Factors in the Responsible Management of the Luna Valley Complex Geosite (NW Spain)—A Case Study
Abstract
:1. Introduction
2. Description of the Case Study
- Geosites 1 (a viewpoint) and 2 (a point) show an angular unconformity between Precambrian and Cambrian rock sequences.
- Geosite 3 is a fairly complete section of a Lower Palaeozoic (Cambrian to Silurian) sedimentary rock outcropping on the slope of a local road.
- Geosite 4 is the continuation of geosite 3 with Silurian to Middle Devonian rocks on the slope of a regional road.
- Geosite 5 is an area where a well-known site of middle Cambrian trilobites and echinoderms is located.
3. Methods
- Compilation of data on the educational and recreational use of each single geosite. For this purpose, it was essential to carry out a historical search of the administrations and companies that have worked in the area. Subsequently, they were contacted to compile information on the activities carried out and on the printed and online publications.
- Photo monitoring. Evaluation of the state of conservation using photographs of certain geological features taken between 2008 and 2022 and comparing the conservation status of these elements. The monitored features are the main geological elements of the simple geosites (for instance, an oncoid bed or a surface with ripples). The main aspects monitored were the growth of vegetation on slopes, lichen and moss growth on the rock itself, the occurrence of cracks and rock-falls, hammer marks, the disappearance of geological features and the presence of paint or marker marks on the rock.
- Review of the regulations of the protected area where the geosite is located. Compilation of proposals for action and meeting with the managers and some stakeholders of this territory to study the possibilities of implementing these proposals.
4. Results
4.1. Geological Setting of the Study Area
4.1.1. Geosites 1 and 2. Angular Unconformity between Neoproterozoic and Cambrian Rocks
4.1.2. Geosites 3 and 4. Classic Stratigraphic Section around Los Barrios de Luna
- Upper member of the La Herrería Formation (named Barrios Beds because of the excellent outcrop in this section). It consists of alternating shale, sandstone and some dolomite beds. Some sedimentary structures such as current crescent, cross and parallel stratification, ripple surfaces and some good examples of megaripples also occur. Some layers are very rich in ichnofossils, including Astropolichnus hispanicus, a soft-bodied cnidarian cubicnus that characterises the Ovetian stage (lower Cambrian). These layers are regarded as having been deposited in a shallow marine environment.
- Láncara Formation. A set of carbonate rocks, with a lower member formed by dolomites and limestones and an upper member consisting of a characteristic red limestone (i.e., griotte limestones). The most common sedimentary structures are microbialites and other carbonate rocks (algal laminations, stromatolites, oolites, etc.) and karstic cavities of different sizes filled with calcite. The red limestones of the upper member are rich in fossils of benthic organisms, mainly trilobites, brachiopods, echinoderms and sponges. Some of these fossils provide dates for these rocks (viz., middle Cambrian). These materials were deposited in a deepening sublittoral marine environment and with the red limestone representing a condensed series.
- Oville Formation. Consists mainly of alternating fine-grained sandstones and shales, with layers of white quartz sandstones towards the top. Ripples and layers with abundant bioturbation are very frequent. The lower member contains trilobites and echinoderms, but in this section, the beds are not especially fossiliferous, and for this reason, the study of this fauna is carried out in Geosite 5. In the middle member, ichnofossils are very common, while the upper member has yielded some acritarchs. The latter have dated the top of the formation as Languedocian age (middle Cambrian). The Oville Formation records a process of shallowing from a sublittoral marine environment to a braided plain delta.
- Barrios Formation (its stratotype is in this section, although the upper part is partially covered by debris). Consists of white quartz sandstones (cemented by quartz) and intercalated grey or greenish shale. The most visible sedimentary structures are parallel and feature cross lamination, cross stratification and both wave and current ripples. In the upper part, there is an interval of about 5 m with abundant bioturbation, including some beds with the ichnofossil Skolithos. Above this interval, a 30 cm tonstein of kaolinite occurs. This formation is poor in macrofossils, but some shaly levels have yielded acritarchs. Studies of these acritarchs [27] and the ichnofossils suggest a middle-late Cambrian age for the base of the formation. However, the kaolin layer, located near the top, has been radiometrically dated at 477 Ma as Early Ordovician (Tremadocian–Floian boundary [52,53]. From a sedimentological point of view, this formation is interpreted as the coastal and alluvial deposits of a braided plain delta.
- El Ventorrillo beds. Characterised by dark shales and fine-grained sandstones with ferruginous crusts. They are very rich in both macrofossils (trilobites, graptolites, brachiopods, echinoderms and molluscs) and microfossils (ostracods, acritarchs and chitinozoans). These fossils date the layers as Middle Ordovician.
- La Serrona Formation. Made up of quartzite with some red shales and abundant pyrite nodules. Their resistance to erosion produces very sharp relief. No fossils have been found in this section, and the sedimentary structures typical of coastal environments only appear in the upper part of the formation. The quartzites have been interpreted as fillings of palaeovalleys generated in the underlying rocks during the lowering of the sea linked to the end-Ordovician glaciation.
4.1.3. Geosite 5. Middle Cambrian Trilobites and Echinoderms Site
4.2. Educational Activities and Materials
4.3. Outreach Activities and Materials
4.4. Community Involvement
4.5. Main Interest of the Complex and Single Geosites
4.5.1. Scientific Interest
4.5.2. Educational and Recreational Interest
4.6. Conservation and Management Issues
4.6.1. Geosite 1. Viewpoint to the Angular Unconformity at Irede de Luna
4.6.2. Single Geosite 2. Point Showing the Angular Unconformity near Portilla de Luna
4.6.3. Single Geosite 3. Section of the Lower Palaeozoic Rocks at Los Barrios de Luna
4.6.4. Single Geosite 4. Section of the Middle Palaeozoic Rocks at Los Barrios de Luna
4.6.5. Single Geosite 5. Palaeontological Site
5. Discussion
6. Key Conclusions
- Although most geosites are relatively robust, they are still subject to weathering that over time can generate a significant loss in value.
- In general, it is assumed that educational activities do not cause damage to geological outcrops. However, the analysis carried out shows us that geosites can be used very badly. This misuse includes the looting or destruction of key geological features as well as some “well-intentioned vandalism,” which, as in the case of exposed marker marks, should be avoided.
- 3.
- The dissemination activities carried out to date have allowed the educational and recreational use of the geosites. However, this must be improved by introducing new technological tools such as augmented reality or virtual geotrails.
- 4.
- Especially in the case of geosites located within protected areas, the involvement of the local community in developing geological heritages is essential. In this sense, it is important to develop activities that capture the community’s feelings about the geological heritage before developing any educational or land custody activities.
Author Contributions
Funding
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Crofts, R.; Gordon, J.E.; Brilha, J.B.; Gray, M.; Gunn, J.; Larwood, J.; Santucci, V.L.; Tormey, D.; Worboys, G.L. Guidelines for Geoconservation in Protected and Conserved Areas; International Union for Conservation of Nature (IUCN): Gland, Switzerland, 2020. [Google Scholar]
- Martini, G. Actes du Premier Symposium International sur la Protection du Patrimoine Géologique: Digne les Bains, 11–16 Juin 1991; Société Géologique de France: Paris, France, 1994; ISBN 2853630668. [Google Scholar]
- Brocx, M.; Semeniuk, V. Geoheritage and geoconservation-history, definition, scope and scale. J. R. Soc. West. Aust. 2007, 90, 53–87. [Google Scholar]
- Crofts, R. Promoting geodiversity: Learning lessons from biodiversity. Proc. Geol. Assoc. 2014, 125, 263–266. [Google Scholar] [CrossRef]
- Crofts, R. Putting geoheritage conservation on all agendas. Geoheritage 2018, 10, 231–238. [Google Scholar] [CrossRef]
- Zouros, N. Global Geoparks Network and the new UNESCO Global Geoparks Programme. Bull. Geol. Soc. Greece 2016, 50, 284–292. [Google Scholar] [CrossRef] [Green Version]
- Fuertes-Gutiérrez, I.; Fernández-Martínez, E. Geosites Inventory in the Leon Province (Northwestern Spain): A tool to introduce geoheritage into regional environmental management. Geoheritage 2010, 2, 57–75. [Google Scholar] [CrossRef]
- Brilha, J. Inventory and quantitative assessment of geosites and geodiversity sites: A review. Geoheritage 2016, 8, 119–134. [Google Scholar] [CrossRef] [Green Version]
- Prosser, C.D.; Díaz-Martínez, E.; Larwood, J.G. Chapter 11—The Conservation of Geosites: Principles and Practice. In Geoheritage; Reynard, E., Brilha, J.B.T.-G., Eds.; Elsevier: Amsterdam, The Netherlands, 2018; pp. 193–212. ISBN 978-0-12-809531-7. [Google Scholar]
- Sharples, C. Concepts and Principles of Geoconservation; Tasmanian Parks & Wildlife Service: Hobart, Australia, 2002; p. 79. [Google Scholar]
- Marescotti, P.; Castello, G.; Briguglio, A.; Caprioglio, M.C.; Crispini, L.; Firpo, M. Geosite assessment in the Beigua UNESCO Global Geopark (Liguria, Italy): A case study in linking geoheritage with education, tourism, and community involvement. Land 2022, 11, 1667. [Google Scholar] [CrossRef]
- Raeisi, R.; Dincă, I.; Almodaresi, S.A.; Swart, M.P.; Boloor, A. An assessment of geosites and geomorphosites in the Lut desert of Shahdad region for potential geotourism development. Land 2022, 11, 736. [Google Scholar] [CrossRef]
- Xu, K.; Wu, W. Geoparks and geotourism in China: A sustainable approach to geoheritage conservation and local development: A review. Land 2022, 11, 1493. [Google Scholar] [CrossRef]
- Gray, M. Geodiversity: Valuing and Conserving Abiotic Nature, 2nd ed.; Wiley-Blackwell: Portland, OR, USA, 2013; p. 512. [Google Scholar]
- Woo, K.S.; Worboys, G. Geological monitoring in protected areas. Int. J. Geoheritage Park. 2019, 7, 218–225. [Google Scholar] [CrossRef]
- Wignall, R.M.L.; Dempster, M.; Roberts, R.; Townley, H.C. Geosite condition monitoring in the UK 1999–2019. Proc. Geol. Assoc. 2022; in press. [Google Scholar] [CrossRef]
- Brocx, M.; Semeniuk, V. The ‘8Gs’—a Blueprint for geoheritage, geoconservation, geo-education and geotourism. Aust. J. Earth Sci. 2019, 66, 803–821. [Google Scholar] [CrossRef]
- Crofts, R.; Gordon, J.E. Geoconservation in protected areas. In Protected Area Governance and Management; Worboys, G.L., Lockwood, M., Kothari, A., Feary, S., Pulsford, I., Eds.; ANU Press: Canberra, Australia, 2015; pp. 531–568. [Google Scholar]
- Groves, C.; Game, E.T. Conservation Planning: Informed Decisions for a Healthier Planet; Roberts and Company Publishers: Greenwood Village, CO, USA, 2016. [Google Scholar]
- García-Cortés, A.; Vegas, J.; Carcavilla, L.; Díaz-Martínez, E. Bases Conceptuales y Metodología del Inventario Español de Lugares de Interés Geológico (IELIG); Instituto Geológico y Minero de España: Madrid, Spain, 2019. [Google Scholar]
- Forno, M.G.; Gianotti, F.; Gattiglio, M.; Pelfini, M.; Sartori, G.; Bollati, I.M. How can a complex geosite be enhanced? A landscape-scale approach to the deep-seated gravitational slope deformation of Pointe Leysser (Aosta Valley, NW Italy). Geoheritage 2022, 14, 100. [Google Scholar] [CrossRef]
- Sitter, L.U. The structure of the southern slope of the Cantabrian Mountains: Explanation of a geological map with sections scale (1:100.000). Leidse Geol. Meded. 1961, 26, 255–263. [Google Scholar]
- Julivert, M.; García, E.M. Sobre el contacto entre el Cámbrico y el Precámbrico en la parte meridional de la Cordillera Cantábrica y el papel del Precámbrico en la orogénesis Herciana. Acta Geológica Hispánica 1967, 2, 107–110. [Google Scholar]
- Suárez de Centi, A.C. Estratigrafía, Sedimentología y Paleogoegrafía de la Fm. Furada/San Pedro: Zona Cantábrica (NW España); Universidad de Oviedo: Oviedo, Spain, 1988. [Google Scholar]
- Aramburu, C.; Truyols, J.; Arbizu, M.; Méndez-Bedia, I.; Zamarreño, I.; García-Ramos, J.C.; Suárez de Centi, C.; Valenzuela, M. El Paleozoico Inferior de la Zona Cantábrica. In Paleozoico Inferior de Ibero-América; Gutiérrez-Marco, J.C., Saavedra, J., Rábano, I., Eds.; Universidad de Extremadura: Badajoz, Spain, 1992; pp. 397–421. [Google Scholar]
- Aramburu, C.; Méndez-Bedia, I.; Arbizu, M. The Lower Palaeozoic in the Cantabrian Zone (Cantabrian Mountains, NW Spain). In Paleozoic Conodonts from North Spain; Instituto Geológico y Minero de España: Madrid, Spain, 2002; Volume 1, pp. 35–49. [Google Scholar]
- Aramburu, C.; Méndez-Bedia, I.; Arbizu, M.; García-López, S. Zona Cantábrica. Estratigrafía. La secuencia preorogénica. In Geología de España; Vera, J.A., Ed.; Instituto Geológico y Minero de España: Madrid, Spain, 2004; pp. 27–34. [Google Scholar]
- Wotte, T.; Elicki, O.; Perejón, A.; Moreno-Eiris, E. Facies distribution patterns and environment interpretation of the Upper Láncara Formation in the Esla Nappe (Cantabrian Zone, NW Spain) by Quantitative Microfacies Analysis. Freib. Forsch. C 2004, 502, 101–118. [Google Scholar]
- Toyos, J.M.; Aramburu, C. El Ordovícico en el área de los Barrios de Luna, Cordillera Cantábrica (NW de España). Trab. Geol. 2014, 34, 61–96. [Google Scholar] [CrossRef] [Green Version]
- Gutiérrez-Marco, J.C.; Ghienne, J.F.; Bernárdez, E.; Hacar, M.P. Did the Late Ordovician African ice sheet reach Europe? Geology 2010, 38, 279–282. [Google Scholar] [CrossRef]
- Liñán, E.; Perejón, A.; Sdzuy, K. The Lower—Middle Cambrian stages and stratotypes from the Iberian Peninsula: A Revision. Geol. Mag. 1993, 130, 817–833. [Google Scholar] [CrossRef]
- Zamora, S.; Smith, A.B. A new Middle Cambrian stem-group echinoderm from Spain: Palaeobiological implications of a highly asymmetric cinctan. Acta Palaeontol. Pol. 2008, 53, 207–220. [Google Scholar] [CrossRef] [Green Version]
- Palacios, T. Middle Cambrian acritarch zones in the Oville Formation and their correlation with trilobite zones in the Cantabrian Mountains, Northern Spain. In Cuadernos del Museo Geominero Vol. 9: Advances in Trilobite Research; Rábano, I., Gozalo, R., García-Bellido, D., Eds.; Instituto Geologico y Minero de España: Madrid, Spain, 2008; pp. 289–295. [Google Scholar]
- Aramburu, C. El Cambro-Ordovícico de la Zona Cantábrica (NO de España); Universidad de Oviedo: Oviedo, Spain, 1989. [Google Scholar]
- Palacios, T. Acritarch assemblages from the Oville and Barrios Formations, Northern Spain: A pilot proposal of a Middle Cambrian (Series 3) Acritarch Biozonation in Northwestern Gondwana. Rev. Palaeobot. Palynol. 2015, 219, 71–105. [Google Scholar] [CrossRef] [Green Version]
- Van der Bosch, W.J. Geology of the Luna-Sil Region, Cantabrian Mountains (Spain). Leidse Geol. Meded. 1969, 44, 137–225. [Google Scholar]
- Van der Meer Mohr, C.G. The Stratigraphy of the Cambrian Lancara Formation between the Luna River and the Esla River in the Cantabrian Mountains, Spain. Leidse Geol. Meded. 1969, 43, 233–316. [Google Scholar]
- Van der Meer Mohr, C.G. The Lower Palaeozoic of the Leonides and Pisuerga-Carrion Province in the Cantabrian Zone of Northwest Spain. ITC J. 1983, 3, 205–213. [Google Scholar]
- Zamarreño, I. Las Litofacies Carbonatadas Del Cambrico de La Zona Cantabrica (NW. España) y Su Distribución Paleogeografica. Trab. Geol. 1972, 5, 1–118. [Google Scholar]
- Zamarreño, I. El Cámbrico en el Macizo Ibérico. In Libro jubilar J.M. Rios: Geología de España; Comba, J.A., Ed.; Instituto Geológico y Minero de España: Madrid, Spain, 1983; pp. 117–191. [Google Scholar]
- Truyols, J.; Philippot, A.; Julivert, M. Les formations Siluriennes de la Zone Cantabrique et leurs faunes. Bull. Soc. Géol. Fr. 1974, 7, 23–35. [Google Scholar] [CrossRef]
- Baldwin, C.T. The stratigraphy and facies associations of trace fossils in some Cambrian and Ordovician rocks of North Western Spain. Trace Foss. 1977, 2, 9–40. [Google Scholar]
- Gutiérrez-Marco, J.C.; Rábano, I.; Liñán, E.; Gónzalo, R.; Fernández Martínez, E.; Arbizu, M.; Méndez-Bedia, I.; Pieren, A.P.; Sarmiento, G.N. Las sucesiones estratigráficas del Paleozoico Inferior y Medio. In Contextos Geológicos Españoles. Una Aproximación al Patrimonio Geológico Español de Relevancia Internacional; García-Cortés, A., Águeda Villar, J., Palacio Suárez-Valgrande, J., Salvador González, C.I., Eds.; Instituto Geológico y Minero de España: Madrid, Spain, 2008; pp. 31–43. ISBN 978-84-7840-754-5. [Google Scholar]
- Wimbledon, W.A.P.; Ishchenko, A.A.; Gerasimenko, N.P.; Karis, L.O.; Suominen, V.; Johansson, C.E.; Freden, C. Geosites—an IUGS initiative: Science supported by conservation. In Geological Heritage: Its Conservation and Management; Barettino, D., Wimbledon, W.A.P., Gallego, E., Eds.; Instituto Tecnológico Geominero de España: Madrid, Spain, 2000; pp. 69–94. [Google Scholar]
- García-Cortés, A.; Rábano, I.; Locutura, J.; Bellido, F.; Fernández-Gianotti, J.; Martín-Serrano, A.; Quesada, C.; Barnolas, A.; Durán, J.J. Contextos geológicos españoles de relevancia internacional: Establecimiento, descripción y justificación según la metodología del proyecto Global Geosites de la IUGS. Bol. Geol. Min. 2000, 111, 5–38. [Google Scholar]
- Fernández-Martínez, E.; Fuertes Gutiérrez, I.; Alonso Herrero, E.; Redondo Vega, J.M.; Cortizo Álvarez, J.; Gómez-Villar, A.; Santos González, J.; Herrero Hernández, A.; González Gutiérrez, R.B. Lugares de Interés Geológico. León.; Junta de Castilla y León: León, Spain, 2009. [Google Scholar]
- Castaño de Luis, R.; Belinchón, G.; Ordoño, L. Guía del Patrimonio Geológico de las Comarcas de Cuatro Valles; Cuatro Valles: León, Spain, 2013; pp. 1–109. [Google Scholar]
- Fillon, C.; Pedreira, D.; Barbero, L.; Gautheron, C.; Van der Beek, P.; Pulgar, J.A.; Cuesta, A. Evidencias termocronológicas de la exhumación tectónica Oligocena-Miocena de La Cordillera Cantábrica: Nuevos datos de huellas de fisión en apatitos y (U-Th)/He en circones. In Proceedings of the Geo-Temas, Oviedo, Spain, 17–19 July 2012; Volume 13, pp. 1642–1645. [Google Scholar]
- Suárez Rodríguez, A.; Toyos, J.M.; López Díaz, F.; Heredia, N.; Rodríguez Fernández, L.R.; Gutiérrez Alonso, G. Mapa Geológico de España, Hoja (102): Los Barrios de Luna; Instituto Geológico y Minero de España: Madrid, Spain, 1990; p. 130. [Google Scholar]
- Aramburu, C.; Arbizu, M.; Bernárdez, E.; Gozalo, R.; Gutiérrez-Marco, J.C.; Liñán, E. Paleontología y Estratigrafía del Paleozoico Inferior en los Barrios de Luna; Universidad de León: León, Spain, 2006; ISBN 84-9773-295-2. [Google Scholar]
- Castaño de Luis, R.; Toyos, M. El Paleozoico Inferior de Los Barrios de Luna. Geolaciana 2022, 4, 39–92. [Google Scholar]
- Gutiérrez-Alonso, G.; Fernández-Suárez, J.; Carlos Gutiérrez-Marco, J.; Corfu, F.; Murphy, J.B.; Suárez, M. U-Pb Depositional age for the upper Barrios Formation (Armorican quartzite facies) in the Cantabrian Zone of Iberia: Implications for stratigraphic correlation and paleogeography. In The Evolution of the Rheic Ocean: From Avalonian-Cadomian Active Margin to Alleghenian-Variscan Collision; Linnemann, U., Nance, R.D., Kraft, P., Zulauf, G., Eds.; Geological Society of America: Boulder, CO, USA, 2007; Volume 423, ISBN 9780813724232. [Google Scholar]
- Gutiérrez-Alonso, G.; Gutiérrez-Marco, J.C.; Fernández-Suárez, J.; Bernárdez, E.; Corfu, F. Was there a super-eruption on the Gondwanan coast 477 Ma Ago? Tectonophysics 2016, 681, 85–94. [Google Scholar] [CrossRef] [Green Version]
- Aramburu, C.; García-Ramos, J.C. La sedimentación Cambro-Ordovícica en la Zona Cantábrica (NO de España). Trab. Geol. 1993, 19, 45–73. [Google Scholar]
- Zamora, S.; Álvaro, J.J.; Arbizu, M.; Colmenar, J.; Esteve, J.; Fernández-Martínez, E.; Fernández, L.P.; Gutiérrez-Marco, J.C.; Suárez Andrés, J.L.; Villas, E. Field Trip: Palaeozoic echinoderms from northern Spain. In Progress in Echinoderm Paleobiology: Cuadernos del Museo Geominero; Zamora, S., Rábano, I., Eds.; Instituto Geológico y Minero de España: Madrid, Spain, 2015; Volume 19, pp. 209–288. [Google Scholar]
- Zamora, S.; Liñán, E.; Gámez Vintaned, J.A.; Domínguez Alonso, P.; Gozalo, R. Nuevo carpoideo de la clase Cincta Jaekel, 1918 Del Norte de España: Inferencias sobre la morfología funcional del opérculo. Ameghiniana 2007, 44, 727–738. [Google Scholar]
- Zamora, S.; Clausen, S.; Álvaro, J.J.; Smith, A.B. Pelmatozoan echinoderms as colonizers of carbonate firmgrounds in Mid-Cambrian high energy environments. Palaios 2010, 25, 764–768. [Google Scholar] [CrossRef]
- Aramburu, C.; Fernández-Martínez, E. Guía de Campo: Geología en Barrios de Luna. In Proceedings of the II Encuentro AEPECT Parque Natural de Babia y Luna (León), León, Spain, 20–22 October 2000; Volume 2000, p. 68. [Google Scholar]
- Herrero, A.; Adrados, L.; Fernández-Martínez, E. Castilla y León Geology Meetings. In Proceedings of the III Encuentro AEPECT Parque Natural de Babia y Luna (León), León, Spain, 22–24 April 2022; Volume 2022, p. 15. [Google Scholar]
- Fernández-Martínez, E.; García del Canto, J. El Paleozoico Inferior del Valle del Río Luna (Cordillera Cantábrica); Universidad de León: León, Spain, 2000. [Google Scholar]
- Castaño de Luis, R.; Fernández-Martínez, E. Los Barrios de Luna (León, España): Un lugar de interés geológico y didáctico. Re Met. Madr. Rev. Soc. Española Def. Patrim. Geológico Min. 2007, 8, 81–92. [Google Scholar]
- Belinchón, G.; Fernández-Martínez, E. Viajando al Pasado: Itinerario Guiado por los Barrios de Luna 2021. Available online: https://www.cuatrovalles.es/index.php/viajando-al-pasado (accessed on 16 November 2022).
- García-Fernández, J.; Fernández-Martínez, E. Guía del Patrimonio Natural de las Comarcas de Cuatro Valles: Recursos Naturales y Usos Tradicionales: Un Legado Abierto al Futuro; Belinchón, G., LLamas de Juan, O., Eds.; Tomero y Romillo: León, Spain, 2001; p. 120. [Google Scholar]
- Cantabrana Cortés, P.; Nuñez-Lahuerta, C.; Vintaned, J.A.G.; Guijarro, E.L.; García, C.J.R. El centro de interpretación de la explosión de la vida en el Cámbrico en Miñera de Luna (León). Nat. Aragon. Rev. Soc. Amigos Mus. Paleontol. Univ. Zaragoza 2014, 31, 67–71. [Google Scholar]
- García-Ortiz, E.; Fuertes-Gutiérrez, I.; Fernández-Martínez, E. Concepts and terminology for the risk of degradation of geological heritage sites: Fragility and natural vulnerability, a case study. Proc. Geol. Assoc. 2014, 125, 463–479. [Google Scholar] [CrossRef]
- Stolz, J.; Megerle, H.E. Geotrails as a medium for education and geotourism: Recommendations for quality improvement based on the results of a research project in the Swabian Alb UNESCO Global Geopark. Land 2022, 11, 1422. [Google Scholar] [CrossRef]
- Martínez-Graña, A.M.; Legoinha, P.; González-Delgado, J.A.; Dabrio, C.J.; Pais, J.; Goy, J.L.; Zazo, C.; Civis, J.; Armenteros, I.; Alonso-Gavilan, G.; et al. Augmented reality in a hiking tour of the Miocene geoheritage of the central Algarve cliffs (Portugal). Geoheritage 2017, 9, 121–131. [Google Scholar] [CrossRef]
- Martínez-Graña, A.; González-Delgado, J.Á.; Ramos, C.; Gonzalo, J.C. Augmented reality and valorizing the mesozoic geological heritage (Burgos, Spain). Sustainability 2018, 10, 4616. [Google Scholar] [CrossRef] [Green Version]
- Pasquaré Mariotto, F.; Bonali, F.L.; Tibaldi, A.; De Beni, E.; Corti, N.; Russo, E.; Fallati, L.; Cantarero, M.; Neri, M. A New way to explore volcanic areas: QR-code-based virtual geotrail at Mt. Etna volcano, Italy. Land 2022, 11, 377. [Google Scholar] [CrossRef]
- García-Ortiz, E.; Fernández-Martínez, E. La Complejidad Legislativa Del Patrimonio Paleontológico: El caso de los yacimientos de icnitas de La Rioja. In Actas de las XXXII Jornadas de la Sociedad Española de Paleontología. Cuadernos del Museo Geominero, n.o 20; Meléndez, G., Núñez, A., Tomás, M., Eds.; Instituto Geológico y Minero de España: Madrid, Spain, 2016; pp. 171–176. [Google Scholar]
- Fernández-Martínez, E. El patrimonio paleontológico en la encrucijada: Características, problemas y propuestas de actuación. In Registro Fósil de los Pirineos Occidentales: Bienes de Interés Paleontológico y Geológico. Proyección Social; Gobierno Vasco: Vitoria-Gasteiz, Spain, 2018; pp. 219–232. [Google Scholar]
Single and Complex Geosites | Scientific Value | Educational Value | Recreational Value |
---|---|---|---|
1. Angular unconformity at Irede de Luna | Low | Middle | No value |
2. Angular unconformity near Portilla de Luna | Middle | Middle | No value |
3. Lower Palaeozoic section at Los Barrios de Luna | High | High | Middle |
3. Lower-Middle Palaeozoic section at Los Barrios de Luna | Middle | Middle | Low |
5. Palaeontological site (trilobites and echinoderms) | High | Middle | No value |
Complex geosite (IELIG) | Very high (7, 5) | High (7, 6) | High (7, 1) |
Single Geosites | Main Use | Problems | State of Conservation | Recommendations |
---|---|---|---|---|
1. Angular unconformity at Irede de Luna | Educational | Access difficulties | Poor | Scientific use only |
2. Angular unconformity near Portilla de Luna | Educational | Face instability | Good | Improvement of the site (physical and material) |
3. Lower Palaeozoic section at Los Barrios de Luna | Scientific Educational Tourist | High degradation | Very poor | Take important actions for site safeguard and improve promotion |
3. Lower-Middle Palaeozoic section at Los Barrios de Luna | Scientific Educational | Risk of rockfall | Poor | Scientific use only |
5. Palaeontological site | Scientific Educational | Fossil plundering | Very poor | Scientific use only Virtual and ex-situ collections of fossils |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Fernández-Martínez, E.; Coronado, I.; Adrados, L.; Castaño, R. Factors in the Responsible Management of the Luna Valley Complex Geosite (NW Spain)—A Case Study. Land 2022, 11, 2082. https://doi.org/10.3390/land11112082
Fernández-Martínez E, Coronado I, Adrados L, Castaño R. Factors in the Responsible Management of the Luna Valley Complex Geosite (NW Spain)—A Case Study. Land. 2022; 11(11):2082. https://doi.org/10.3390/land11112082
Chicago/Turabian StyleFernández-Martínez, Esperanza, Ismael Coronado, Luna Adrados, and Rodrigo Castaño. 2022. "Factors in the Responsible Management of the Luna Valley Complex Geosite (NW Spain)—A Case Study" Land 11, no. 11: 2082. https://doi.org/10.3390/land11112082
APA StyleFernández-Martínez, E., Coronado, I., Adrados, L., & Castaño, R. (2022). Factors in the Responsible Management of the Luna Valley Complex Geosite (NW Spain)—A Case Study. Land, 11(11), 2082. https://doi.org/10.3390/land11112082