Human Rights and Large-Scale Carbon Dioxide Removal: Potential Limits to BECCS and DACCS Deployment
Abstract
:1. Introduction
2. Materials and Methods
2.1. Legal Interpretation as Methodology
2.2. BECCS
2.3. DACCS
2.4. Carbon Removal Potential and IAMs
3. Results: Human Rights Analysis
3.1. BECCS and Human Rights
3.1.1. The Right to Food
3.1.2. The Right to Water
3.1.3. The Right to a Healthy Environment
3.1.4. Justification and Balancing of Conflicting Human Rights
3.2. DACCS and Human Rights
3.2.1. The Right to Energy
3.2.2. Justification and Balancing of Conflicting Human Rights
4. Discussion and Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Christensen, J.; Olhoff, A. Lessons from a Decade of Emissions Gap Assessments; United Nations Environment Programme: Nairobi, Kenya, 2019; pp. 1–14. Available online: https://wedocs.unep.org/bitstream/handle/20.500.11822/30022/EGR10.pdf (accessed on 9 November 2022).
- Liu, P.R.; Raftery, A.E. Country-Based Rate of Emissions Reductions Should Increase by 80% beyond Nationally Determined Contributions to Meet the 2 °C Target. Commun. Earth Environ. 2021, 2, 29. [Google Scholar] [CrossRef] [PubMed]
- Lamb, W.F.; Grubb, M.; Diluiso, F.; Minx, J.C. Countries with Sustained Greenhouse Gas Emissions Reductions: An Analysis of Trends and Progress by Sector. Clim. Policy 2022, 22, 1–17. [Google Scholar] [CrossRef]
- Bonnet, R.; Swingedouw, D.; Gastineau, G.; Boucher, O.; Deshayes, J.; Hourdin, F.; Mignot, J.; Servonnat, J.; Sima, A. Increased risk of near term global warming due to a recent AMOC weakening. Nat. Commun. 2021, 12, 6108. [Google Scholar] [CrossRef]
- Intergovernmental Panel on Climate Change. Climate Change 2021. The Physical Science Basis. Working Group I Contribution to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change; Intergovernmental Panel on Climate Change (IPCC): Geneva, Switzerland, 2021. [Google Scholar]
- Intergovernmental Panel on Climate Change (IPCC). Climate Change 2022. Impacts, Adaptation and Vulnerability. Working Group II Contribution to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change; Intergovernmental Panel on Climate Change (IPCC): Geneva, Switzerland, 2022. [Google Scholar]
- Intergovernmental Panel on Climate Change (IPCC). Climate Change 2022. Mitigation of Climate Change. Working Group III Contribution to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change; Intergovernmental Panel on Climate Change (IPCC): Geneva, Switzerland, 2022. [Google Scholar]
- Ekardt, F.; Bärenwaldt, M.; Heyl, K. The Paris Target, Human Rights, and IPCC Weaknesses: Legal Arguments in Favour of Smaller Carbon Budgets. Environments 2022, 9, 112. [Google Scholar] [CrossRef]
- Ekardt, F.; Wieding, J.; Zorn, A. Paris Agreement, Precautionary Principle and Human Rights: Zero Emissions in Two Decades? Sustainability 2018, 10, 2812. [Google Scholar] [CrossRef]
- Wieding, J.; Stubenrauch, J.; Ekardt, F. Human Rights and Precautionary Principle: Limits to Geoengineering, SRM, and IPCC Scenarios. Sustainability 2020, 12, 8858. [Google Scholar] [CrossRef]
- Honegger, M.; Burns, W.; Morrow, D.R. Is Carbon Dioxide Removal ‘Mitigation of Climate Change’? Rev. Eur. Comp. Int. Environ. Law 2021, 30, 327–335. [Google Scholar] [CrossRef]
- Otto, D.; Thoni, T.; Wittstock, F.; Beck, S. Exploring Narratives on Negative Emissions Technologies in the Post-Paris Era. Front. Clim. 2021, 3, 684135. [Google Scholar] [CrossRef]
- Ekardt, F.; Jacobs, B.; Stubenrauch, J.; Garske, B. Peatland Governance: The Problem of Depicting in Sustainability Governance, Regulatory Law, and Economic Instruments. Land 2020, 9, 83. [Google Scholar] [CrossRef]
- Stubenrauch, J.; Garske, B.; Ekardt, F.; Hagemann, K. European Forest Governance: Status Quo and Optimising Options with Regard to the Paris Climate Target. Sustainability 2022, 14, 4365. [Google Scholar] [CrossRef]
- Akimoto, K.; Sano, F.; Oda, J.; Kanaboshi, H.; Nakano, Y. Climate Change Mitigation Measures for Global Net-Zero Emissions and the Roles of CO2 Capture and Utilization and Direct Air Capture. Energy Clim. Change 2021, 2, 100057. [Google Scholar] [CrossRef]
- Fuss, S.; Lamb, W.F.; Callaghan, M.W.; Hilaire, J.; Creutzig, F.; Amann, T.; Beringer, T.; De Oliveira Garcia, W.; Hartmann, J.; Khanna, T.; et al. Negative Emissions—Part 2: Costs, Potentials and Side Effects. Environ. Res. Lett. 2018, 13, 063002. [Google Scholar] [CrossRef]
- Fajardy, M.; Koberle, A.; Mac Dowell, N.; Fantuzzi, A. BECCS Deployment: A Reality Check; Grantham Institute: London, UK, 2019; pp. 1–14. Available online: https://www.imperial.ac.uk/media/imperial-college/grantham-institute/public/publications/briefing-papers/BECCS-deployment---a-reality-check.pdf (accessed on 9 November 2022).
- Wang, N.; Akimoto, K.; Nemet, G.F. What Went Wrong? Learning from Three Decades of Carbon Capture, Utilization and Sequestration (CCUS) Pilot and Demonstration Projects. Energy Policy 2021, 158, 112546. [Google Scholar] [CrossRef]
- Martin-Roberts, E.; Scott, V.; Flude, S.; Johnson, G.; Haszeldine, R.S.; Gilfillan, S. Carbon Capture and Storage at the End of a Lost Decade. One Earth 2021, 4, 1569–1584. [Google Scholar] [CrossRef]
- Honegger, M.; Poralla, M.; Michaelowa, A.; Ahonen, H.M. Who Is Paying for Carbon Dioxide Removal? Designing Policy Instruments for Mobilizing Negative Emissions Technologies. Front. Clim. 2021, 3, 672996. [Google Scholar] [CrossRef]
- Burns, W.C.G. Human Rights Dimensions of Bioenergy with Carbon Capture and Storage: A Framework for Climate Justice in the Realm of Climate Geoengineering. In Climate Justice: Case Studies in Global and Regional Governance Challenges; Abate, R.S., Ed.; Environmental Law Institute: Washington, DC, USA, 2017; pp. 149–170. [Google Scholar]
- Van Asselt, M.B.A.; Rotmans, J. Uncertainty in Integrated Assessment Modelling. Clim. Change 2002, 54, 75–105. [Google Scholar] [CrossRef]
- Gambhir, A.; Butnar, I.; Li, P.H.; Smith, P.; Strachan, N. A Review of Criticisms of Integrated Assessment Models and Proposed Approaches to Address These, through the Lens of BECCs. Energies 2019, 12, 1747. [Google Scholar] [CrossRef]
- van Beek, L.; Hajer, M.; Pelzer, P.; van Vuuren, D.; Cassen, C. Anticipating Futures through Models: The Rise of Integrated Assessment Modelling in the Climate Science-Policy Interface since 1970. Glob. Environ. Change 2020, 65, 102191. [Google Scholar] [CrossRef]
- Sweet, A.S.; Mathews, J. Proportionality Balancing and Global Constitutionalism. Colum. J. Transnatl. Law 2008, 47, 72–164. [Google Scholar]
- Šušnjar, D. Proportionality, Fundamental Rights and Balance of Powers; Brill: Leiden, The Netherlands, 2010; ISBN 978-90-04-18966-9. [Google Scholar]
- Ekardt, F. Sustainability: Transformation, Governance, Ethics, Law. In Environmental Humanities: Transformation, Governance, Ethics, Law; Springer: Cham, Switzerland, 2020; ISBN 978-3-030-19276-1. [Google Scholar]
- Gough, C.; Upham, P. Biomass Energy with Carbon Capture and Storage (BECCS or Bio-CCS). Greenh. Gases Sci. Technol. 2011, 1, 324–334. [Google Scholar] [CrossRef]
- Balaman, S.Y. Decision-Making for Biomass-Based Production Chains: The Basic Concepts and Methodologies; Academic Press: London, UK, 2019; ISBN 978-0-12-814279-0. [Google Scholar]
- Hennig, B. Nachhaltige Landnutzung und Bioenergie; Metropolis-Verlag: Marburg, Germany, 2017; ISBN 978-3-89518-940-1. [Google Scholar]
- Zhang, D.; Bui, M.; Fajardy, M.; Patrizio, P.; Kraxner, F.; Dowell, N.M. Unlocking the Potential of BECCS with Indigenous Sources of Biomass at a National Scale. Sustain. Energy Fuels 2019, 4, 226–253. [Google Scholar] [CrossRef]
- Fuhrman, J.; McJeon, H.; Patel, P.; Doney, S.C.; Shobe, W.M.; Clarens, A.F. Food–Energy–Water Implications of Negative Emissions Technologies in a +1.5 °C Future. Nat. Clim. Change 2020, 10, 920–927. [Google Scholar] [CrossRef]
- Müller, A.; Schmidhuber, J.; Hoogeveen, J.; Steduto, P. Some Insights in the Effect of Growing Bio-Energy Demand on Global Food Security and Natural Resources. Water Policy 2008, 10, 83–94. [Google Scholar] [CrossRef]
- Henry, R.C.; Engström, K.; Olin, S.; Alexander, P.; Arneth, A.; Rounsevell, M.D.A. Food Supply and Bioenergy Production within the Global Cropland Planetary Boundary. PLoS ONE 2018, 13, e0194695. [Google Scholar] [CrossRef] [PubMed]
- Zhang, X.-Y. Developing Bioenergy to Tackle Climate Change: Bioenergy Path and Practice of Tianguan Group. Adv. Clim. Change Res. 2016, 7, 17–25. [Google Scholar] [CrossRef]
- Ekardt, F.; von Bredow, H. Extended Emissions Trading Versus Sustainability Criteria: Managing the Ecological and Social Ambivalence of Bioenergy. Renew. Energy Law Policy Rev. 2012, 3, 49–64. [Google Scholar]
- Searchinger, T.; Heimlich, R.; Houghton, R.A.; Dong, F.; Elobeid, A.; Fabiosa, J.; Tokgoz, S.; Hayes, D.; Yu, T.H. Use of U.S. Croplands for Biofuels Increases Greenhouse Gases through Emissions from Land-Use Change. Science 2008, 319, 1238–1240. [Google Scholar] [CrossRef]
- Intergovernmental Panel on Climate Change (IPCC). Climate Change 2014: Mitigation of Climate Change—Working Group III Contribution to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change; Intergovernmental Panel on Climate Change (IPCC): Geneva, Switzerland, 2014. [Google Scholar]
- Yang, F.; Meerman, H.; Faaij, A.P.C. Carbon Capture and Biomass in Industry: A Techno-Economic Analysis and Comparison of Negative Emission Options. Renew. Sustain. Energy Rev. 2021, 144, 111028. [Google Scholar] [CrossRef]
- Finney, K.N.; Chalmers, H.; Lucquiaud, M.; Riaza, J.; Szuhánszki, J.; Buschle, B. Post-combustion and Oxy-combustion Technologies. In Biomass Energy with Carbon Capture and Storage (BECCS): Unlocking Negative Emissions; Gough, C., Thornley, P., Mander, S., Vaughan, N., Lea-Langton, A., Eds.; Wiley: Hoboken, NJ, USA, 2018; pp. 47–66. ISBN 978-1-119-23763-1. [Google Scholar]
- Kanniche, M.; Gros-Bonnivard, R.; Jaud, P.; Valle-Marcos, J.; Amann, J.M.; Bouallou, C. Pre-Combustion, Post-Combustion and Oxy-Combustion in Thermal Power Plant for CO2 Capture. Appl. Therm. Eng. 2010, 30, 53–62. [Google Scholar] [CrossRef]
- Leung, D.Y.C.; Caramanna, G.; Maroto-Valer, M.M. An Overview of Current Status of Carbon Dioxide Capture and Storage Technologies. Renew. Sustain. Energy Rev. 2014, 39, 426–443. [Google Scholar] [CrossRef]
- Shahbaz, M.; Alnouss, A.; Ghiat, I.; Mckay, G.; Mackey, H.; Elkhalifa, S.; Al-ansari, T. Resources, Conservation & Recycling: A Comprehensive Review of Biomass Based Thermochemical Conversion Technologies Integrated with CO2 Capture and Utilisation within BECCS Networks. Resour. Conserv. Recycl. 2021, 173, 105734. [Google Scholar] [CrossRef]
- Grünwald, R. Greenhouse gas—bury it into oblivion. Options and Risks of CO2 Capture and Storage; Office of Technology Assessment at the German Bundestag: Berlin, Germany, 2009; ISBN 978-3-7322-8815-1. [Google Scholar]
- Pruess, K.; García, J. Multiphase Flow Dynamics during CO2 Disposal into Saline Aquifers. Environ. Geol. 2002, 42, 282–295. [Google Scholar] [CrossRef]
- Raza, A.; Gholami, R.; Rezaee, R.; Bing, C.H.; Nagarajan, R.; Hamid, M.A. CO2 Storage in Depleted Gas Reservoirs: A Study on the Effect of Residual Gas Saturation. Petroleum 2018, 4, 95–107. [Google Scholar] [CrossRef]
- Dance, T. Assessment and Geological Characterisation of the CO2CRC Otway Project CO2 Storage Demonstration Site: From Prefeasibility to Injection. Mar. Pet. Geol. 2013, 46, 251–269. [Google Scholar] [CrossRef]
- Li, X.; Fang, Z. Current Status and Technical Challenges of CO2 Storage in Coal Seams and Enhanced Coalbed Methane Recovery: An Overview. Int. J. Coal Sci. Technol. 2014, 1, 93–102. [Google Scholar] [CrossRef]
- White, C.M.; Strazisar, B.R.; Granite, E.J.; Hoffman, J.S.; Pennline, H.W. Separation and Capture of CO2 from Large Stationary Sources and Sequestration in Geological Formations—Coalbeds and Deep Saline Aquifers. J. Air Waste Manag. Assoc. 2003, 53, 645–715. [Google Scholar] [CrossRef]
- Sheps, K.M.; Max, M.D.; Osegovic, J.P.; Tatro, S.R.; Brazel, L.A. A Case for Deep-Ocean CO2 Sequestration. Energy Procedia 2009, 1, 4961–4968. [Google Scholar] [CrossRef]
- House, K.Z.; Schrag, D.P.; Harvey, C.F.; Lackner, K.S. Permanent Carbon Dioxide Storage in Deep-Sea Sediments. Proc. Natl. Acad. Sci. USA 2006, 103, 12291–12295. [Google Scholar] [CrossRef]
- Bachu, S. Sequestration of CO2 in Geological Media: Criteria and Approach for Site Selection in Response to Climate Change. Energy Convers. Manag. 2000, 41, 953–970. [Google Scholar] [CrossRef]
- Adams, E.E.; Caldeira, K. Ocean Storage of CO2. Elements 2008, 4, 319–324. [Google Scholar] [CrossRef]
- Sanna, A.; Uibu, M.; Caramanna, G.; Kuusik, R.; Maroto-Valer, M.M. A Review of Mineral Carbonation Technologies to Sequester CO2. Chem. Soc. Rev. 2014, 43, 8049–8080. [Google Scholar] [CrossRef] [PubMed]
- Kelemen, P.B.; Matter, J. In Situ Carbonation of Peridotite for CO2 Storage. Proc. Natl. Acad. Sci. USA 2008, 105, 17295–17300. [Google Scholar] [CrossRef]
- Snæbjörnsdóttir, S.; Sigfússon, B.; Marieni, C.; Goldberg, D.; Gislason, S.R.; Oelkers, E.H. Carbon Dioxide Storage through Mineral Carbonation. Nat. Rev. Earth Environ. 2020, 1, 90–102. [Google Scholar] [CrossRef]
- Celia, M.A.; Nordbotten, J.M. Practical Modeling Approaches for Geological Storage of Carbon Dioxide. Ground Water 2009, 47, 627–638. [Google Scholar] [CrossRef] [PubMed]
- Van Der Zwaan, B.; Smekens, K. CO2 Capture and Storage with Leakage in an Energy-Climate Model. Environ. Model. Assess. 2009, 14, 135–148. [Google Scholar] [CrossRef]
- Doughty, C.; Freifeld, B.M.; Trautz, R.C. Site Characterization for CO2 Geologic Storage and Vice Versa: The Frio Brine Pilot, Texas, USA as a Case Study. Environ. Geol. 2008, 54, 1635–1656. [Google Scholar] [CrossRef]
- Noothout, P.; Schäfer, M.; Spöttle; Bons, M. Assessment of bio-CCS in 2 °C compatible scenarios; German Environment Agency: Dessau-Roßlau, Germany, 2019. [Google Scholar]
- Deng, H.; Bielicki, J.M.; Oppenheimer, M.; Fitts, J.P.; Peters, C.A. Leakage Risks of Geologic CO2 Storage and the Impacts on the Global Energy System and Climate Change Mitigation. Clim. Change 2017, 144, 151–163. [Google Scholar] [CrossRef]
- Celia, M.A.; Nordbotten, J.M.; Bachu, S.; Dobossy, M.; Court, B. Risk of Leakage versus Depth of Injection in Geological Storage. Energy Procedia 2009, 1, 2573–2580. [Google Scholar] [CrossRef]
- Seibel, B.; Walsh, P. Potential Impacts of CO2 Injection on Deep-Sea Biota. Science 2001, 294, 319–320. [Google Scholar] [CrossRef]
- Allen, D.J.; Brent, G.F. Sequestering CO2 by Mineral Carbonation: Stability against Acid Rain Exposure. Environ. Sci. Technol. 2010, 44, 2735–2739. [Google Scholar] [CrossRef]
- Lewicki, J.L.; Birkholzer, J.; Tsang, C.F. Natural and Industrial Analogues for Leakage of CO2 from Storage Reservoirs: Identification of Features, Events, and Processes and Lessons Learned. Environ. Geol. 2007, 52, 457–467. [Google Scholar] [CrossRef]
- Viebahn, P.; Nitsch, J.; Fischedick, M.; Esken, A.; Schüwer, D.; Supersberger, N.; Zuberbühler, U.; Edenhofer, O. Comparison of carbon capture and storage with renewable energy technologies regarding structural, economic, and ecological aspects in Germany. Int. J. Greenh. Gas Control 2007, 1, 121–133. [Google Scholar] [CrossRef]
- Enting, I.G.; Etheridge, D.M.; Fielding, M.J. A Perturbation Analysis of the Climate Benefit from Geosequestration of Carbon Dioxide. Int. J. Greenh. Gas Control 2008, 2, 289–296. [Google Scholar] [CrossRef]
- Otto, A.; Grube, T.; Schiebahn, S.; Stolten, D. Closing the Loop: Captured CO2 as a Feedstock in the Chemical Industry. Energy Environ. Sci. 2015, 8, 3283–3297. [Google Scholar] [CrossRef]
- Quadrelli, E.A.; Centi, G.; Duplan, J.L.; Perathoner, S. Carbon Dioxide Recycling: Emerging Large-Scale Technologies with Industrial Potential. ChemSusChem 2011, 4, 1194–1215. [Google Scholar] [CrossRef]
- Peters, M.; Köhler, B.; Kuckshinrichs, W.; Leitner, W.; Markewitz, P.; Müller, T.E. Chemical Technologies for Exploiting and Recycling Carbon Dioxide into the Value Chain. ChemSusChem 2011, 4, 1216–1240. [Google Scholar] [CrossRef]
- Aresta, M.; Dibenedetto, A.; Angelini, A. Catalysis for the Valorization of Exhaust Carbon: From CO2 to Chemicals, Materials, and Fuels. Technological Use of CO2. Chem. Rev. 2014, 114, 1709–1742. [Google Scholar] [CrossRef]
- Cuéllar-Franca, R.M.; Azapagic, A. Carbon Capture, Storage and Utilisation Technologies: A Critical Analysis and Comparison of Their Life Cycle Environmental Impacts. J. CO2 Util. 2015, 9, 82–102. [Google Scholar] [CrossRef]
- Bui, M.; Adjiman, C.S.; Bardow, A.; Anthony, E.J.; Boston, A.; Brown, S.; Fennell, P.S.; Fuss, S.; Galindo, A.; Hackett, L.A.; et al. Carbon Capture and Storage (CCS): The Way Forward. Energy Environ. Sci. 2018, 11, 1062–1176. [Google Scholar] [CrossRef]
- Corner, A.; Pidgeon, N. Like Artificial Trees? The Effect of Framing by Natural Analogy on Public Perceptions of Geoengineering. Clim. Change 2015, 130, 425–438. [Google Scholar] [CrossRef]
- Gambhir, A.; Tavoni, M. Direct Air Carbon Capture and Sequestration: How It Works and How It Could Contribute to Climate-Change Mitigation. One Earth 2019, 1, 405–409. [Google Scholar] [CrossRef]
- Breyer, C.; Fasihi, M.; Bajamundi, C.; Creutzig, F. Direct Air Capture of CO2: A Key Technology for Ambitious Climate Change Mitigation. Joule 2019, 3, 2053–2057. [Google Scholar] [CrossRef]
- Keith, D.W.; Holmes, G.; St. Angelo, D.; Heidel, K. A Process for Capturing CO2 from the Atmosphere. Joule 2018, 2, 1573–1594. [Google Scholar] [CrossRef]
- National Academies of Sciences, Engineering, and Medicine. Negative Emissions Technologies and Reliable Sequestration: A Research Agenda; The National Academies Press: Washington, DC, USA, 2019; ISBN 978-0-309-48452-7. [Google Scholar]
- Wilcox, J.; Psarras, P.C.; Liguori, S. Assessment of Reasonable Opportunities for Direct Air Capture. Environ. Res. Lett. 2017, 12, 065001. [Google Scholar] [CrossRef]
- House, K.Z.; Baclig, A.C.; Ranjan, M.; Van Nierop, E.A.; Wilcox, J.; Herzog, H.J. Economic and Energetic Analysis of Capturing CO2 from Ambient Air. Proc. Natl. Acad. Sci. USA 2011, 108, 20428–20433. [Google Scholar] [CrossRef]
- Fasihi, M.; Efimova, O.; Breyer, C. Techno-Economic Assessment of CO2 Direct Air Capture Plants. J. Clean. Prod. 2019, 224, 957–980. [Google Scholar] [CrossRef]
- Socolow, R.; Desmond, M.; Aines, R.; Blackstock, J.; Bolland, O.; Kaarsberg, T.; Lewis, N.; Mazzotti, M.; Pfeffer, A.; Sawyer, K.; et al. Direct Air Capture of CO2 with Chemicals a Technology Assessment for the APS Panel on Public Affairs; American Physical Society (APS): College Park, MD, USA, 2011. [Google Scholar]
- Holmes, G.; Nold, K.; Walsh, T.; Heidel, K.; Henderson, M.A.; Ritchie, J.; Klavins, P.; Singh, A.; Keith, D.W. Outdoor Prototype Results for Direct Atmospheric Capture of Carbon Dioxide. Energy Procedia 2013, 37, 6079–6095. [Google Scholar] [CrossRef]
- Lackner, K.S. The Thermodynamics of Direct Air Capture of Carbon Dioxide. Energy 2013, 50, 38–46. [Google Scholar] [CrossRef]
- Ozkan, M. Direct Air Capture of CO2: A Response to Meet the Global Climate Targets. MRS Energy Sustain. 2021, 20, 51–56. [Google Scholar] [CrossRef]
- McCollum, D.L.; Ogden, J.M. Techno-Economic Models for Carbon Dioxide Compression, Transport, and Storage & Correlations for Estimating Carbon Dioxide Density and Viscosity; Institute of Transportation Studies, University of California: Davis, CA, USA, 2006. [Google Scholar]
- Sabatino, F.; Grimm, A.; Gallucci, F.; van Sint Annaland, M.; Kramer, G.J.; Gazzani, M. A Comparative Energy and Costs Assessment and Optimization for Direct Air Capture Technologies. Joule 2021, 5, 2047–2076. [Google Scholar] [CrossRef]
- Hong, W.Y. A Techno-Economic Review on Carbon Capture, Utilisation and Storage Systems for Achieving a Net-Zero CO2 Emissions Future. Carbon Capture Sci. Technol. 2022, 3, 100044. [Google Scholar] [CrossRef]
- Viebahn, P.; Scholz, A.; Zelt, O. The potential role of direct air capture in the German energy research program—Results of a multi-dimensional analysis. Energies 2019, 12, 3443. [Google Scholar] [CrossRef]
- Madhu, K.; Pauliuk, S.; Dhathri, S.; Creutzig, F. Understanding Environmental Trade-Offs and Resource Demand of Direct Air Capture Technologies through Comparative Life-Cycle Assessment. Nat. Energy 2021, 6, 1035–1044. [Google Scholar] [CrossRef]
- Strefler, J.; Bauer, N.; Humpenöder, F.; Klein, D.; Popp, A.; Kriegler, E. Carbon Dioxide Removal Technologies Are Not Born Equal. Environ. Res. Lett. 2021, 16, 074021. [Google Scholar] [CrossRef]
- Dittmeyer, R.; Klumpp, M.; Kant, P.; Ozin, G. Crowd Oil Not Crude Oil. Nat. Commun. 2019, 10, 1818. [Google Scholar] [CrossRef]
- Terlouw, T.; Treyer, K.; Bauer, C.; Mazzotti, M. Life Cycle Assessment of Direct Air Carbon Capture and Storage with Low-Carbon Energy Sources. Environ. Sci. Technol. 2021, 44, 11397–11411. [Google Scholar] [CrossRef]
- Lowe, R.J.; Drummond, P. Solar, Wind and Logistic Substitution in Global Energy Supply to 2050—Barriers and Implications. Renew. Sustain. Energy Rev. 2022, 153, 111720. [Google Scholar] [CrossRef]
- Erans, M.; Sanz-Pérez, E.S.; Hanak, D.P.; Clulow, Z.; Reiner, D.M.; Mutch, G.A. Direct Air Capture: Process Technology, Techno-Economic and Socio-Political Challenges. Energy Environ. Sci. 2022, 15, 1360–1405. [Google Scholar] [CrossRef]
- Lehtveer, M.; Emanuelsson, A. BECCS and DACCS as Negative Emission Providers in an Intermittent Electricity System: Why Levelized Cost of Carbon May Be a Misleading Measure for Policy Decisions. Front. Clim. 2021, 3, 647276. [Google Scholar] [CrossRef]
- Breyer, C.; Fasihi, M.; Aghahosseini, A. Carbon Dioxide Direct Air Capture for Effective Climate Change Mitigation Based on Renewable Electricity: A New Type of Energy System Sector Coupling. Mitig. Adapt. Strateg. Glob. Change 2020, 25, 43–65. [Google Scholar] [CrossRef]
- Wohland, J.; Witthaut, D.; Schleussner, C.F. Negative Emission Potential of Direct Air Capture Powered by Renewable Excess Electricity in Europe. Earths Future 2018, 6, 1380–1384. [Google Scholar] [CrossRef]
- Rath, T.; Ekardt, F.; Gätsch, C. Power-to-X: Perspektiven, Governance, Rechtsfragen. Zeitschrift für Neues Energierecht (ZNER) 2021, 3, 242–269. [Google Scholar]
- Vázquez, F.V.; Koponen, J.; Ruuskanen, V.; Bajamundi, C.; Kosonen, A.; Simell, P.; Ahola, J.; Frilund, C.; Elfving, J.; Reinikainen, M.; et al. Power-to-X Technology Using Renewable Electricity and Carbon Dioxide from Ambient Air: SOLETAIR Proof-of-Concept and Improved Process Concept. J. CO2 Util. 2018, 28, 235–246. [Google Scholar] [CrossRef]
- Karjunen, H.; Tynjälä, T.; Hyppänen, T. A Method for Assessing Infrastructure for CO2 Utilization: A Case Study of Finland. Appl. Energy 2017, 205, 33–43. [Google Scholar] [CrossRef]
- Heß, D.; Klumpp, M.; Dittmeyer, R. Nutzung von CO2 aus Luft als Rohstoff für synthetische Kraftstoffe und Chemikalien: Studie im Auftrag des Ministeriums für Verkehr Baden-Württemberg; Karlsruhe Institute of Technology: Karlsruhe, Germany, 2020. [Google Scholar]
- Jackson, T. Prosperity without Growth: Foundations for the Economy of Tomorrow, 2nd ed.; Routledge: London, UK, 2017; ISBN 978-1-138-93541-9. [Google Scholar]
- Paech, N. Liberation from excess: The road to a post-growth economy; Oekom: Munich, Germany, 2012; ISBN 978-3-86581-324-4. [Google Scholar]
- Intergovernmental Panel on Climate Change. Global Warming of 1.5 °C: An IPCC Special Report; Intergovernmental Panel on Climate Change (IPCC): Geneva, Switzerland, 2018. [Google Scholar]
- Smith, P.; Davis, S.J.; Creutzig, F.; Fuss, S.; Minx, J.; Gabrielle, B.; Kato, E.; Jackson, R.B.; Cowie, A.; Kriegler, E.; et al. Biophysical and Economic Limits to Negative CO2 Emissions. Nat. Clim. Change 2016, 6, 42–50. [Google Scholar] [CrossRef]
- Kelly, D.L.; Kolstad, C.D. Integrated Assessment Models for Climate Change Control. In International Yearbook of Environmental and Resource Economics; Folmer, H., Tietenberg, T., Eds.; Edward Elgar Publishing: Cheltenham, UK, 1998; pp. 171–197. [Google Scholar]
- Ekardt, F. Economic Evaluation, Cost-Benefit Analysis, Economic Ethics; Springer: Cham, Switzerland, 2022; ISBN 978-3-030-99283-5. [Google Scholar]
- Spangenberg, J.H.; Polotzek, L. Like Blending Chalk and Cheese-the Impact of Standard Economics in IPCC Scenarios. Real-World Econ. Rev. 2019, 87, 196–211. [Google Scholar]
- Prigogine, I.; Stengers, I. Order Out of Chaos: Man’s New Dialogue with Nature; Verso Books: New York, NY, USA, 2018; ISBN 978-1786631008. [Google Scholar]
- Spangenberg, J. Sustainability and the Challenge of Complex Systems. In Theories of Sustainable Development; Enders, J.C., Remig, M., Eds.; Routledge: London, UK, 2014; pp. 89–111. [Google Scholar]
- Allen, P.M. The Dynamics of Knowledge and Ignorance: Learning the New Systems Science. In Integrative systems approaches to natural and social dynamics; Matthies, M., Malchow, H., Kriz, J., Eds.; Springer: Berlin, Germany, 2001; pp. 3–29. ISBN 978-3-642-56585-4. [Google Scholar]
- Asefi-Najafabady, S.; Villegas-Ortiz, L.; Morgan, J. The Failure of Integrated Assessment Models as a Response to ‘Climate Emergency’ and Ecological Breakdown: The Emperor Has No Clothes. Globalizations 2021, 18, 1178–1188. [Google Scholar] [CrossRef]
- Keen, S. The Appallingly Bad Neoclassical Economics of Climate Change. Globalizations 2021, 18, 1149–1177. [Google Scholar] [CrossRef]
- Realmonte, G.; Drouet, L.; Gambhir, A.; Glynn, J.; Hawkes, A.; Köberle, A.C.; Tavoni, M. An Inter-Model Assessment of the Role of Direct Air Capture in Deep Mitigation Pathways. Nat. Commun. 2019, 10, 3277. [Google Scholar] [CrossRef]
- Quiggin, D. BECCS Deployment—The Risks of Policies Forging Ahead of the Evidence; Chatham House: London, UK, 2021; Available online: https://www.chathamhouse.org/sites/default/files/2021-09/2021-10-01-beccs-deployment-quiggin.pdf (accessed on 10 November 2022).
- Fajardy, M.; Mac Dowell, N. Recognizing the Value of Collaboration in Delivering Carbon Dioxide Removal. One Earth 2020, 3, 214–225. [Google Scholar] [CrossRef]
- Anderson, K.; Peters, G. The Trouble with Negative Emissions. Science 2016, 354, 182–183. [Google Scholar] [CrossRef]
- Fuhrman, J.; McJeon, H.; Doney, S.C.; Shobe, W.; Clarens, A.F. From Zero to Hero? Why Integrated Assessment Modeling of Negative Emissions Technologies Is Hard and How We Can Do Better. Front. Clim. 2019, 1, 11. [Google Scholar] [CrossRef]
- Butnar, I.; Li, P.H.; Strachan, N.; Portugal Pereira, J.; Gambhir, A.; Smith, P. A Deep Dive into the Modelling Assumptions for Biomass with Carbon Capture and Storage (BECCS): A Transparency Exercise. Environ. Res. Lett. 2020, 15, 084008. [Google Scholar] [CrossRef]
- Grant, N.; Hawkes, A.; Mittal, S.; Gambhir, A. The Policy Implications of an Uncertain Carbon Dioxide Removal Potential. Joule 2021, 5, 2593–2605. [Google Scholar] [CrossRef]
- Creutzig, F. Economic and Ecological Views on Climate Change Mitigation with Bioenergy and Negative Emissions. GCB Bioenergy 2016, 8, 4–10. [Google Scholar] [CrossRef]
- Dixon, T.; Garrett, J.; Kleverlaan, E. Update on the London Protocol—Developments on Transboundary CCS and on Geoengineering. Energy Procedia 2014, 63, 6623–6628. [Google Scholar] [CrossRef]
- Krüger, H.R.J. Geoengineering und Völkerrecht: ein Beitrag zur Regulierung des klimabezogenen Geoengineerings; Mohr Siebeck: Tübingen, Germany, 2020; ISBN 978-3-16-155477-3. [Google Scholar]
- Proelß, A.; Güssow, K. Climate Engineering: Instrumente und Institutionen des internationalen Rechts; Institut für Umwelt- und Technikrecht: Trier, Germany, 2011. [Google Scholar]
- Ekardt, F.; Heyl, K. The German constitutional verdict is a landmark in climate litigation. Nat. Clim. Change 2022, 12, 697–699. [Google Scholar] [CrossRef]
- Ekardt, F.; Heß, F. Intertemporaler Freiheitsschutz, Existenzminimum und Gewaltenteilung nach dem BVerfG-Klima-Beschluss. Zeitschrift für Umweltrecht (ZUR) 2021, 11, 579–585. [Google Scholar]
- Ahmed, S.; Warne, T.; Smith, E.; Goemann, H.; Linse, G.; Greenwood, M.; Kedziora, J.; Sapp, M.; Kraner, D.; Roemer, K.; et al. Systematic Review on Effects of Bioenergy from Edible versus Inedible Feedstocks on Food Security. NPJ Sci. Food 2021, 5, 9. [Google Scholar] [CrossRef]
- Ekardt, F.; Hyla, A. Human Rights, the Right to Food, Legal Philosophy, and General Principles of International Law. Arch. Rechts Soz. 2017, 103, 221–238. [Google Scholar] [CrossRef]
- Van der Meulen, B. The Freedom to Feed Oneself: Food in the Struggle for Paradigms in Human Rights Law. In Governing Food Security: Law, Politics and the Right to Food; Hospes, O., Hadiprayitno, I., Eds.; Wageningen Academic Publishers: Wageningen, The Netherlands, 2010; pp. 81–104. ISBN 978-9086861576. [Google Scholar]
- Von Bernstorff, J. The Changing Fortunes of the Universal Declaration of Human Rights: Genesis and Symbolic Dimensions of the Turn to Rights in International Law. Eur. J. Int. Law 2008, 19, 903–924. [Google Scholar] [CrossRef]
- Chinkin, C.M. The Challenge of Soft Law: Development and Change in International Law. Int. Comp. Law Q. 1989, 38, 850–866. [Google Scholar] [CrossRef]
- Ziegler, J.; Golay, C.; Mahon, C.; Way, S.-A. The Definition of the Right to Food in International Law. In The Fight for the Right to Food: Lessons Learned; Ziegler, J., Golay, C., Mahon, C., Way, S.-A., Eds.; Palgrave MacMillan: London, UK, 2011; pp. 15–22. ISBN 978-0-230-29933-7. [Google Scholar]
- Committee on Economic, Social and Cultural Rights. General Comment No. 12: The Right to Adequate Food (Art. 11), Adopted at the Twentieth Session of the Committee on Economic, Social and Cultural Rights, on 12 May 1999 (E/C.12/1999/5); Office of the High Commissioner for Human Rights: Geneva, Switzerland, 1999. [Google Scholar]
- Kälin, W.; Künzli, J. The Law of International Human Rights Protection; Oxford University Press: Oxford, UK, 2019; ISBN 978-0-19-882569-2. [Google Scholar]
- Kaltenborn, M. The Human Rights-Based Approach to Social Protection. In Social Protection in Developing Countries; Bender, K., Kaltenborn, M., Pfleiderer, C., Eds.; Routledge: London, UK, 2013; pp. 53–62. [Google Scholar]
- Blake, C. Normative Instruments in International Human Rights Law: Locating the General Comment. In Center for Human Rights and Global Justice Working Papers; Center for Human Rights and Global Justice: New York, NY, USA, 2008; Volume 17, pp. 1–38. [Google Scholar]
- Williamson, P. Emissions Reduction: Scrutinize CO2 Removal Methods. Nature 2016, 530, 153–155. [Google Scholar] [CrossRef] [PubMed]
- Boysen, L.R.; Lucht, W.; Gerten, D. Trade-Offs for Food Production, Nature Conservation and Climate Limit the Terrestrial Carbon Dioxide Removal Potential. Glob. Change Biol. 2017, 23, 4303–4317. [Google Scholar] [CrossRef] [PubMed]
- Popp, A.; Calvin, K.; Fujimori, S.; Havlik, P.; Humpenöder, F.; Stehfest, E.; Bodirsky, B.L.; Dietrich, J.P.; Doelmann, J.C.; Gusti, M.; et al. Land-Use Futures in the Shared Socio-Economic Pathways. Glob. Environ. Change 2017, 42, 331–345. [Google Scholar] [CrossRef]
- Creutzig, F.; Erb, K.H.; Haberl, H.; Hof, C.; Hunsberger, C.; Roe, S. Considering Sustainability Thresholds for BECCS in IPCC and Biodiversity Assessments. GCB Bioenergy 2021, 13, 510–515. [Google Scholar] [CrossRef]
- van Zalk, J.; Behrens, P. The Spatial Extent of Renewable and Non-Renewable Power Generation: A Review and Meta-Analysis of Power Densities and Their Application in the U.S. Energy Policy 2018, 123, 83–91. [Google Scholar] [CrossRef]
- Schübel, H.; Wallimann-Helmer, I. Food Security and the Moral Differences between Climate Mitigation and Geoengineering: The Case of Biofuels and BECCS. In Justice and Food Security in a Changing Climate; Schübel, H., Wallimann-Helmer, I., Eds.; Wageningen Academic Publishers: Wageningen, The Netherlands, 2021; pp. 71–76. ISBN 978-90-8686-915-2. [Google Scholar]
- Hohlwegler, P. Moral Conflicts of Several “Green” Terrestrial Negative Emission Technologies Regarding the Human Right to Adequate Food—A Review. Adv. Geosci. 2019, 49, 37–45. [Google Scholar] [CrossRef]
- Gleick, P.H. The Human Right to Water. Water Policy 1998, 1, 487–503. [Google Scholar] [CrossRef]
- Salman, S.M.A. The Human Right to Water and Sanitation: Is the Obligation Deliverable? Water Int. 2014, 39, 969–982. [Google Scholar] [CrossRef]
- Committee on Economic, Social and Cultural Rights. General Comment No. 15: The Right to Water (Arts. 11 and 12 of the Convention), Adopted at the Twenty-Ninth Session of the Committee on Economic, Social and Cultural Rights, on 20 January 2003 (E/C.12/2002/11); Office of the High Commissioner for Human Rights: Geneva, Switzerland, 2003. [Google Scholar]
- Bakker, K. The “Commons” Versus the “Commodity”: Alter-Globalization, Anti-Privatization and the Human Right to Water in the Global South. Antipode 2007, 39, 430–455. [Google Scholar] [CrossRef]
- Wu, Z.; Zhai, H. Consumptive Life Cycle Water Use of Biomass-to-Power Plants with Carbon Capture and Sequestration. Appl. Energy 2021, 303, 117702. [Google Scholar] [CrossRef]
- United Nations Educational, Scientific and Cultural Organization. The United Nations World Water Development Report 2021: Valuing Water; United Nations Educational, Scientific and Cultural Organization (UNESCO): Paris, France, 2021. [Google Scholar]
- Boretti, A.; Rosa, L. Reassessing the Projections of the World Water Development Report. NPJ Clean Water 2019, 2, 15. [Google Scholar] [CrossRef]
- Stenzel, F.; Greve, P.; Tramberend, S. Irrigation of Biomass Plantations May Globally Increase Water Stress More than Climate Change Fabian. Nat. Commun. 2021, 12, 1512. [Google Scholar] [CrossRef]
- Burek, P.; Satoh, Y.; Fischer, G.; Kahil, M.T.; Scherzer, A.; Tramberend, S.; Nava, L.F.; Wada, Y.; Eisner, S.; Flörke, M.; et al. Water Futures and Solution. Fast Track Initiative—Final Report; International Institute for Applied Systems Analysis: Laxenburg, Austria, 2016; Available online: https://pure.iiasa.ac.at/id/eprint/13008/1/WP-16-006.pdf (accessed on 10 November 2022).
- Popp, A.; Dietrich, J.; Lotze-Campen, H.; Klein, D.; Bauer, N.; Krause, M.; Beringer, T.; Gerten, D.; Edenhofer, O. The Economic Potential of Bioenergy for Climate Change Mitigation with Special Attention given to Implications for the Land System. Environ. Res. Lett. 2011, 6, 34017. [Google Scholar] [CrossRef]
- Muri, H. The Role of Large—Scale BECCS in the Pursuit of the 1.5°C Target: An Earth System Model Perspective. Environ. Res. Lett. 2018, 13, 044010. [Google Scholar] [CrossRef]
- Ekardt, F.; Holzapfel, N.; Ulrich, A.E.; Schnug, E.; Haneklaus, S. Legal Perspectives on Regulating Phosphorus Fertilization. Landbauforschung (vTI Agriculture and Forestry. Research) 2011, 61, 83–92. [Google Scholar]
- Subhadra, B.G. Water Management Policies for the Algal Biofuel Sector in the Southwestern United States. Appl. Energy 2011, 88, 3492–3498. [Google Scholar] [CrossRef]
- Hill, J.; Tajibaeva, L.; Polasky, S. Climate Consequences of Low-Carbon Fuels: The United States Renewable Fuel Standard. Energy Policy 2016, 97, 351–353. [Google Scholar] [CrossRef]
- Stone, K.; Fingerman, K.; Gwynn, J. Water at Risk: The Impact of Biofuels Expansion on Water Resources and Poverty; ActionAid USA: Washington, DC, USA, 2015; Available online: https://www.actionaidusa.org/wp-content/uploads/2016/08/Water-at-Risk.pdf (accessed on 10 November 2022).
- Cima, E. The Right to a Healthy Environment: Reconceptualizing Human Rights in the Face of Climate Change. Rev. Eur. Comp. Int. Environ. Law 2022, 31, 38–49. [Google Scholar] [CrossRef]
- Morgera, E. Biodiversity as a Human Right and Its Implications for the EU’s External Action; Directorate General for External Policies of the Union: Brussels, Belgium, 2020. [Google Scholar]
- Limon, M. The Politics of Human Rights, the Environment, and Climate Change at the Human Rights Council: Toward a Universal Right to a Healthy Environment? In The Human Right to a Healthy Environment; Knox, J.H., Pejan, R., Eds.; Cambridge University Press: Cambridge, MA, USA, 2018; pp. 189–214. [Google Scholar]
- Lewis, B. Environmental Human Rights and Climate Change: Current Status and Future Prospects; Springer: Cham, Switzerland, 2018; ISBN 978-981-13-1960-0. [Google Scholar]
- Knox, J.H. Report of the Special Rapporteur on the Issue of Human Rights and the Environment: Framework Principles on Human Rights and the Environment, A/HRC/34/49, (UN Framework Principles); Office of the High Commissioner for Human Rights: Geneva, Switzerland, 2017. [Google Scholar]
- Roe, D.; Seddon, N.; Elliott, J. Biodiversity Loss Is a Development Issue: A Rapid Review of Evidence; International Institute for Environment and Development: London, UK, 2019; Available online: https://www.iied.org/sites/default/files/pdfs/migrate/17636IIED.pdf (accessed on 10 November 2022).
- De Vilchez Moragues, P.; Savaresi, A. The Right to a Healthy Environment and Climate Litigation: A Mutually Supportive Relation? SSRN Sch. Pap. 2021, 3829114, 1–19. Available online: https://papers.ssrn.com/abstract=3829114 (accessed on 10 November 2022). [CrossRef]
- United Nations Human Rights Council. Resolution 48/13: The Human Right to a Clean, Healthy and Sustainable Environment, Adopted by the Human Rights Council on 8 October 2021 (A/HRC/RES/48/13); United Nations Human Rights Council: Geneva, Switzerland, 2021. [Google Scholar]
- United Nations General Assembly. Resolution 76/300: The Human Right to a Clean, Healthy and Sustainable Environment, Adopted by the General Assembly on 28 July 2022 (A/RES/76/300); United Nations: New York, NY, USA, 2022. [Google Scholar]
- Secretariat of the Convention on Biological Diversity. Global Biodiversity Outlook 5 (GBO-5); Secretariat of the Convention on Biological Diversity: Montreal, QC, Canada, 2021. [Google Scholar]
- Weishaupt, A.; Ekardt, F.; Garske, B.; Stubenrauch, J.; Wieding, J. Land Use, Livestock, Quantity Governance, and Economic Instruments-Sustainability beyond Big Livestock Herds and Fossil Fuels. Sustainability 2020, 12, 2053. [Google Scholar] [CrossRef]
- Heck, V.; Gerten, D.; Lucht, W.; Popp, A. Biomass-Based Negative Emissions Difficult to Reconcile with Planetary Boundaries. Nat. Clim. Change 2018, 8, 151–155. [Google Scholar] [CrossRef]
- Hartman, J.C.; Nippert, J.B.; Orozco, R.A.; Springer, C.J. Potential Ecological Impacts of Switchgrass (Panicum Virgatum L.) Biofuel Cultivation in the Central Great Plains, USA. Biomass Bioenergy 2011, 35, 3415–3421. [Google Scholar] [CrossRef]
- Gonzalez-Hernandez, J.L.; Sarath, G.; Stein, J.M.; Owens, V.; Gedye, K.; Boe, A. A. A Multiple Species Approach to Biomass Production from Native Herbaceous Perennial Feedstocks. In Biofuels: Global Impact on Renewable Energy, Production Agriculture, and Technological Advancements; Tomes, D., Lakshmanan, P., Songstad, D., Eds.; Springer: New York, NY, USA, 2011; pp. 71–96. ISBN 978-1-4419-7145-6. [Google Scholar]
- Hof, C.; Voskamp, A.; Biber, M.F.; Böhning-Gaese, K.; Engelhardt, E.K.; Niamir, A.; Willis, S.G.; Hickler, T. Bioenergy Cropland Expansion May Offset Positive Effects of Climate Change Mitigation for Global Vertebrate Diversity. Proc. Natl. Acad. Sci. USA 2018, 115, 13294–13299. [Google Scholar] [CrossRef] [PubMed]
- Craig, P.; de Búrca, G. EU Law: Text, Cases, and Materials, 7th ed.; Oxford University Press: Oxford, UK, 2020; ISBN 978-0198856641. [Google Scholar]
- Klatt, M.; Meister, M. Proportionality-A Benefit to Human Rights? Remarks on the I·CON Controversy. Int. J. Const. Law 2012, 10, 687–708. [Google Scholar] [CrossRef]
- Möller, K. Proportionality: Challenging the Critics. Int. J. Const. Law 2012, 10, 709–731. [Google Scholar] [CrossRef]
- Muratori, M.; Bauer, N.; Rose, S.K.; Wise, M.; Daioglou, V.; Cui, Y.; Kato, E.; Gidden, M.; Strefler, J.; Fujimori, S.; et al. EMF-33 Insights on Bioenergy with Carbon Capture and Storage (BECCS). Clim. Change 2020, 163, 1621–1637. [Google Scholar] [CrossRef]
- Alexy, R. A Theory of Constitutional Rights; Oxford University Press: Oxford, UK, 2002; ISBN 978-0199584239. [Google Scholar]
- Sieckmann, J. Proportionality as a Universal Human Rights Principle. In Proportionality in Law: An Analytical Perspective; Duarte, D., Sampaio, J.S., Eds.; Springer: Cham, Switzerland, 2018; pp. 3–24. ISBN 978-3-319-89647-2. [Google Scholar]
- European Academies Science Advisory Council. Forest bioenergy update: BECCS and its role in integrated assessment models; Secretariat of the European Academies Science Advisory Council: Halle (Saale), Germany, 2022. [Google Scholar]
- Spangenberg, J.; Neumann, W.; Klöser, H.; Wittig, S.; Uhlenhaut, T.; Mertens, M.; Günther, E.; Valentin, I.; Ophoff, M.G. False Hopes, Missed Opportunities: How Economic Models Affect the IPCC Proposals in Special Report 15 “Global Warming of 1.5 °C” (2018). An Analysis from the Scientific Advisory Board of BUND. J. Appl. Bus. Econ. 2021, 23, 49–72. [Google Scholar]
- Gough, C.; Garcia-Freites, S.; Jones, C.; Mander, S.; Moore, B.; Pereira, C.; Röder, M.; Vaughan, N.; Welfle, A. Challenges to the Use of BECCS as a Keystone Technology in Pursuit of 1.5°C. Glob. Sustain. 2018, 1, 1–9. [Google Scholar] [CrossRef]
- Rosa, L.; Sanchez, D.L.; Mazzotti, M. Assessment of Carbon Dioxide Removal Potential: Via BECCS in a Carbon-Neutral Europe. Energy Environ. Sci. 2021, 14, 3086–3097. [Google Scholar] [CrossRef]
- International Energy Agency. Net Zero by 2050: A Roadmap for the Global Energy Sector; International Energy Agency (IEA): Paris, France, 2021. [Google Scholar]
- Energy Transitions Committee. Bioresources within a Net-Zero Emissions Economy; Energy Transitions Committee (ETC): London, UK, 2021; Available online: https://www.energy-transitions.org/wp-content/uploads/2021/07/ETC-bio-Report-v2.5-lo-res.pdf (accessed on 10 November 2022).
- Material Economics. EU Biomass Use in a Net-Zero Economy—A Course Correction for EU Biomass; Material Economics: Stockholm, Sweden, 2021; Available online: https://materialeconomics.com/latest-updates/eu-biomass-use (accessed on 10 November 2022).
- Zabel, F.; Putzenlechner, B.; Mauser, W. Global Agricultural Land Resources—A High Resolution Suitability Evaluation and Its Perspectives until 2100 under Climate Change Conditions. PLoS ONE 2014, 9, e107522. [Google Scholar] [CrossRef]
- Babin, A.; Vaneeckhaute, C.; Iliuta, M.C. Potential and Challenges of Bioenergy with Carbon Capture and Storage as a Carbon-Negative Energy Source: A Review. Biomass Bioenergy 2021, 146, 105968. [Google Scholar] [CrossRef]
- Fajardy, M.; Mac Dowell, N. Can BECCS Deliver Sustainable and Resource Efficient Negative Emissions? Energy Environ. Sci. 2017, 10, 1389–1426. [Google Scholar] [CrossRef]
- Smith, L.J.; Torn, M.S. Ecological Limits to Terrestrial Biological Carbon Dioxide Removal. Clim. Change 2013, 118, 89–103. [Google Scholar] [CrossRef]
- Vaughan, N.E.; Gough, C. Expert Assessment Concludes Negative Emissions Scenarios May Not Deliver. Environ. Res. Lett. 2016, 11, 095003. [Google Scholar] [CrossRef]
- Lamers, P.; Junginger, M. The ‘Debt’ Is in the Detail: A Synthesis of Recent Temporal Forest Carbon Analyses on Woody Biomass for Energy. Biofuels Bioprod. Biorefining 2013, 7, 373–385. [Google Scholar] [CrossRef]
- Wild-Scholten, M. de Energy Payback Time and Carbon Footprint of Commercial Photovoltaic Systems. Sol. Energy Mater. Sol. Cells 2013, 119, 296–305. [Google Scholar] [CrossRef]
- Bonou, A.; Laurent, A.; Olsen, S.I. Life Cycle Assessment of Onshore and Offshore Wind Energy-from Theory to Application. Appl. Energy 2016, 180, 327–337. [Google Scholar] [CrossRef]
- Bentsen, N.S. Carbon Debt and Payback Time—Lost in the Forest? Renew. Sustain. Energy Rev. 2017, 73, 1211–1217. [Google Scholar] [CrossRef]
- Brack, D.; King, R. Net Zero and Beyond: What Role for Bioenergy with Carbon Capture and Storage; Chatham House: London, UK, 2020; Available online: https://www.chathamhouse.org/sites/default/files/CHHJ7830-BECCS-RP-200127-WEB.pdf (accessed on 10 November 2022).
- Moriarty, P.; Honnery, D. Review: Assessing the Climate Mitigation Potential of Biomass. AIMS Energy 2017, 5, 20–38. [Google Scholar] [CrossRef]
- Fajardy, M.; Mac Dowell, N. The Energy Return on Investment of BECCS: Is BECCS a Threat to Energy Security? Energy Environ. Sci. 2018, 11, 1581–1594. [Google Scholar] [CrossRef]
- Brack, D.; King, R. Managing Land-Based CDR: BECCS, Forests and Carbon Sequestration. Glob. Policy 2021, 12, 45–56. [Google Scholar] [CrossRef]
- Viebahn, P.; Chappin, E.J.L. Scrutinising the Gap between the Expected and Actual Deployment of Carbon Capture and Storage—A Bibliometric Analysis. Energies 2018, 11, 2319. [Google Scholar] [CrossRef]
- Schenuit, F.; Colvin, R.; Fridahl, M.; Mcmullin, B.; Reisinger, A.; Sanchez, D.L.; Smith, S.M.; Torvanger, A.; Wreford, A. Carbon Dioxide Removal Policy in the Making: Assessing Developments in 9 OECD Cases. Front. Clim. 2021, 3, 638805. [Google Scholar] [CrossRef]
- Consoli, C. Bioenergy and Carbon Capture and Storage; Global CSS Institute: Docklands, Australia, 2019; Available online: https://www.globalccsinstitute.com/wp-content/uploads/2019/03/BECCS-Perspective_FINAL_PDF.pdf (accessed on 10 November 2022).
- Turan, G.; Zapantis, A.; Kearns, D.; Tamme, E.; Staib, C.; Zhang, T.; Burrows, J.; Gillespie, A.; Havercroft, I.; Rassool, D.; et al. The Global Status of CCS 2021; Global CSS Institute: Docklands, Australia, 2021; Available online: https://www.globalccsinstitute.com/wp-content/uploads/2021/10/2021-Global-Status-of-CCS-Report_Global_CCS_Institute.pdf (accessed on 10 November 2022).
- Holz, F.; Scherwath, T.; Crespo del Granado, P.; Skar, C.; Olmos, L.; Ploussard, Q.; Ramos, A.; Herbst, A. A 2050 Perspective on the Role for Carbon Capture and Storage in the European Power System and Industry Sector. Energy Econ. 2021, 104, 105631. [Google Scholar] [CrossRef]
- Sovacool, B.K.; Baum, C.M.; Low, S. Risk—Risk Governance in a Low-Carbon Future: Exploring Institutional, Technological, and Behavioral Tradeoffs in Climate Geoengineering Pathways. Risk Anal. 2022, 3, 1–22. [Google Scholar] [CrossRef]
- Galán-Martín, Á.; Vázquez, D.; Cobo, S.; Mac Dowell, N.; Caballero, J.A.; Guillén-Gosálbez, G. Delaying Carbon Dioxide Removal in the European Union Puts Climate Targets at Risk. Nat. Commun. 2021, 12, 6490. [Google Scholar] [CrossRef]
- Nehler, T.; Fridahl, M. Regulatory Preconditions for the Deployment of Bioenergy with Carbon Capture and Storage in Europe. Front. Clim. 2022, 4, 874152. [Google Scholar] [CrossRef]
- Clark, M.A.; Domingo, N.G.G.; Colgan, K.; Thakrar, S.K.; Tilman, D.; Lynch, J.; Azevedo, I.L.; Hill, J.D. Global Food System Emissions Could Preclude Achieving the 1.5° and 2°C Climate Change Targets. Science 2020, 370, 705–708. [Google Scholar] [CrossRef]
- Kühne, K.; Bartsch, N.; Tate, R.D.; Higson, J.; Habet, A. “Carbon Bombs”—Mapping Key Fossil Fuel Projects. Energy Policy 2022, 166, 112950. [Google Scholar] [CrossRef]
- Frank, S.; Havlík, P.; Soussana, J.F.; Levesque, A.; Valin, H.; Wollenberg, E.; Kleinwechter, U.; Fricko, O.; Gusti, M.; Herrero, M.; et al. Reducing Greenhouse Gas Emissions in Agriculture without Compromising Food Security? Environ. Res. Lett. 2017, 12, 105004. [Google Scholar] [CrossRef]
- Eisen, M.B.; Brown, P.O. Rapid Global Phaseout of Animal Agriculture has the Potential to Stabilize Greenhouse Gas Levels for 30 Years and Offset 68 Percent of CO2 Emissions this Century. PLoS Clim. 2022, 1, e0000010. [Google Scholar] [CrossRef]
- Poore, J.; Nemecek, T. Reducing Food’s Environmental Impacts through Producers and Consumers. Science 2018, 360, 987–992. [Google Scholar] [CrossRef]
- Buck, H.J. Ending Fossil Fuels: Why Net Zero Is Not Enough; Verso Books: New York, NY, USA, 2021; ISBN 978-1839762345. [Google Scholar]
- Vohra, K.; Vodonos, A.; Schwartz, J.; Marais, E.A.; Sulprizio, M.P.; Mickley, L.J. Global Mortality from Outdoor Fine Particle Pollution Generated by Fossil Fuel Combustion: Results from GEOS-Chem. Environ. Res. 2021, 195, 110754. [Google Scholar] [CrossRef]
- Guillerm, N.; Cesari, G. Fighting Ambient Air Pollution and Its Impact on Health: From Human Rights to the Right to a Clean Environment. Int. J. Tuberc. Lung Dis. 2015, 19, 887–897. [Google Scholar] [CrossRef]
- Committee on Economic, Social and Cultural Rights. General Comment No. 14: The Right to the Highest Attainable Standard of Health (Art. 12), Adopted at the Twenty-Second Session of the Committee on Economic, Social and Cultural Rights, on 11 August 2000 (E/C.12/2000/4); Office of the High Commissioner for Human Rights: Geneva, Switzerland, 2000. [Google Scholar]
- Cobo, S.; Galán-Martín, Á.; Tulus, V.; Huijbregts, M.A.J.; Guillén-Gosálbez, G. Human and Planetary Health Implications of Negative Emissions Technologies. Nat. Commun. 2022, 13, 2535. [Google Scholar] [CrossRef]
- Löfquist, L. Is There a Universal Human Right to Electricity? Int. J. Hum. Rights 2020, 24, 711–723. [Google Scholar] [CrossRef]
- Owoeye, O. Access to Energy in Sub-Saharan Africa: A Human Rights Approach to the Climate Change Benefits of Energy Access. Environ. Law Rev. 2016, 18, 284–300. [Google Scholar] [CrossRef]
- Shankar, U.; Sharma, S. Access to Energy: Looking through the Prism of Human Rights—The Indian Experience. J. Energy Dev. 2013, 38, 221–223. [Google Scholar]
- Niu, S.; Jia, Y.; Wang, W.; He, R.; Hu, L.; Liu, Y. Electricity Consumption and Human Development Level: A Comparative Analysis Based on Panel Data for 50 Countries. Int. J. Electr. Power Energy Syst. 2013, 53, 338–347. [Google Scholar] [CrossRef]
- Wewerinke-Singh, M. A Human Rights Approach to Energy: Realizing the Rights of Billions within Ecological Limits. Rev. Eur. Comp. Int. Environ. Law 2022, 31, 16–26. [Google Scholar] [CrossRef]
- Energy Access Targets Working Group. More Than a Lightbulb: Five Recommendations to Make Modern Energy Access Meaningful for People and Prosperity; Center for Global Development: Washington, DC, USA, 2016; Available online: https://www.cgdev.org/sites/default/files/energy-access-report-final_0.pdf (accessed on 10 November 2022).
- Nkomo, J.C. Energy Use, Poverty and Development in the SADC. J. Energy S. Afr. 2007, 18, 10–17. [Google Scholar] [CrossRef]
- Sin-Hang Ngai, J. Energy as a Human Right in Armed Conflict: A Question of Universal Need, Survival, and Human Dignity. Brooklyn J. Int. Law 2012, 37, 579–622. [Google Scholar]
- Tully, S. The Human Right to Access Electricity. Electr. J. 2006, 19, 30–39. [Google Scholar] [CrossRef]
- Bradbrook, A.J.; Gardam, J.G. Placing Access to Energy Services within a Human Rights Framework. Hum. Rights Q. 2006, 28, 389–415. [Google Scholar] [CrossRef]
- Nussbaum, M.C. Creating Capabilities: The Human Development Approach; Harvard University Press: Cambridge, MA, USA, 2011; ISBN 978-8178243290. [Google Scholar]
- Guruswamy, L. Energy Justice and Sustainable Development. Colo. J. Int. Environ. Law Policy 2010, 21, 231–275. [Google Scholar]
- Levy, B.S.; Patz, J.A. Climate Change, Human Rights, and Social Justice. Ann. Glob. Health 2015, 81, 310–322. [Google Scholar] [CrossRef]
- Ashcroft, R.E. Death in Heat Waves: Simple Preventive Measures May Help Reduce Mortality. BMJ Clin. Res. 2003, 327, 512–513. [Google Scholar]
- Amirkhani, M.; Ghaemimood, S.; von Schreeb, J.; El-Khatib, Z.; Yaya, S. Extreme Weather Events and Death Based on Temperature and CO2 Emission—A Global Retrospective Study in 77 Low-, Middle- and High-Income Countries from 1999 to 2018. Prev. Med. Rep. 2022, 28, 101846. [Google Scholar] [CrossRef]
- Pavanello, F.; De Cian, E.; Davide, M.; Mistry, M.; Cruz, T.; Bezerra, P.; Jagu, D.; Renner, S.; Schaeffer, R.; Lucena, A.F.P. Air-Conditioning and the Adaptation Cooling Deficit in Emerging Economies. Nat. Commun. 2021, 12, 6460. [Google Scholar] [CrossRef]
- Jain, Y.; Jain, R. India and Pakistan Emerge as Early Victims of Extreme Heat Conditions Due to Climate Injustice. BMJ 2022, 377, o1207. [Google Scholar] [CrossRef]
- Edwards, J.; Medlock, S. Is Air Conditioning a Human Right? Time, 21 July 2016. Available online: https://time.com/4405338/air-conditioning-human-right/ (accessed on 10 November 2022).
- Mutiso, B.R.M.; Bazilian, M.D.; Kincer, J.; Bowser, B. Air-Conditioning Should Be a Human Right in the Climate Crisis. Available online: https://www.scientificamerican.com/article/air-conditioning-should-be-a-human-right-in-the-climate-crisis/ (accessed on 10 November 2022).
- Vithanage, A.; Habermann, R. When Two Wrongs Make a “Right”. Völkerrechtsblog 2022. Available online: https://voelkerrechtsblog.org/when-two-wrongs-make-a-right/ (accessed on 10 November 2022). [CrossRef]
- German Federal Constitutional Court. Order of the first senate of 24 March 2021—1 BvR 2656/18; German Federal Constitutional Court: Karlsruhe, Germany, 2021. [Google Scholar]
- Fuhrman, J.; Clarens, A.; Calvin, K.; Doney, S.C.; Edmonds, J.A.; O’Rourke, P.; Patel, P.; Pradhan, S.; Shobe, W.; McJeon, H. The Role of Direct Air Capture and Negative Emissions Technologies in the Shared Socioeconomic Pathways towards +1.5 °C and +2 °C Futures. Environ. Res. Lett. 2021, 16, 114012. [Google Scholar] [CrossRef]
- Lebling, K.; McQueen, N.; Pisciotta, M.; Wilcox, J. Direct Air Capture: Resource Considerations and Costs for Carbon Removal; World Resources Institute: Washington, DC, USA, 2021. [Google Scholar]
- Ozkan, M.; Akhavi, A.-A.; Coley, W.C.; Shang, R.; Ma, Y. Progress in Carbon Dioxide Capture Materials for Deep Decarbonization. Chem 2022, 8, 141–173. [Google Scholar] [CrossRef]
- Hanna, R.; Abdulla, A.; Xu, Y.; Victor, D.G. Emergency Deployment of Direct Air Capture as a Response to the Climate Crisis. Nat. Commun. 2021, 12, 368. [Google Scholar] [CrossRef]
- Chatterjee, S.; Huang, K.W. Unrealistic Energy and Materials Requirement for Direct Air Capture in Deep Mitigation Pathways. Nat. Commun. 2020, 11, 3287. [Google Scholar] [CrossRef]
- Creutzig, F.; Breyer, C.; Hilaire, J.; Minx, J.; Peters, G.P.; Socolow, R. The Mutual Dependence of Negative Emission Technologies and Energy Systems. Energy Environ. Sci. 2019, 12, 1805–1817. [Google Scholar] [CrossRef]
- Beuttler, C.; Charles, L.; Wurzbacher, J. The Role of Direct Air Capture in Mitigation of Anthropogenic Greenhouse Gas Emissions. Front. Clim. 2019, 1, 10. [Google Scholar] [CrossRef]
- Barak, A. Proportionality Stricto Sensu (Balancing). In Proportionality: Constitutional Rights and Their Limitations; Barak, A., Ed.; Cambridge Studies in Constitutional Law; Cambridge University Press: Cambridge, UK, 2012; pp. 340–370. ISBN 978-1-107-40119-8. [Google Scholar]
- Chen, C.; Tavoni, M. Direct Air Capture of CO2 and Climate Stabilization: A Model Based Assessment. Clim. Change 2013, 118, 59–72. [Google Scholar] [CrossRef]
- Marcucci, A.; Kypreos, S.; Panos, E. The Road to Achieving the Long-Term Paris Targets: Energy Transition and the Role of Direct Air Capture. Clim. Change 2017, 144, 181–193. [Google Scholar] [CrossRef]
- Ozkan, M.; Nayak, S.P.; Ruiz, A.D.; Jiang, W. Current Status and Pillars of Direct Air Capture Technologies. iScience 2022, 25, 103990. [Google Scholar] [CrossRef] [PubMed]
- Sovacool, B.; Baum, C.; Low, S.; Roberts, C. Climate Policy for a Net-Zero Future: Ten Recommendations for Direct Air Capture. Environ. Res. Lett. 2022, 17, 074014. [Google Scholar] [CrossRef]
- Brander, M.; Ascui, F.; Scott, V.; Tett, S. Carbon Accounting for Negative Emissions Technologies. Clim. Policy 2021, 21, 699–717. [Google Scholar] [CrossRef]
- McQueen, N.; Gomes, K.V.; McCormick, C.; Blumanthal, K.; Pisciotta, M.; Wilcox, J. A Review of Direct Air Capture (DAC): Scaling up Commercial Technologies and Innovating for the Future. Prog. Energy 2021, 3, 032001. [Google Scholar] [CrossRef]
- Cooper, J.; Dubey, L.; Hawkes, A. The Life Cycle Environmental Impacts of Negative Emission Technologies in North America. Sustain. Prod. Consum. 2022, 32, 880–894. [Google Scholar] [CrossRef]
- Stavins, R.N. Addressing Climate Change with a Comprehensive US Cap-and-Trade System. Oxf. Rev. Econ. Policy 2008, 24, 298–321. [Google Scholar] [CrossRef]
- McCormick, C. Who Pays for DAC? The Market and Policy Landscape for Advancing Direct Air Capture. Bridge Natl. Acad. Eng. 2022, 51, 30–33. [Google Scholar]
- Lackner, K.S.; Azarabadi, H. Buying down the Cost of Direct Air Capture. Ind. Eng. Chem. Res. 2021, 60, 8196–8208. [Google Scholar] [CrossRef]
- Husk, J.C.; Wenz, G.B. Inside-Out: Driving Down Direct Air Capture Costs with High-Efficiency Adsorbents. Front. Clim. 2022, 3, 194. [Google Scholar] [CrossRef]
- Barrett, J.; Pye, S.; Betts-davies, S.; Broad, O.; Price, J.; Eyre, N.; Anable, J.; Brand, C.; Bennett, G.; Carr-whitworth, R.; et al. Energy Demand Reduction Options for Meeting National Zero-Emission Targets in the United Kingdom. Nat. Energy 2022, 7, 726–735. [Google Scholar] [CrossRef]
- Gunderson, R.; Stuart, D.; Petersen, B. The Political Economy of Geoengineering as Plan B: Technological Rationality, Moral Hazard, and New Technology. New Polit. Econ. 2019, 24, 696–715. [Google Scholar] [CrossRef]
- Luderer, G.; Vrontisi, Z.; Bertram, C.; Edelenbosch, O.Y.; Pietzcker, R.C.; Rogelj, J.; De Boer, H.S.; Drouet, L.; Emmerling, J.; Fricko, O.; et al. Residual Fossil CO2 Emissions in 1.5–2 °C Pathways. Nat. Clim. Change 2018, 8, 626–633. [Google Scholar] [CrossRef]
- European Commission. Fit for 55—Delivering the EU’s 2030 Climate Target on the Way to Climate Neutrality; European Commission (EC): Brussels, Belgium, 2021. [Google Scholar]
- Sandalow, D.; Aines, R.; Friedmann, J.; Mccormick, C.; Sanchez, D. Biomass Carbon Removal and Storage (BiCRS) Roadmap; Innovation for Cool Earth Forum (ICEF): Tokyo, Japan, 2021. [Google Scholar]
- Sachs, N.M. Rescuing the Strong Precautionary Principle from Its Critics. Univ. Ill. Law Rev. 2011, 2011, 1285–1338. [Google Scholar]
- Mandel, G.; Gathii, J. Cost-Benefit Analysis versus the Precautionary Principle: Beyond Cass Sunstein’s Laws of Fear. Univ. Ill. Law Rev. 2006, 2006, 1037–1080. [Google Scholar]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Günther, P.; Ekardt, F. Human Rights and Large-Scale Carbon Dioxide Removal: Potential Limits to BECCS and DACCS Deployment. Land 2022, 11, 2153. https://doi.org/10.3390/land11122153
Günther P, Ekardt F. Human Rights and Large-Scale Carbon Dioxide Removal: Potential Limits to BECCS and DACCS Deployment. Land. 2022; 11(12):2153. https://doi.org/10.3390/land11122153
Chicago/Turabian StyleGünther, Philipp, and Felix Ekardt. 2022. "Human Rights and Large-Scale Carbon Dioxide Removal: Potential Limits to BECCS and DACCS Deployment" Land 11, no. 12: 2153. https://doi.org/10.3390/land11122153
APA StyleGünther, P., & Ekardt, F. (2022). Human Rights and Large-Scale Carbon Dioxide Removal: Potential Limits to BECCS and DACCS Deployment. Land, 11(12), 2153. https://doi.org/10.3390/land11122153