google Scholar] [CrossRef] [Green Version]
- Bauer, A.; Nicoll, K.; Park, L.; Matney, T. Archaeological Site Distribution by Geomorphic Setting in the Southern Lower Cuyahoga River Valley, Northeastern Ohio: Initial Observations from a GIS Database. Geoarchaeology 2004, 19, 711–729. [Google Scholar] [CrossRef]
- Conolly, J.; Lake, M. Geographical Information Systems in Archaeology; Cambridge University Press: Cambridge, UK, 2006; ISBN 978-1-139-93652-1. [Google Scholar]
- Zwertvaegher, A.; Werbrouck, I.; Finke, P.A.; Reu, J.D.; Crombé, P.; Bats, M.; Antrop, M.; Bourgeois, J.; Court-Picon, M.; Maeyer, P.D.; et al. On the Use of Integrated Process Models to Reconstruct Prehistoric Occupation, with Examples from Sandy Flanders, Belgium. Geoarchaeology 2010, 25, 784–814. [Google Scholar] [CrossRef] [Green Version]
- Conolly, J. Geographical Information Systems and Landscape Archaeology. In Handbook of Landscape Archaeology; Routledge: London, UK, 2016; pp. 583–595. [Google Scholar]
- Gyucha, A.; Duffy, P.R.; Frolking, T.A. The Körös Basin from the Neolithic to the Hapsburgs: Linking Settlement Distributions with Pre-Regulation Hydrology through Multiple Data Set Overlay. Geoarchaeology 2011, 26, 392–419. [Google Scholar] [CrossRef]
- Zwertvaegher, A.; Finke, P.; De Reu, J.; Vandenbohede, A.; Lebbe, L.; Bats, M.; De Clercq, W.; De Smedt, P.; Gelorini, V.; Sergant, J. Reconstructing Phreatic Palaeogroundwater Levels in a Geoarchaeological Context: A Case Study in Flanders, Belgium. Geoarchaeology 2013, 28, 170–189. [Google Scholar] [CrossRef]
- Hill, J.B. Land Use and an Archaeological Perspective on Socio-Natural Studies in the Wadi al-Hasa, West-Central Jordan. Am. Antiq. 2004, 389–412. [Google Scholar] [CrossRef]
- Savage, S.H.; Levy, T.E.; Jones, I.W. Prospects and Problems in the Use of Hyperspectral Imagery for Archaeological Remote Sensing: A Case Study from the Faynan Copper Mining District, Jordan. J. Archaeol. Sci. 2012, 39, 407–420. [Google Scholar] [CrossRef]
- Pozzo, A.D.; Immordino, F.; Candigliota, E. Remote Sensing Multitemporal Data for Geomorphological Analysis of the Murghab Alluvial Fan in Turkmenistan. J. Earth Sci. Eng. 2017, 7. [Google Scholar] [CrossRef]
- Alicandro, M.; Candigliota, E.; Dominici, D.; Immordino, F.; Quaresima, R.; Zollini, S. Alba Fucens Archaeological Site: Multiscale and Multidisciplinary Approach for Risk Assessment and Conservation. ISPRS Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci. 2019, XLII-2/W11, 47–53. [Google Scholar] [CrossRef] [Green Version]
- ASI (Italian Space Agency) PRISMA: Small Innovative Earth Observation Mission. Available online: http://prisma-i.it/index.php/en/ (accessed on 15 March 2021).
- Caporusso, G.; Lopinto, E.; Lorusso, R.; Loizzo, R.; Guarini, R.; Daraio, G.M.; Sacco, P. The Hyperspectral Prisma Mission in Operations. In Proceedings of the IGARSS 2020—2020 IEEE International Geoscience and Remote Sensing Symposium, Waikoloa, HI, USA, 26 September–2 October 2020; pp. 3282–3285. [Google Scholar]
- ASI (Italian Space Agency) La Missione PRISMA Apre al Pieno Utilizzo Della Comunità. Available online: https://www.asi.it/2020/05/la-missione-prisma-apre-al-pieno-utilizzo-della-comunita/ (accessed on 15 March 2021).
- Adão, T.; Hruška, J.; Pádua, L.; Bessa, J.; Peres, E.; Morais, R.; Sousa, J.J. Hyperspectral Imaging: A Review on UAV-Based Sensors, Data Processing and Applications for Agriculture and Forestry. Remote Sens. 2017, 9, 1110. [Google Scholar] [CrossRef] [Green Version]
- Alexakis, D.; Sarris, A.; Astaras, T.; Albanakis, K. Detection of Neolithic Settlements in Thessaly (Greece) Through Multispectral and Hyperspectral Satellite Imagery. Sensors 2009, 9, 1167–1187. [Google Scholar] [CrossRef] [Green Version]
- Manolakis, D.; Marden, D.; Shaw, G. Hyperspectral Image Processing for Automatic Target Detection Applications. Linc. Lab. J. 2003, 14, 79–116. [Google Scholar]
- Bedini, E.; Chen, J. Application of PRISMA Satellite Hyperspectral Imagery to Mineral Alteration Mapping at Cuprite, Nevada, USA. J. Hyperspectral Remote Sens. V 2020, 10, 87–94. [Google Scholar] [CrossRef]
- Vangi, E.; D’Amico, G.; Francini, S.; Giannetti, F.; Lasserre, B.; Marchetti, M.; Chirici, G. The New Hyperspectral Satellite PRISMA: Imagery for Forest Types Discrimination. Sensors 2021, 21, 1182. [Google Scholar] [CrossRef]
- Pepe, M.; Pompilio, L.; Gioli, B.; Busetto, L.; Boschetti, M. Detection and Classification of Non-Photosynthetic Vegetation from PRISMA Hyperspectral Data in Croplands. Remote Sens. 2020, 12, 3903. [Google Scholar] [CrossRef]
- Giardino, C.; Bresciani, M.; Braga, F.; Fabbretto, A.; Ghirardi, N.; Pepe, M.; Gianinetto, M.; Colombo, R.; Cogliati, S.; Ghebrehiwot, S.; et al. First Evaluation of PRISMA Level 1 Data for Water Applications. Sensors 2020, 20, 4553. [Google Scholar] [CrossRef]
- Niroumand-Jadidi, M.; Bovolo, F.; Bruzzone, L. Water Quality Retrieval from PRISMA Hyperspectral Images: First Experience in a Turbid Lake and Comparison with Sentinel-2. Remote Sens. 2020, 12, 3984. [Google Scholar] [CrossRef]
- Di Mauro, B.; Garzonio, R.; Bramati, G.; Cogliati, S.; Cremonese, E.; Julitta, T.; Panigada, C.; Rossini, M.; Colombo, R. PRISMA Hyperspectral Satellite Mission: First Data on Snow in the Alps. In Proceedings of the EGU General Assembly 2020, online, 4–8 May 2020; Volume 22, p. 19825. [Google Scholar]
- Casa, R.; Pignatti, S.; Pascucci, S.; Ionca, V.; Mzid, N.; Veretelnikova, I. Assessment of PRISMA Imaging Spectrometer Data for the Estimation of Topsoil Properties of Agronomic Interest at the Field Scale. In Proceedings of the EGU General Assembly 2020, online, 4–8 May 2020; Volume 22, p. 6728. [Google Scholar]
- Sentinel-2—Missions—Sentinel Online—Sentinel. Available online: https://sentinel.esa.int/web/sentinel/missions/sentinel-2 (accessed on 21 May 2021).
- Agudo, P.U.; Pajas, J.A.; Pérez-Cabello, F.; Redón, J.V.; Lebrón, B.E. The Potential of Drones and Sensors to Enhance Detection of Archaeological Cropmarks: A Comparative Study Between Multi-Spectral and Thermal Imagery. Drones 2018, 2, 29. [Google Scholar] [CrossRef] [Green Version]
- Salgado Carmona, J.Á.; Quirós, E.; Mayoral, V.; Charro, C. Assessing the Potential of Multispectral and Thermal UAV Imagery from Archaeological Sites. A Case Study from the Iron Age Hillfort of Villasviejas Del Tamuja (Cáceres, Spain). J. Archaeol. Sci. Rep. 2020, 31, 102312. [Google Scholar] [CrossRef]
- Cavalli, R.M.; Colosi, F.; Palombo, A.; Pignatti, S.; Poscolieri, M. Remote Hyperspectral Imagery as a Support to Archaeological Prospection. J. Cult. Herit. 2007, 8, 272–283. [Google Scholar] [CrossRef]
- Scianna, A.; Gaglio, G.F.; La Guardia, M. HBIM Data Management in Historical and Archaeological Buildings. Archeol. E Calcolatori 2020, 31, 231–252. [Google Scholar] [CrossRef]
- Deroin, J.-P.; Téreygeol, F.; Heckes, J. Remote Sensing Study of the Ancient Jabali Silver Mines (Yemen): From Past to Present. In Satellite Remote Sensing: A New Tool for Archaeology. In Proceedings of the 1st International EARSeL Workshop CNR, Rome, Italy, 30 September–4 October 2008. [Google Scholar]
- Deroin, J.-P.; Bou Kheir, R.; Abdallah, C. Geoarchaeological Remote Sensing Survey for Cultural Heritage Management. Case Study from Byblos (Jbail, Lebanon). J. Cult. Herit. 2017, 23, 37–43. [Google Scholar] [CrossRef] [Green Version]
- Chen, F.; Lasaponara, R.; Masini, N. An Overview of Satellite Synthetic Aperture Radar Remote Sensing in Archaeology: From Site Detection to Monitoring. J. Cult. Herit. 2017, 23, 5–11. [Google Scholar] [CrossRef]
- Cerra, D.; Agapiou, A.; Cavalli, R.M.; Sarris, A. An Objective Assessment of Hyperspectral Indicators for the Detection of Buried Archaeological Relics. Remote Sens. 2018, 10, 500. [Google Scholar] [CrossRef]
- Cucci, C.; Picollo, M.; Chiarantini, L.; Uda, G.; Fiori, L.; De Nigris, B.; Osanna, M. Remote-Sensing Hyperspectral Imaging for Applications in Archaeological Areas: Non-Invasive Investigations on Wall Paintings and on Mural Inscriptions in the Pompeii Site. Microchem. J. 2020, 158, 105082. [Google Scholar] [CrossRef]
- Alicandro, M.; Dominici, D.; Quaresima, R.; Zollini, S.; Luca, D.D.; Pietrangeli, S. Geomatic Multiscale Approach for the Conservation of Archeological Sites: The Case of Alba Fucens (L’Aquila-Italy). IOP Conf. Ser. Mater. Sci. Eng. 2020, 949, 012032. [Google Scholar] [CrossRef]
- Galadini, F.; Ceccaroni, E.; Falcucci, E. Archaeoseismological Evidence of a Disruptive Late Antique Earthquake at Alba Fucens (Central Italy). Boll. Geofis. Teor. Ed Appl. 2010, 51, 143–161. [Google Scholar]
- Galadini, F.; Ceccaroni, E.; Falcucci, E.; Gori, S. Le fasi di colluviamento tardoantiche nel Piano della Civita e la fine della frequentazione dell’abitato di Alba Fucens. In Proceedings of the Joseph Mertens Memory; Academia Belgica: Roma, Italy, 2012; pp. 187–199. [Google Scholar]
- Pennetta, M.; Stanislao, C.; D’Ambrosio, V.; Marchese, F.; Minopoli, C.; Trocciola, A.; Valente, R.; Donadio, C. Geomorphological Features of the Archaeological Marine Area of Sinuessa in Campania, Southern Italy. Quat. Int. 2016, 425, 198–213. [Google Scholar] [CrossRef]
- Cocco, E.; de Magistris, M.A.; Boscaino, F.; Iacono, Y.; Tarallo, F. Dati Preliminari Di Rilevamento Geomorfologico e Geolitologico Subacqueo Della Piattaforma Costiera Nell’area Di Mondragone (Piana Campana, Golfo Di Gaeta). Atti Convegno Internazionale Geosub 1996, 94, 105–114. [Google Scholar]
- Cocco, E.; Crimaco, L.; De Magistris, M.A.; Gasperetti, G. Primi Risultati Sulle Indagini Di Geoarcheologia Subacquea Nell’area Dell’antica Colonia Romana Di Sinuessa Presso Mondragone (Piana Campana, Golfo Di Gaeta). Mem. Descr. Della Carta Geol. D’Italia 1994, 52, 361–372. [Google Scholar]
- De Vivo, B.; Rolandi, G.; Gans, P.B.; Calvert, A.; Bohrson, W.A.; Spera, F.J.; Belkin, H.E. New Constraints on the Pyroclastic Eruptive History of the Campanian Volcanic Plain (Italy). Mineral. Petrol. 2001, 73, 47–65. [Google Scholar] [CrossRef]
- Trocciola, A. Sinuessa, Un Approdo Sommerso Di Epoca Romana. Archeologia, Geomorfologia Costiera, Strategie Sostenibili Di Valorizzazione; ENEA: Bologna, Italy, 2017. [Google Scholar]
- Pennetta, M.; Donadio, C.; Stanislao, C.; Valente, R.; Nappi, R. Assetto Geomorfologico Dell’area Marina Di Sinuessa Ed Ipotesi Di Fruizione Sostenibile. Energ. Ambiente Innov. 2016, 4, 48–53. [Google Scholar] [CrossRef]
- Cavinato, G.P.; Carusi, C.; Dall’Asta, M.; Miccadei, E.; Piacentini, T. Sedimentary and Tectonic Evolution of Plio–Pleistocene Alluvial and Lacustrine Deposits of Fucino Basin (Central Italy). Sediment. Geol. 2002, 148, 29–59. [Google Scholar] [CrossRef]
- Google Earth. Available online: https://www.google.it/intl/it/earth/ (accessed on 30 May 2021).
- Loizzo, R.; Daraio, M.; Guarini, R.; Longo, F.; Lorusso, R.; Dini, L.; Lopinto, E. Prisma Mission Status and Perspective. In Proceedings of the IGARSS 2019—2019 IEEE International Geoscience and Remote Sensing Symposium, Yokohama, Japan, 28 July–2 August 2019; pp. 4503–4506. [Google Scholar]
- Tripathi, P.; Garg, R.D. First Impressions from the PRISMA Hyperspectral Mission. Curr. Sci. 2020, 119, 1267–1281. [Google Scholar] [CrossRef]
- Lopinto, E.; Ananasso, C. The Prisma Hyperspectral Mission. In Proceedings of the 33rd EARSeL Symposium, Towards Horizon, Matera, Italy, 3–6 June 2013; p. 12. [Google Scholar]
- Kumar, M.V.; Yarrakula, K. Comparison of Efficient Techniques of Hyper-Spectral Image Preprocessing for Mineralogy and Vegetation Studies. IJMS 2017, 46, 1008–1021. [Google Scholar]
- Ganesh, B.P.; Aravindan, S.; Raja, S.; Thirunavukkarasu, A. Hyperspectral Satellite Data (Hyperion) Preprocessing—A Case Study on Banded Magnetite Quartzite in Godumalai Hill, Salem, Tamil Nadu, India. Arab. J. Geosci. 2013, 6, 3249–3256. [Google Scholar] [CrossRef]
- Processing of Hyperspectral Imagery. Available online: https://www.csr.utexas.edu/projects/rs/hrs/process.html (accessed on 19 December 2021).
- Ji, L.; Geng, X.; Zhao, Y.; Wang, F. An Automatic Bad Band Preremoval Algorithm for Hyperspectral Imagery. Available online: https://arxiv.org/abs/1610.05929 (accessed on 19 December 2021).
- Ji, L.; Wang, L.; Geng, X. An Automatic Bad Band Pre-Removal Method for Hyperspectral Imagery. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2019, 12, 4985–4994. [Google Scholar] [CrossRef]
- Rasti, B.; Ulfarsson, M.O.; Ghamisi, P. Automatic Hyperspectral Image Restoration Using Sparse and Low-Rank Modeling. IEEE Geosci. Remote Sens. Lett. 2017, 14, 2335–2339. [Google Scholar] [CrossRef]
- Rasti, B.; Scheunders, P.; Ghamisi, P.; Licciardi, G.; Chanussot, J. Noise Reduction in Hyperspectral Imagery: Overview and Application. Remote Sens. 2018, 10, 482. [Google Scholar] [CrossRef] [Green Version]
- Maggioni, M.; Katkovnik, V.; Egiazarian, K.; Foi, A. Nonlocal Transform-Domain Filter for Volumetric Data Denoising and Reconstruction. IEEE Trans. Image Process. 2013, 22, 119–133. [Google Scholar] [CrossRef] [PubMed]
- Abdi, H.; Williams, L.J. Principal Component Analysis. WIREs Comput. Stat. 2010, 2, 433–459. [Google Scholar] [CrossRef]
- Johnson, R.A.; Wichern, D.W. Applied Multivariate Statistical Analysis, 6th ed.; Pearson Prentice Hall: Upper Saddle River, NJ, USA, 2007; ISBN 978-0-13-187715-3. [Google Scholar]
- Atkinson, P.M. Spatial Statistics. In Spatial Statistics for Remote Sensing; Springer: Berlin/Heidelberg, Germany, 1999; pp. 57–81. [Google Scholar]
- Guo, B.; Damper, R.I.; Gunn, S.R.; Nelson, J.D. A Fast Separability-Based Feature-Selection Method for High-Dimensional Remotely Sensed Image Classification. Pattern Recognit. 2008, 41, 1653–1662. [Google Scholar] [CrossRef] [Green Version]
- Staenz, K.; Held, A. Summary of Current and Future Terrestrial Civilian Hyperspectral Spaceborne Systems. In Proceedings of the 2012 IEEE International Geoscience and Remote Sensing Symposium, Munich, Germany, 22–27 July 2012; pp. 123–126. [Google Scholar]
- Van der Meer, F. Imaging Spectrometry for Geological Remote Sensing. Geol. En Mijnb. 1998, 77, 137–151. [Google Scholar] [CrossRef]
- Brivio, P.; Lechi-Lechi, G.; Zilioli, E. Principi e Metodi Di Telerilevamento; CittaStudi: Milano, Italy, 2006. [Google Scholar]
- Rodarmel, C.; Shan, J. Principal Component Analysis for Hyperspectral Image Classification. Surv. Land Inf. Sci. 2002, 62, 115–122. [Google Scholar]
- Loughlin, W.P. Principal Component Analysis for Alteration Mapping. Photogramm. Eng. Remote Sens. 1991, 57, 1163–1169. [Google Scholar]
- Abate, N.; Frisetti, A.; Marazzi, F.; Masini, N.; Lasaponara, R. Multitemporal–Multispectral UAS Surveys for Archaeological Research: The Case Study of San Vincenzo Al Volturno (Molise, Italy). Remote Sens. 2021, 13, 2719. [Google Scholar] [CrossRef]
- Lasaponara, A.R.; Masini, B.N. Improving Satellite Quickbird-Based Identification of Landscape Archaeological Features Through Tasseled Cap Transformation and Pca. June 2007. Available online: https://scholar.google.com.sg/scholar?q=Improving+Satellite+Quickbird-Based+Identification+of+Landscape+Archaeological+Features+Through+Tasseled+Cap+Transformation+and+Pca&hl=zh-CN&as_sdt=0&as_vis=1&oi=scholart (accessed on 21 May 2021).
- Agapiou, A.; Alexakis, D.D.; Sarris, A.; Hadjimitsis, D.G. Evaluating the Potentials of Sentinel-2 for Archaeological Perspective. Remote Sens. 2014, 6, 2176–2194. [Google Scholar] [CrossRef] [Green Version]
- Abate, N.; Elfadaly, A.; Masini, N.; Lasaponara, R. Multitemporal 2016–2018 Sentinel-2 Data Enhancement for Landscape Archaeology: The Case Study of the Foggia Province, Southern Italy. Remote Sens. 2020, 12, 1309. [Google Scholar] [CrossRef] [Green Version]
- Kruse, F.A.; Lefkoff, A.B.; Boardman, J.W.; Heidebrecht, K.B.; Shapiro, A.T.; Barloon, P.J.; Goetz, A.F.H. The Spectral Image Processing System (SIPS)—Interactive Visualization and Analysis of Imaging Spectrometer Data. Remote Sens. Environ. 1993, 44, 145–163. [Google Scholar] [CrossRef]
- Du, Q.; Yang, H. Similarity-Based Unsupervised Band Selection for Hyperspectral Image Analysis. IEEE Geosci. Remote Sens. Lett. 2008, 5, 564–568. [Google Scholar] [CrossRef]
- Sun, K.; Geng, X.; Ji, L. Exemplar Component Analysis: A Fast Band Selection Method for Hyperspectral Imagery. IEEE Geosci. Remote Sens. Lett. 2014, 12, 998–1002. [Google Scholar]
- Castaldi, F. Sentinel-2 and Landsat-8 Multi-Temporal Series to Estimate Topsoil Properties on Croplands. Remote Sens. 2021, 13, 3345. [Google Scholar] [CrossRef]
- Wang, J.; Ding, J.; Yu, D.; Ma, X.; Zhang, Z.; Ge, X.; Teng, D.; Li, X.; Liang, J.; Lizaga, I.; et al. Capability of Sentinel-2 MSI Data for Monitoring and Mapping of Soil Salinity in Dry and Wet Seasons in the Ebinur Lake Region, Xinjiang, China. Geoderma 2019, 353, 172–187. [Google Scholar] [CrossRef]
- Wang, J.; Peng, J.; Li, H.; Yin, C.; Liu, W.; Wang, T.; Zhang, H. Soil Salinity Mapping Using Machine Learning Algorithms with the Sentinel-2 MSI in Arid Areas, China. Remote Sens. 2021, 13, 305. [Google Scholar] [CrossRef]
- Centamore, E.; Crescenti, U.; Dramis, F. 368 Avezzano. Available online: https://www.isprambiente.gov.it/Media/carg/368_AVEZZANO/Foglio.html (accessed on 21 May 2021).
- Spectroscopy Lab. Available online: https://www.usgs.gov/labs/spec-lab (accessed on 21 May 2021).
- Hochberg, E.J.; Andréfouët, S.; Tyler, M.R. Sea Surface Correction of High Spatial Resolution Ikonos Images to Improve Bottom Mapping in Near-Shore Environments. IEEE Trans. Geosci. Remote Sens. 2003, 41, 1724–1729. [Google Scholar] [CrossRef]
- Zoffoli, M.L.; Frouin, R.; Kampel, M. Water Column Correction for Coral Reef Studies by Remote Sensing. Sensors 2014, 14, 16881–16931. [Google Scholar] [CrossRef]
- Lyons, M.B.; Roelfsema, C.M.; Kennedy, E.V.; Kovacs, E.M.; Borrego-Acevedo, R.; Markey, K.; Roe, M.; Yuwono, D.M.; Harris, D.L.; Phinn, S.R. Mapping the World’s Coral Reefs Using a Global Multiscale Earth Observation Framework. Remote Sens. Ecol. Conserv. 2020, 6, 557–568. [Google Scholar] [CrossRef] [Green Version]
- Roelfsema, C.; Kovacs, E.; Ortiz, J.C.; Wolff, N.H.; Callaghan, D.; Wettle, M.; Ronan, M.; Hamylton, S.M.; Mumby, P.J.; Phinn, S. Coral Reef Habitat Mapping: A Combination of Object-Based Image Analysis and Ecological Modelling. Remote Sens. Environ. 2018, 208, 27–41. [Google Scholar] [CrossRef]
- Roelfsema, C.M.; Kovacs, E.M.; Ortiz, J.C.; Callaghan, D.P.; Hock, K.; Mongin, M.; Johansen, K.; Mumby, P.J.; Wettle, M.; Ronan, M. Habitat Maps to Enhance Monitoring and Management of the Great Barrier Reef. Coral Reefs 2020, 39, 1039–1054. [Google Scholar] [CrossRef]
- Spalding, M.D.; Fox, H.E.; Allen, G.R.; Davidson, N.; Ferdaña, Z.A.; Finlayson, M.A.X.; Halpern, B.S.; Jorge, M.A.; Lombana, A.L.; Lourie, S.A. Marine Ecoregions of the World: A Bioregionalization of Coastal and Shelf Areas. BioScience 2007, 57, 573–583. [Google Scholar] [CrossRef] [Green Version]
- Lee, Z.; Carder, K.L.; Arnone, R.A. Deriving Inherent Optical Properties from Water Color: A Multiband Quasi-Analytical Algorithm for Optically Deep Waters. Appl. Opt. 2002, 41, 5755–5772. [Google Scholar] [CrossRef]
- Li, J.; Yu, Q.; Tian, Y.Q.; Becker, B.L. Remote Sensing Estimation of Colored Dissolved Organic Matter (CDOM) in Optically Shallow Waters. ISPRS J. Photogramm. Remote Sens. 2017, 128, 98–110. [Google Scholar] [CrossRef] [Green Version]
- Li, J.; Knapp, D.E.; Schill, S.R.; Roelfsema, C.; Phinn, S.; Silman, M.; Mascaro, J.; Asner, G.P. Adaptive Bathymetry Estimation for Shallow Coastal Waters Using Planet Dove Satellites. Remote Sens. Environ. 2019, 232, 111302. [Google Scholar] [CrossRef]
- Hedley, J.D.; Harborne, A.R.; Mumby, P.J. Simple and Robust Removal of Sun Glint for Mapping Shallow-Water Benthos. Int. J. Remote Sens. 2005, 26, 2107–2112. [Google Scholar] [CrossRef]
- Mumby, P.J.; Clark, C.D.; Green, E.P.; Edwards, A.J. Benefits of Water Column Correction and Contextual Editing for Mapping Coral Reefs. Int. J. Remote Sens. 1998, 19, 203–210. [Google Scholar] [CrossRef]
- Kay, S.; Hedley, J.D.; Lavender, S. Sun Glint Correction of High and Low Spatial Resolution Images of Aquatic Scenes: A Review of Methods for Visible and near-Infrared Wavelengths. Remote Sens. 2009, 1, 697–730. [Google Scholar] [CrossRef]
- Trocciola, A.; Minopoli, C.; Pica, R. Elaborazione di un itinerario subacqueo sul banco roccioso di Sinuessa. Energ. Ambiente Innov. 2017, 54–59. [Google Scholar] [CrossRef]
- Novoa, S.; Doxaran, D.; Ody, A.; Vanhellemont, Q.; Lafon, V.; Lubac, B.; Gernez, P. Atmospheric Corrections and Multi-Conditional Algorithm for Multi-Sensor Remote Sensing of Suspended Particulate Matter in Low-to-High Turbidity Levels Coastal Waters. Remote Sens. 2017, 9, 61. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Alicandro, M.; Candigliota, E.; Dominici, D.; Immordino, F.; Masin, F.; Pascucci, N.; Quaresima, R.; Zollini, S. Hyperspectral PRISMA and Sentinel-2 Preliminary Assessment Comparison in Alba Fucens and Sinuessa Archaeological Sites (Italy). Land 2022, 11, 2070. https://doi.org/10.3390/land11112070
Alicandro M, Candigliota E, Dominici D, Immordino F, Masin F, Pascucci N, Quaresima R, Zollini S. Hyperspectral PRISMA and Sentinel-2 Preliminary Assessment Comparison in Alba Fucens and Sinuessa Archaeological Sites (Italy). Land. 2022; 11(11):2070. https://doi.org/10.3390/land11112070
Chicago/Turabian StyleAlicandro, Maria, Elena Candigliota, Donatella Dominici, Francesco Immordino, Fabrizio Masin, Nicole Pascucci, Raimondo Quaresima, and Sara Zollini. 2022. "Hyperspectral PRISMA and Sentinel-2 Preliminary Assessment Comparison in Alba Fucens and Sinuessa Archaeological Sites (Italy)" Land 11, no. 11: 2070. https://doi.org/10.3390/land11112070
APA StyleAlicandro, M., Candigliota, E., Dominici, D., Immordino, F., Masin, F., Pascucci, N., Quaresima, R., & Zollini, S. (2022). Hyperspectral PRISMA and Sentinel-2 Preliminary Assessment Comparison in Alba Fucens and Sinuessa Archaeological Sites (Italy). Land, 11(11), 2070. https://doi.org/10.3390/land11112070