Multi-Scenario Prediction of Landscape Ecological Risk in the Sichuan-Yunnan Ecological Barrier Based on Terrain Gradients
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Data Sources
2.3. Methods
2.3.1. Landscape Ecological Risk Analysis
- (1)
- Landscape disturbance index (Ei)
- (2)
- Landscape fragility index (Fi)
- (3)
- Landscape ecological loss degree index (Ri)
- (4)
- Landscape Ecological Risk Index (LERI)
2.3.2. Multi-Scenario Simulation
2.3.3. Influence of Terrain Conditions
2.3.4. Spatial Regression Analysis
2.3.5. Spatial Auto-Correlation Analysis
3. Results
3.1. Land Use Change and Multi-Scenario Simulation
3.2. Land Use Change and Multi-Scenario Simulation
3.3. Spatial Auto-Correlation Analysis of Landscape Ecological Risk
3.4. Effect of Terrain Gradient on Ecological Risk in the Landscape
3.5. Response of Landscape Ecological Risk to Terrain Gradients
4. Discussion
4.1. Reasons for Changes in Landscape Ecological Risk
4.2. Effects of Terrain Gradient on Landscape Ecological Risk
4.3. Policy Impact of Regional Development
4.4. Limitations and Future Research
5. Conclusions
- (1)
- The characteristics of land use change in the study area are the reduction in cultivated land, forests, and grasslands and the continuous increase in the artificial land surface. The future landscape types of forest, grassland, and cultivated land are relatively stable. The continued increase in artificial land surface under the UDC scenario comes from the encroachment of cultivated land and forest.
- (2)
- The overall risk index increased from 2000 to 2010. The highest-risk areas were concentrated in the Chengdu Plain, where human activities are concentrated on a large scale. The period between 2010–2020 saw a gradual improvement in ecological stability. The increasing highest risk and higher risk areas under the UDC scenario, and the resulting fluctuations in ecological risk, require urgent attention. The EDP scenario development pattern is more in line with the functional positioning of the ecological barrier of Sichuan and Yunnan.
- (3)
- The distribution index of high-risk classes on low-terrain gradients is greater than 4.9. The high-risk level has a strong selectivity for low terrain gradients, and human activity interference becomes the main external factor. The response of the LER to gradient changes is shown as follows: Areas with high positive correlation are concentrated in high-gradient areas, and areas with a high negative association are focused in low-gradient areas. The influence of terrain gradient change on the LER remains significant for the future. In addition, the response of the LER to terrain gradient change is stronger under the UDC scenario and EDP scenarios.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
References
- Manuel-Navarrete, D.; Gómez, J.J.; Gallopín, G. Syndromes of Sustainability of Development for Assessing the Vulnerability of Coupled Human-Environmental Systems. The Case of Hydrometeorological Disasters in Central America and the Caribbean. Glob. Environ. Chang. 2007, 17, 207–217. [Google Scholar] [CrossRef]
- Kidane, Y.; Stahlmann, R.; Beierkuhnlein, C. Vegetation Dynamics, and Land Use and Land Cover Change in the Bale Mountains, Ethiopia. Environ. Monit. Assess. 2012, 184, 7473–7489. [Google Scholar] [CrossRef] [PubMed]
- Xie, H.; Wang, P.; Huang, H. Ecological Risk Assessment of Land Use Change in the Poyang Lake Eco-Economic Zone, China. Int. J. Environ. Res. Public Health 2013, 10, 328–346. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hou, M.; Ge, J.; Gao, J.; Meng, B.; Li, Y.; Yin, J.; Liu, J.; Feng, Q.; Liang, T. Ecological Risk Assessment and Impact Factor Analysis of Alpine Wetland Ecosystem Based on LUCC and Boosted Regression Tree on the Zoige Plateau, China. Remote Sens. 2020, 12, 368. [Google Scholar] [CrossRef] [Green Version]
- Wang, H.; Liu, X.; Zhao, C.; Chang, Y.; Liu, Y.; Zang, F. Spatial-Temporal Pattern Analysis of Landscape Ecological Risk Assessment Based on Land Use/Land Cover Change in Baishuijiang National Nature Reserve in Gansu Province, China. Ecol. Indic. 2021, 124, 107454. [Google Scholar] [CrossRef]
- Jin, X.; Jin, Y.; Mao, X. Ecological Risk Assessment of Cities on the Tibetan Plateau Based on Land Use/Land Cover Changes—Case Study of Delingha City. Ecol. Indic. 2019, 101, 185–191. [Google Scholar] [CrossRef]
- Cao, Q.; Zhang, X.; Lei, D.; Guo, L.; Sun, X.; Kong, F.; Wu, J. Multi-Scenario Simulation of Landscape Ecological Risk Probability to Facilitate Different Decision-Making Preferences. J. Clean. Prod. 2019, 227, 325–335. [Google Scholar] [CrossRef]
- Peng, J.; Dang, W.; Liu, Y.; Zong, M.; Hu, X. Review on Landscape Ecological Risk Assessment. Acta Geogr. Sin. 2015, 70, 664–677. [Google Scholar] [CrossRef]
- Cui, X.; Deng, W.; Yang, J.; Huang, W.; de Vries, W.T. Construction and Optimization of Ecological Security Patterns Based on Social Equity Perspective: A Case Study in Wuhan, China. Ecol. Indic. 2022, 136, 108714. [Google Scholar] [CrossRef]
- Zhang, Y.; Yang, Y.; Chen, Z.; Zhang, S. Multi-Criteria Assessment of the Resilience of Ecological Function Areas in China with a Focus on Ecological Restoration. Ecol. Indic. 2020, 119, 106862. [Google Scholar] [CrossRef]
- Watson, J.E.M.; Keith, D.A.; Strassburg, B.B.N.; Venter, O.; Williams, B.; Nicholson, E. Set a Global Target for Ecosystems. Nature 2020, 578, 360–362. [Google Scholar] [CrossRef] [Green Version]
- Hou, P.; Zhai, J.; Cao, W.; Yang, M.; Cai, M.; Li, J. Evaluation on Ecosystem Changes and Protection of the National Key Ecological Function Zones in Mountainous Areas of Central Hainan Island. Acta Geogr. Sin. 2018, 73, 429–441. [Google Scholar] [CrossRef]
- Li, S.; Liu, Y.; Yang, H.; Yu, X.; Zhang, Y.; Wang, C. Integrating Ecosystem Services Modeling into Effectiveness Assessment of National Protected Areas in a Typical Arid Region in China. J. Environ. Manag. 2021, 297, 113408. [Google Scholar] [CrossRef]
- Li, C.; Wu, Y.; Gao, B.; Zheng, K.; Wu, Y.; Li, C. Multi-Scenario Simulation of Ecosystem Service Value for Optimization of Land Use in the Sichuan-Yunnan Ecological Barrier, China. Ecol. Indic. 2021, 132, 108328. [Google Scholar] [CrossRef]
- Fan, J.; Wang, Y.; Zhou, Z.; You, N.; Meng, J. Dynamic Ecological Risk Assessment and Management of Land Use in the Middle Reaches of the Heihe River Based on Landscape Patterns and Spatial Statistics. Sustainability 2016, 8, 536. [Google Scholar] [CrossRef] [Green Version]
- Gong, J.; Yang, J.; Tang, W. Spatially Explicit Landscape-Level Ecological Risks Induced by Land Use and Land Cover Change in a National Ecologically Representative Region in China. Int. J. Environ. Res. Public Health 2015, 12, 14192–14215. [Google Scholar] [CrossRef] [Green Version]
- Zhang, F.; Yushanjiang, A.; Wang, D. Ecological Risk Assessment Due to Land Use/Cover Changes (LUCC) in Jinghe County, Xinjiang, China from 1990 to 2014 Based on Landscape Patterns and Spatial Statistics. Environ. Earth Sci. 2018, 77, 1–16. [Google Scholar] [CrossRef]
- Sun, D.; Youjia, L. Multi-Scenario Simulation of Land Use Dynamic in the Loess Plateau Using an Improved Markov-CA Model. J. Geogr. Inf. Sci. 2021, 23, 825–836. [Google Scholar] [CrossRef]
- Verburg, P.H.; Soepboer, W.; Veldkamp, A.; Limpiada, R.; Espaldon, V.; Mastura, S.S.A. Modeling the Spatial Dynamics of Regional Land Use: The CLUE-S Model. Environ. Manag. 2002, 30, 391–405. [Google Scholar] [CrossRef]
- Zeng, Y.; Wenping, J.; Wang, H.; Zhang, H. Simulation of Land-Use Changes and Landscape Ecological Assessment in Eastern Part of Qinghai Plateau. Trans. Chin. Soc. Agric. Eng. 2014, 30, 185–194. [Google Scholar] [CrossRef]
- Li, Y.; Huang, S. Landscape Ecological Risk Responses to Land Use Change in the Luanhe River Basin, China. Sustainability 2015, 7, 16631–16652. [Google Scholar] [CrossRef] [Green Version]
- Li, W.; Lan, Z.; Chen, D.; Zhijan, Z. Multi-Scenario Simulation of Land Use and Its Spatial-Temporal Response to Ecological Risk in Guangzhou City. Bull. Soil Water Conserv. 2020, 40, 204–210. [Google Scholar] [CrossRef]
- Zhang, J.; Ren, Z. Spatiotemporal Pattern and Terrain Gradient Effect of Land Use Change in Qinling-Bashan Mountains. Trans. Chin. Soc. Agric. Eng. 2016, 32, 250–257. [Google Scholar] [CrossRef]
- Andraski, B.J.; Jackson, W.A.; Welborn, T.L.; Böhlke, J.K.; Sevanthi, R.; Stonestrom, D.A. Soil, Plant, and Terrain Effects on Natural Perchlorate Distribution in a Desert Landscape. J. Environ. Qual. 2014, 43, 980–994. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Xue, L.; Zhu, B.; Wu, Y.; Wei, G.; Liao, S.; Yang, C.; Wang, J.; Zhang, H.; Ren, L.; Han, Q. Dynamic Projection of Ecological Risk in the Manas River Basin Based on Terrain Gradients. Sci. Total Environ. 2019, 653, 283–293. [Google Scholar] [CrossRef]
- Yan, J.; Li, G.; Qi, G.; Qiao, H.; Nie, Z.; Huang, C.; Kang, Y.; Sun, D.; Zhang, M.; Kang, X.; et al. Landscape Ecological Risk Assessment of Farming-Pastoral Ecotone in China Based on Terrain Gradients. Hum. Ecol. Risk Assess. 2021, 27, 2124–2141. [Google Scholar] [CrossRef]
- Ma, S.; Qiao, Y.P.; Wang, L.J.; Zhang, J.C. Terrain Gradient Variations in Ecosystem Services of Different Vegetation Types in Mountainous Regions: Vegetation Resource Conservation and Sustainable Development. For. Ecol. Manag. 2021, 482, 118856. [Google Scholar] [CrossRef]
- Fu, B.; Wang, X.; Feng, X. National Barrise Zone Ecosystem Services Assessment; Science Press: Beijing, China, 2017; ISBN 978-7-03-051704-3. [Google Scholar]
- Chen, J.; Ban, Y.; Li, S. Open Access to Earth Land-Cover Map. Nature 2014, 514, 434. [Google Scholar] [CrossRef] [Green Version]
- Xu, X. Spatial Interpolation Dataset of the Average Condition of Meteorological Elements in China. Resour. Environ. Sci. Data Regist. Publ. Syst. 2017. [Google Scholar] [CrossRef]
- Xu, X. Spatial Distribution of GDP in China with Kilometer Grid Dataset. Resour. Environ. Sci. Data Regist. Publ. Syst. 2017. [Google Scholar] [CrossRef]
- Stevens, F.R.; Gaughan, A.E.; Linard, C.; Tatem, A.J. Disaggregating Census Data for Population Mapping Using Random Forests with Remotely-Sensed and Ancillary Data. PLoS ONE 2015, 10, e0107042. [Google Scholar] [CrossRef] [Green Version]
- Chen, Z.; Yu, B.; Yang, C.; Zhou, Y.; Yao, S.; Qian, X.; Wang, C.; Wu, B.; Wu, J. An Extended Time-Series (2000–2018) of Global NPP-VIIRS-like Nighttime Light Data. Earth Syst. Sci. Data 2021, 13, 889–906. [Google Scholar] [CrossRef]
- Wang, J.; Bai, W.; Tian, G. Spatiotemporal Characteristics of Landscape Ecological Risks on the Tibetan Plateau. Resour. Sci. 2020, 42, 1739–1749. [Google Scholar] [CrossRef]
- Dale, V.H.; Kline, K.L. Issues in Using Landscape Indicators to Assess Land Changes. Ecol. Indic. 2013, 28, 91–99. [Google Scholar] [CrossRef]
- Ju, H.; Niu, C.; Zhang, S.; Jiang, W.; Zhang, Z.; Zhang, X.; Yang, Z.; Cui, Y. Spatiotemporal Patterns and Modifiable Areal Unit Problems of the Landscape Ecological Risk in Coastal Areas: A Case Study of the Shandong Peninsula, China. J. Clean. Prod. 2021, 310, 127522. [Google Scholar] [CrossRef]
- Mo, W.; Wang, Y.; Zhang, Y.; Zhuang, D. Impacts of Road Network Expansion on Landscape Ecological Risk in a Megacity, China: A Case Study of Beijing. Sci. Total Environ. 2017, 574, 1000–1011. [Google Scholar] [CrossRef] [Green Version]
- Xie, X.; Chen, Z.; Wang, F.; Bai, M.; Xu, W. Ecological Risk Assessment of Taihu Lake Basin Based on Landscape Pattern. Chinese J. Appl. Ecol. 2017, 28, 3369–3377. [Google Scholar] [CrossRef]
- Wang, B.; Ding, M.; Li, S.; Liu, L.; Ai, J. Assessment of Landscape Ecological Risk for a Cross-Border Basin: A Case Study of the Koshi River Basin, Central Himalayas. Ecol. Indic. 2020, 117, 106621. [Google Scholar] [CrossRef]
- Gao, X.; Yang, L.; Li, C.; Song, Z.; Wang, J. Land Use Change and Ecosystem Service Value Measurement in Baiyangdian Basin under the Simulated Multiple Scenarios. Acta Ecol. Sin. 2021, 41, 1–15. [Google Scholar] [CrossRef]
- Wang, X.; Ma, B.; Li, D.; Chen, K.; Yao, H. Multi-Scenario Simulation and Prediction of Ecological Space in Hubei Province Based on FLUS Model. J. Nat. Resour. 2020, 35, 230–242. [Google Scholar] [CrossRef]
- Liu, X.; Liang, X.; Li, X.; Xu, X.; Ou, J.; Chen, Y.; Li, S.; Wang, S.; Pei, F. A Future Land Use Simulation Model (FLUS) for Simulating Multiple Land Use Scenarios by Coupling Human and Natural Effects. Landsc. Urban Plan. 2017, 168, 94–116. [Google Scholar] [CrossRef]
- Liang, X.; Guan, Q.; Clarke, K.C.; Liu, S.; Wang, B.; Yao, Y. Understanding the Drivers of Sustainable Land Expansion Using a Patch-Generating Land Use Simulation (PLUS) Model: A Case Study in Wuhan, China. Comput. Environ. Urban Syst. 2021, 85, 101569. [Google Scholar] [CrossRef]
- Shi, M.; Wu, H.; Fan, X.; Jia, H.; Dong, T.; He, P.; Baqa, M.F.; Jiang, P. Trade-Offs and Synergies of Multiple Ecosystem Services for Different Land Use Scenarios in the Yili River Valley, China. Sustainability 2021, 13, 1577. [Google Scholar] [CrossRef]
- Wang, B.; Liao, J.; Zhu, W.; Qiu, Q.; Wagn, L.; Tang, L. The Weight of Neighborhood Setting of the FLUS Model Based on a Historical Scenario: A Case Study of Land Use Simulation of Urban Agglomeration of the Golden Triangle of Southern Fujian in 2030. Shengtai Xuebao Acta Ecol. Sin. 2019, 39, 4284–4298. [Google Scholar] [CrossRef]
- Ouyang, X.; He, Q.; Zhu, X. Simulation of Impacts of Urban Agglomeration Land Use Change on Ecosystem Services Value under Multi-Scenarios: Case Study in Changsha-Zhuzhou-Xiangtan Urban Agglomeration. Econ. Geogr. 2020, 40, 93–102. [Google Scholar] [CrossRef]
- Wu, C.; Chen, B.; Huang, X.; Dennis Wei, Y.H. Effect of Land-Use Change and Optimization on the Ecosystem Service Values of Jiangsu Province, China. Ecol. Indic. 2020, 117, 106507. [Google Scholar] [CrossRef]
- Cao, Q.; Zhang, X.; Ma, H.; Wu, J. Review of Landscape Ecological Risk and an Assessment Framework Based on Ecological Services: ESRISK. Acta Geogr. Sin. 2018, 73, 843–855. [Google Scholar] [CrossRef]
- YU, H.; Zeng, H.; Jiang, Z. Study on Distribution Characteristics of Landscape Elements along the Terrain Gradient. Sci. Geogr. Sin. 2001, 21, 64–69. [Google Scholar] [CrossRef]
- Mansour, S.; Al Kindi, A.; Al-Said, A.; Al-Said, A.; Atkinson, P. Sociodemographic Determinants of COVID-19 Incidence Rates in Oman: Geospatial Modelling Using Multiscale Geographically Weighted Regression (MGWR). Sustain. Cities Soc. 2021, 65, 102627. [Google Scholar] [CrossRef]
- Mollalo, A.; Vahedi, B.; Rivera, K.M. GIS-Based Spatial Modeling of COVID-19 Incidence Rate in the Continental United States. Sci. Total Environ. 2020, 728, 138884. [Google Scholar] [CrossRef]
- Zhou, T.; Chen, W.; Li, J.; Liang, J. Spatial Relationship between Human Activities and Habitat Quality in Shennongjia Forest Region from 1995 to 2015. Acta Ecol. Sin. 2021, 41, 6134–6145. [Google Scholar] [CrossRef]
- Oshan, T.M.; Li, Z.; Kang, W.; Wolf, L.J.; Stewart Fotheringham, A. MGWR: A Python Implementation of Multiscale Geographically Weighted Regression for Investigating Process Spatial Heterogeneity and Scale. ISPRS Int. J. Geo-Inf. 2019, 8, 269. [Google Scholar] [CrossRef] [Green Version]
- Zhou, S.; Chang, J.; Hu, T.; Luo, P.; Zhou, H. Spatiotemporal Variations of Land Use and Landscape Ecological Risk in a Resource-Based City, from Rapid Development to Recession. Polish J. Environ. Stud. 2020, 29, 475–490. [Google Scholar] [CrossRef]
- Gao, B.; Li, C.; Wu, Y.; Zheng, K.; Wu, Y. Landscape Ecological Risk Assessment and Influencing Factors in Ecological Conservation Area in Sichuan-Yunnan Provinces, China. Chin. J. Appl. Ecol. 2021, 32, 1603–1613. [Google Scholar] [CrossRef]
- Liu, S.; Bai, M.; Yao, M. Integrating Ecosystem Function and Structure to Assess Landscape Ecological Risk in Traditional Village Clustering Areas. Sustainability 2021, 13, 4860. [Google Scholar] [CrossRef]
- Xue, L.; Wang, J.; Zhang, L.; Wei, G.; Zhu, B. Spatiotemporal Analysis of Ecological Vulnerability and Management in the Tarim River Basin, China. Sci. Total Environ. 2019, 649, 876–888. [Google Scholar] [CrossRef]
- Guan, D.J.; Li, H.F.; Inohae, T.; Su, W.; Nagaie, T.; Hokao, K. Modeling Urban Land Use Change by the Integration of Cellular Automaton and Markov Model. Ecol. Modell. 2011, 222, 3761–3772. [Google Scholar] [CrossRef]
- Liu, J.; Kuang, W.; Zhang, Z.; Xu, X.; Qin, Y.; Ning, J.; Zhou, W.; Zhang, S.; Li, R.; Yan, C.; et al. Spatiotemporal Characteristics, Patterns, and Causes of Land-Use Changes in China since the Late 1980s. J. Geogr. Sci. 2014, 24, 195–210. [Google Scholar] [CrossRef]
- Liu, Y.; Long, H. Land Use Transitions and Their Dynamic Mechanism: The Case of the Huang-Huai-Hai Plain. J. Geogr. Sci. 2016, 26, 515–530. [Google Scholar] [CrossRef] [Green Version]
- Sabr, A.; Moeinaddini, M.; Azarnivand, H.; Guinot, B. Assessment of Land Use and Land Cover Change Using Spatiotemporal Analysis of Landscape: Case Study in South of Tehran. Environ. Monit. Assess. 2016, 188, 691. [Google Scholar] [CrossRef]
- Koroso, N.H.; Lengoiboni, M.; Zevenbergen, J.A. Urbanization and Urban Land Use Efficiency: Evidence from Regional and Addis Ababa Satellite Cities, Ethiopia. Habitat Int. 2021, 117, 102437. [Google Scholar] [CrossRef]
- Cui, X.; Liu, C.; Shan, L.; Lin, J.; Zhang, J.; Jiang, Y.; Zhang, G. Spatial-Temporal Responses of Ecosystem Services to Land Use Transformation Driven by Rapid Urbanization: A Case Study of Hubei Province, China. Int. J. Environ. Res. Public Health 2022, 19, 178. [Google Scholar] [CrossRef] [PubMed]
- Davoudi, S.; Shaw, K.; Haider, L.J.; Quinlan, A.E.; Peterson, G.D.; Wilkinson, C.; Fünfgeld, H.; McEvoy, D.; Porter, L.; Davoudi, S. Resilience: A Bridging Concept or a Dead End? Planning. Plan. Theory Pract. 2012, 13, 299–307. [Google Scholar] [CrossRef] [Green Version]
- Ouyang, Z.; Zheng, H.; Xiao, Y.; Polasky, S.; Liu, J.; Xu, W.; Wang, Q.; Zhang, L.; Xiao, Y.; Rao, E.; et al. Improvements in Ecosystem Services from Investments in Natural Capital. Science 2016, 352, 1455–1459. [Google Scholar] [CrossRef] [PubMed]
- Peng, L.; Wang, X. xi What Is the Relationship between Ecosystem Services and Urbanization? A Case Study of the Mountainous Areas in Southwest China. J. Mt. Sci. 2019, 16, 2867–2881. [Google Scholar] [CrossRef]
- Luo, F.; Liu, Y.; Peng, J.; Wu, J. Assessing Urban Landscape Ecological Risk through an Adaptive Cycle Framework. Landsc. Urban Plan. 2018, 180, 125–134. [Google Scholar] [CrossRef]
- Zhang, H.; Yang, Y.; Li, Y. Discussion on Ecosystem Degradation and Restoration in Karst Rock Desertification Areas of Southwest China. Ecol. Sci. 2015, 34, 169–174. [Google Scholar] [CrossRef]
- Yan, Y.; Yang, L.; Wang, W.; Fang, H.; Zhuang, Q. Analysis of Spatial-Temporal Variation of Landscape Ecological Risk and Its Terrain Gradient in Ili Valley. Ecol. Sci. 2020, 39, 125–136. [Google Scholar] [CrossRef]
- Yin, L.; Dai, E.; Xie, G.; Zhang, B. Effects of Land-Use Intensity and Land Management Policies on Evolution of Regional Land System: A Case Study in the Hengduan Mountain Region. Land 2021, 10, 528. [Google Scholar] [CrossRef]
- Zhang, Z.; Li, Z.; He, X.; Liu, L.; Wang, P. Progress in the Research on Glacial Change and Water Resources in the Manas River Basin. Res. Soil Water Conserv. 2014, 21, 332–337. [Google Scholar] [CrossRef]
- Liu, W.; Henneberry, S.R.; Ni, J.; Radmehr, R.; Wei, C. Socio-Cultural Roots of Rural Settlement Dispersion in Sichuan Basin: The Perspective of Chinese Lineage. Land Use Policy 2019, 88, 104162. [Google Scholar] [CrossRef]
- Zinda, J.A.; Trac, C.J.; Zhai, D.; Harrell, S. Dual-Function Forests in the Returning Farmland to Forest Program and the Flexibility of Environmental Policy in China. Geoforum 2017, 78, 119–132. [Google Scholar] [CrossRef] [Green Version]
- Dorren, L.K.A.; Berger, F.; Imeson, A.C.; Maier, B.; Rey, F. Integrity, Stability and Management of Protection Forests in the European Alps. For. Ecol. Manag. 2004, 195, 165–176. [Google Scholar] [CrossRef] [Green Version]
- Yao, S.; Lu, D.; Wang, C.; Duan, J.; Wu, Q. Urbanization in China Needs Comprehensive Scientific Thinking: Exploration of the Urbanization Mode Adapted to the Special Situation of China. Geogr. Res. 2011, 30, 1947–1955. [Google Scholar]
- Hou, P.; Gao, J.; Chen, Y.; Zhai, J.; Xiao, R.; Zhang, W.; Sun, C.; Wang, Y.; Hou, J. Development Process and Characteristics of China’s Ecological Protection Policy. Shengtai Xuebao 2021, 41, 1656–1667. [Google Scholar] [CrossRef]
- Ma, S.; Wang, H.Y.; Wang, L.J.; Jiang, J.; Gong, J.W.; Wu, S.; Luo, G.Y. Evaluation and Simulation of Landscape Evolution and Its Ecological Effects under Vegetation Restoration in the Northern Sand Prevention Belt, China. Catena 2022, 218, 106555. [Google Scholar] [CrossRef]
- Wang, S.; Tan, X.; Fan, F. Landscape Ecological Risk Assessment and Impact Factor Analysis of the Qinghai–Tibetan Plateau. Remote Sens. 2022, 14, 4726. [Google Scholar] [CrossRef]
- Gao, B.; Wu, Y.; Li, C.; Zheng, K.; Wu, Y. Ecosystem Health Responses of Urban Agglomerations in Central Yunnan Based on Land Use Change. Int. J. Environ. Res. Public Health 2022, 19, 12399. [Google Scholar] [CrossRef]
- Ma, S.; Wang, L.J.; Jiang, J.; Chu, L.; Zhang, J.C. Threshold Effect of Ecosystem Services in Response to Climate Change and Vegetation Coverage Change in the Qinghai-Tibet Plateau Ecological Shelter. J. Clean. Prod. 2021, 318, 128592. [Google Scholar] [CrossRef]
- Zang, Y.; Liu, Y.; Yang, Y. Land Use Pattern Change and Its Topographic Gradient Effect in the Mountainous Areas: A Case Study of Jinggangshan City. J. Nat. Resour. 2019, 34, 1391–1404. [Google Scholar] [CrossRef]
- Yang, W.; Li, S.; Peng, S.; Li, Y.; Zhao, S.; Qiu, L. Identification of Important Biodiversity Areas by InVEST Model Considering Topographic Relief: A Case Study of Yunnan Province, China. Chin. J. Appl. Ecol. 2021, 32, 4339–4348. [Google Scholar] [CrossRef]
- Ji, Y.; Bai, Z.; Hui, J. Landscape Ecological Risk Assessment Based on LUCC—A Case Study of Chaoyang County, China. Forests 2021, 12, 1157. [Google Scholar] [CrossRef]
Scenario | Description | Scenario Weighting Matrix Wn |
---|---|---|
Business-as-usual | Following current development patterns and existing land use transfer rates is a scenario setting that does not place restrictions on any land type conversions in the conversion rules. | -- |
Urban development and construction | This scenario allows for the expansion of urban land, consequent encroachment on surrounding arable land and a slowdown in the growth of forest and grassland, making the trade-off between development and ecological conservation a central issue. | Cultivated land (0.85) Forest (0.9) Grassland (0.9) Shrubland (0.9) Wetland (0.9) Water bodies (1) Artificial Surface (1.2) Bare Land (1) Permanent snow and ice (1) |
Ecological development priority | Restrict the conversion of forest grassland and Water bodies related to ecological land to an artificial surface, simulate the consequences of ecological measures such as vegetation restoration and return of farmland to forest, and moderately increase the expansion of ecological land under the premise of slowing down the degradation of cultivated land. | Cultivated land (1.1) Forest (1.2) Grassland (1.2) Shrubland (1.1) Wetland (1) Water bodies (1) Artificial Surface (0.85) Bare Land (1) Permanent snow and ice (1) |
Type of Land Use | Cultivated Land | Forest | Grassland | Shrubland | Wetland | Water Bodies | Artificial Surface | Bare Land | Permanent Snow and Ice |
---|---|---|---|---|---|---|---|---|---|
Cultivated land | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 0 | 0 |
Forest | 1 | 1 | 1 | 1 | 1 | 0 | 1 | 0 | 0 |
Grassland | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 0 | 0 |
Shrubland | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 0 | 0 |
Wetland | 1 | 1 | 1 | 1 | 1 | 1 | 0 | 0 | 0 |
Water bodies | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 |
Artificial surface | 1 | 1 | 1 | 0 | 1 | 1 | 1 | 0 | 0 |
Bare land | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 0 |
Permanent snow and ice | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 |
Land Area and Share | Change and the Percentage of Change | ||||||
---|---|---|---|---|---|---|---|
2000 | 2010 | 2020 | 2000–2010 | 2010–2020 | 2000–2020 | 2000–2020 Percentage of Change | |
Cultivated land | 78,743.92 | 79,265.81 | 76,804.21 | 521.89 | −2461.60 | −1939.71 | 0.17 |
Forest | 203,607.33 | 203,853.20 | 202,009.24 | 245.87 | −1843.96 | −1598.09 | 0.14 |
Grassland | 41,328.85 | 39,117.55 | 40,394.01 | −2211.30 | 1276.46 | −934.84 | 0.08 |
Shrubland | 12,089.15 | 13,126.16 | 13,042.91 | 1037.01 | −83.25 | 953.76 | 0.08 |
Wetland | 241.30 | 104.97 | 104.48 | −136.33 | −0.49 | −136.82 | 0.01 |
Water bodies | 2120.12 | 2100.91 | 3156.79 | −19.21 | 1055.88 | 1036.67 | 0.09 |
Artificial surface | 2654.71 | 3214.91 | 6526.80 | 560.20 | 3311.89 | 3872.09 | 0.33 |
Bare land | 586.40 | 781.41 | 503.77 | 195.01 | −277.64 | −82.63 | 0.01 |
Permanent snow and ice | 1754.56 | 1561.42 | 584.13 | −193.14 | −977.29 | −1170.43 | 0.10 |
Type of Land Use | 2020 | BAU | UDC | EDP | 2020-BAU | 2020-UDC | 2020-EDP |
---|---|---|---|---|---|---|---|
Cultivated land | 76,804.21 | 75,411.03 | 74,541.87 | 75,380.93 | −1393.18 | −2262.34 | −1423.28 |
Forest | 202,009.24 | 200,355.68 | 199,438.67 | 201,560.1 | −1653.56 | −2570.57 | −449.14 |
Grassland | 40,394.01 | 40,483.11 | 41,460.23 | 41,022.2 | 89.1 | 1066.22 | 628.19 |
Shrubland | 13,042.91 | 13,003.84 | 13,597.06 | 12,919.32 | −39.07 | 554.15 | −123.59 |
Wetland | 104.48 | 75.41 | 111.14 | 87.72 | −29.07 | 6.66 | −16.76 |
Water bodies | 3156.79 | 3738.67 | 3379.96 | 3262.05 | 581.88 | 223.17 | 105.26 |
Artificial surface | 6526.8 | 9139.25 | 9696.27 | 7881.41 | 2612.45 | 3169.47 | 1354.61 |
Bare land | 503.77 | 606.34 | 599.19 | 665.79 | 102.57 | 95.42 | 162.02 |
Permanent snow and ice | 584.13 | 313.01 | 301.95 | 346.82 | −271.12 | −282.18 | −237.31 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gao, B.; Wu, Y.; Li, C.; Zheng, K.; Wu, Y.; Wang, M.; Fan, X.; Ou, S. Multi-Scenario Prediction of Landscape Ecological Risk in the Sichuan-Yunnan Ecological Barrier Based on Terrain Gradients. Land 2022, 11, 2079. https://doi.org/10.3390/land11112079
Gao B, Wu Y, Li C, Zheng K, Wu Y, Wang M, Fan X, Ou S. Multi-Scenario Prediction of Landscape Ecological Risk in the Sichuan-Yunnan Ecological Barrier Based on Terrain Gradients. Land. 2022; 11(11):2079. https://doi.org/10.3390/land11112079
Chicago/Turabian StyleGao, Binpin, Yingmei Wu, Chen Li, Kejun Zheng, Yan Wu, Mengjiao Wang, Xin Fan, and Shengya Ou. 2022. "Multi-Scenario Prediction of Landscape Ecological Risk in the Sichuan-Yunnan Ecological Barrier Based on Terrain Gradients" Land 11, no. 11: 2079. https://doi.org/10.3390/land11112079
APA StyleGao, B., Wu, Y., Li, C., Zheng, K., Wu, Y., Wang, M., Fan, X., & Ou, S. (2022). Multi-Scenario Prediction of Landscape Ecological Risk in the Sichuan-Yunnan Ecological Barrier Based on Terrain Gradients. Land, 11(11), 2079. https://doi.org/10.3390/land11112079