The Becoming of a Prehistoric Landscape: Palaeolithic Occupations and Geomorphological Processes at Lojanik (Serbia)
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Methods
- -
- Isolated artefacts;
- -
- Findspots, which are clusters of artefacts scattered on less than 1 square meter;
- -
- Find areas, which are larger scatters, and can include different findspots.
3. Results
3.1. Geoarchaeological Results
- Geomorphological mapping
- b.
- Tri Stene Rockshelter
- c.
- Electrical resistivity tomography
- d.
- Geo-trench 1
3.2. Evidences of Human Activity
- Lojanik 1
- b.
- Lojanik 2
- c.
- Lojanik 3
4. Discussion
4.1. Phases of Landscape Evolution
- a.
- The Kremenjak Valley
- i.
- Bedrock incision (Mio-Pleistocene?)
- ii.
- Aggradation, formation of river terraces, and accumulation of Palaeolithic stone tools (Pleistocene)
- iii.
- River valley incision, slope erosion, rockfall, and river lateral erosion (late Pleistocene to modern)
- b.
- The Lojanik 1 Valley
- i.
- Bedrock Incision (Mio-Pleistocene?)
- ii.
- River valley aggradation and accumulation of Palaeolithic stone tools (Pleistocene)?
- iii.
- Slope erosion followed by rockfall, and further accumulation of stone tools (late Pleistocene to Holocene?)
- iv.
- Human-made pitting triggering slope erosion and further river valley aggradation (Holocene to modern times)
4.2. Phases of Human Occupation
- a.
- Lojanik 1
- b.
- Lojanik 2
- -
- Either a first Middle Palaeolithic occupation, when the Levallois elements were abandoned at the site, followed by an Initial Upper Palaeolithic occupation, characterised by burins and blade cores.
- -
- Or, only an Initial Upper Palaeolithic occupation, with the combination of Levallois, blade cores and burins.
- c.
- Lojanik 3
- -
- First, Levallois-making hunter-gatherers occupied the valley near the stream, probably taking advantage from the exposed bedrock to easily exploit the raw material;
- -
- Then, Upper Palaeolithic groups came to occupy the site; at this time the bedrock would not be as exposed and thus not as easily accessible. However, they could have exploited bedrock outcrops that are located higher on the slope, such as the one we identified during our survey (Figure 2f), or boulders that have been detached from the same outcrop and rolled down the slope.
- d.
- Techno-typological summary of the Kremenjak Valley assemblages
4.3. Landscape Use in the Kremenjak Valley
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Van Andel, T.H.; Tzedakis, P.C. Palaeolithic Landscapes of Europe and Environs, 150,000–25,000 Years Ago: An Overview. Quat. Sci. Rev. 1996, 15, 481–500. [Google Scholar] [CrossRef]
- Tzedakis, P.C. The Balkans as Prime Glacial Refugial Territory of European Temperate Trees. In Balkan Biodiversity; Springer: Berlin/Heidelberg, Germany, 2004; pp. 49–68. [Google Scholar]
- Hewitt, G.M. Post-Glacial Re-Colonization of European Biota. Biol. J. Linn. Soc. 1999, 68, 87–112. [Google Scholar] [CrossRef]
- Weiss, S.; Ferrand, N. Phylogeography of Southern European Refugia; Springer: Berlin/Heidelberg, Germany, 2007. [Google Scholar]
- Dennell, R.W.; Martinón-Torres, M.; de Castro, J.M.B. Hominin Variability, Climatic Instability and Population Demography in Middle Pleistocene Europe. Quat. Sci. Rev. 2011, 30, 1511–1524. [Google Scholar] [CrossRef]
- Feliner, G.N. Southern European Glacial Refugia: A Tale of Tales. Taxon 2011, 60, 365–372. [Google Scholar] [CrossRef]
- Dogandžić, T.; McPherron, S.; Mihailović, D. Middle and Upper Paleolithic in the Balkans: Continuities and Discontinuities of Human Occupations. Palaeolithic Mesolith. Res. Cent. Balk. 2014, 83, 83–94. [Google Scholar]
- Stojak, J.; McDevitt, A.D.; Herman, J.S.; Searle, J.B.; Wójcik, J.M. Post-Glacial Colonization of Eastern Europe from the Carpathian Refugium: Evidence from Mitochondrial DNA of the Common Vole Microtus Arvalis. Biol. J. Linn. Soc. 2015, 115, 927–939. [Google Scholar] [CrossRef] [Green Version]
- Jones, E.L. What Is a Refugium? Questions for the Middle–Upper Palaeolithic Transition in Peninsular Southern Europe. J. Quat. Sci. 2021, 37, 136–141. [Google Scholar] [CrossRef]
- Dogandžić, T.; Đuričić, L. Lithic Production Strategies in the Middle Paleolithic of the Southern Balkans. Quat. Int. 2017, 450, 68–102. [Google Scholar] [CrossRef]
- Boëda, E. Approche Technologique Du Concept Levallois et Évaluation de Son Champ d’application: Étude de Trois Gisement Saaliens et Weichseliens de La France Septentrionale. Ph.D. Thesis, Université Paris X, Nanterre, France, 1986. [Google Scholar]
- Boëda, E. De La Surface Au Volume: Analyse Des Conceptions Des Débitages Levallois et Laminaire. In Proceedings of the Actes du Colloque International de Nemours, 1988; Mémoires du Musée de Préhistoire d’Ile-de-France: Nemours, France, 1990; Volume 3, pp. 63–68. [Google Scholar]
- Boëda, E. Levallois: A Volumetric Construction, Methods, A Technique. In Proceedings of the Monographs in World Archaeology n°23; Prehistory Press: Philadelphie, PA, USA, 1995; pp. 41–68. [Google Scholar]
- Jaubert, J. Chasseurs et Artisans Du Moustérien; La Maison des Roches: Paris, France, 1999. [Google Scholar]
- Mihailović, D. Push-and-Pull Factors of the Middle to Upper Paleolithic Transition in the Balkans. Quat. Int. 2020, 551, 47–62. [Google Scholar] [CrossRef]
- Bogosavljević Petrović, V.; Marković, J. Raw Material Studies of West Central Serbia. J. Lithic Stud. 2014, 1, 55–71. [Google Scholar] [CrossRef] [Green Version]
- Bogosavljević Petrović, V.; Petrović, A.; Galfi, J.; Jovanović, D.; Radonjić, Đ. Grey Zones of Production: Discussing the Technology of Tools at the Lojanik Quarry in West-Central Serbia. J. Lithic Stud. 2018, 5, 2. [Google Scholar] [CrossRef]
- Marković, B.; Urošević, M.; Pavlović, Z.; Terzin, V.; Jovanović, Ž.; Vujisić, T.; Rakić, M. SFRJ, 1:100.000, Tumač Za List Kraljevo, K 34-6. 1963. [Google Scholar]
- Mihailović, D.; Bogosavljević Petrović, V. Samaila—Vlaška Glava, Paleolitsko Nazalište Na Otvorenom Prostoru (in Serbian; Samaila—Vlaška Glava, Open-Air Palaeolithic Site). Naša Prošlost 2009, 10, 21–44. [Google Scholar]
- Mihailović, D.; Milošević, S.; Radović, P. New Data about the Lower and Middle Palaeolithic in Western Morava Valley. In Palaeolithic and Mesolithic research in the central Balkans; Serbian Archaeological Society: Belgrade, Serbia, 2014; pp. 57–67. [Google Scholar]
- Stevanović, P.; Pavlović, M.B.; Eremija, M. Čačansko-Kraljevački (Ili Zapadnomoravski Basen). In Geologija Srbije, II-3. Stratigrafija-Kenozoik; Institut za regionalnu geologiju i paleontologiju Rudarsko-geološkog fakulteta: Belgrade, Serbia, 1977; pp. 270–275. [Google Scholar]
- Bogosavljević Petrović, V. Okresama Kamena Industrija Sa Neolitiskih Naselja Divlje Polje i Trsine (Chipped Stone Industries from the Neolithic Sites of Divlje Polje and Trsine); Magistarski rad No 3/316; Filozofski fakultet, Univerzitet u Beograd: Belgrade, Serbia, 1990. [Google Scholar]
- Bogosavljević Petrović, V. Razvoj Industrije Okresanog Kamena u Vinčanskoj Kulturi Na Teritoriji Srbije (Evolution of the Chipped Stone Industry in the Vinča Culture in the Territory of Serbia). Ph.D. Dissertation, Filozofski fakultet Univerzitet u Beograd, Belgrade, Serbia, 2015. [Google Scholar]
- Bogosavljević Petrović, V.; Starović, A. The Context of the Early Neolithic in Serbia: Hidden Reflections of Mesolithic Continuity? Glas. Srp. Arheol. Društva 2016, 32, 7–50. [Google Scholar]
- Bogosavljević Petrović, V.; Starović, A.; Jovanovic, D.; Pendić, J. Micro-Regional Quarry-Settlement in the West-Central Serbia: Preliminary Lojanik 2016 Fieldwork Report. Glas. Srp. Arheol. Društva 2018, 33, 21–46. [Google Scholar]
- Dong, P.; Chen, Q. LiDAR Remote Sensing and Applications; CRC Press: Boca Raton, FL, USA, 2017. [Google Scholar]
- Chase, A.; Chase, D.; Chase, A. Ethics, New Colonialism, and Lidar Data: A Decade of Lidar in Maya Archaeology. J. Comput. Appl. Archaeol. 2020, 3, 51–62. [Google Scholar] [CrossRef]
- Evans, D. Airborne Laser Scanning as a Method for Exploring Long-Term Socio-Ecological Dynamics in Cambodia. J. Archaeol. Sci. 2016, 74, 164–175. [Google Scholar] [CrossRef] [Green Version]
- Inomata, T.; Triadan, D.; Vázquez López, V.A.; Fernandez-Diaz, J.C.; Omori, T.; Méndez Bauer, M.B.; García Hernández, M.; Beach, T.; Cagnato, C.; Aoyama, K. Monumental Architecture at Aguada Fénix and the Rise of Maya Civilization. Nature 2020, 582, 530–533. [Google Scholar] [CrossRef]
- Shepard, D. A Two-Dimensional Interpolation Function for Irregularly-Spaced Data. In Proceedings of the 1968 23rd ACM National Conference, New York, NY, USA, 27–29 August 1968; pp. 517–524. [Google Scholar]
- Haralick, R.M. Ridges and Valleys on Digital Images. Comput. Vis. Graph. Image Process. 1983, 22, 28–38. [Google Scholar] [CrossRef]
- Zevenbergen, L.W.; Thorne, C.R. Quantitative Analysis of Land Surface Topography. Earth Surf. Process. Landf. 1987, 12, 47–56. [Google Scholar] [CrossRef]
- Evans, I.S. An Integrated System of Terrain Analysis and Slope Mapping; University of Durham: Durham, UK, 2006. [Google Scholar]
- Olaya, V. Basic Land-Surface Parameters. In Geomorphometry: Concepts, Software, Applications. Developments in Soil Science; Hengl, T., Reuter, H.I., Eds.; Elsevier: Amsterdam, The Netherlands, 2006; Volume 33, pp. 141–169. [Google Scholar]
- Travis, M.R.; Elsner, G.H.; Iverson, W.D.; Johnson, C.G. VIEWIT: Computation of Seen Areas, Slope, and Aspect for Land-Use Planning; USDA Forest Service General Technical Report.; Department of Agriculture, Forest Service, Pacific Southwest Forest and Range Experiment Station: Berkeley, CA, USA, 1975; Volume 11, 70p. [Google Scholar]
- Tarini, M.; Cignoni, P.; Montani, C. Ambient Occlusion and Edge Cueing for Enhancing Real Time Molecular Visualization. IEEE Trans. Vis. Comput. Graph. 2006, 12, 1237–1244. [Google Scholar] [CrossRef]
- Bridgland, D.R. River Terrace Systems in North-West Europe: An Archive of Environmental Change, Uplift and Early Human Occupation. Quat. Sci. Rev. 2000, 19, 1293–1303. [Google Scholar] [CrossRef]
- Cunha, P.P.; Martins, A.A.; Buylaert, J.-P.; Murray, A.S.; Gouveia, M.P.; Font, E.; Pereira, T.; Figueiredo, S.; Ferreira, C.; Bridgland, D.R.; et al. The Lowermost Tejo River Terrace at Foz Do Enxarrique, Portugal: A Palaeoenvironmental Archive from c. 60–35 Ka and Its Implications for the Last Neanderthals in Westernmost Iberia. Quaternary 2019, 2, 3. [Google Scholar] [CrossRef] [Green Version]
- Shea, J.J. The Middle Stone Age Archaeology of the Lower Omo Valley Kibish Formation: Excavations, Lithic Assemblages, and Inferred Patterns of Early Homo Sapiens Behavior. J. Hum. Evol. 2008, 55, 448–485. [Google Scholar] [CrossRef] [PubMed]
- Schilt, F.; Miller, C.E.; Wright, D.K.; Mentzer, S.M.; Mercader, J.; Moss, P.; Choi, J.-H.; Siljedal, G.; Clarke, S.; Mwambwiga, A. Hunter-Gatherer Environments at the Late Pleistocene Sites of Mwanganda’s Village and Bruce, Northern Malawi. Quat. Sci. Rev. 2022, 292, 107638. [Google Scholar] [CrossRef]
- Straus, L.G. Underground Archaeology: Perspectives on Caves and Rockshelters. Archaeol. Method Theory 1990, 2, 255–304. [Google Scholar]
- Skeates, R.; Bergsvik, K.A. Caves in Context: The Cultural Significance of Caves and Rockshelters in Europe. In Caves in Context; Oxbow Books: Oxford, UK, 2012; pp. 1–304. [Google Scholar]
- Becker, C.J. Flint Mining in Neolithic Denmark. Antiquity 1959, 33, 87–92. [Google Scholar] [CrossRef]
- Bosch, P.W. A Neolithic Flint Mine. Sci. Am. 1979, 240, 126–133. [Google Scholar] [CrossRef]
- Camprubí, A.; Melgarejo, J.-C.; Proenza, J.A.; Costa, F.; Bosch, J.; Estrada, A.; Borell, F.; Yushkin, N.P.; Andreichev, V.L. Mining and Geological Knowledge during the Neolithic: A Geological Study on the Variscite Mines at Gavà, Catalonia. Epis. J. Int. Geosci. 2003, 26, 295–301. [Google Scholar] [CrossRef] [Green Version]
- Leopold, M.; Völkel, J. Neolithic Flint Mines in Arnhofen, Southern Germany: A Ground-penetrating Radar Survey. Archaeol. Prospect. 2004, 11, 57–64. [Google Scholar] [CrossRef]
- FitzPatrick, E.A. Soils. Their Formation, Classification and Distribution.; Longman: London, UK, 1980. [Google Scholar]
- Chilingar, G.V.; Bissell, H.J.; Wolf, K.H. Diagenesis of Carbonate Rocks. In Developments in Sedimentology; Elsevier: Amsterdam, The Netherlands, 1967; Volume 8, pp. 179–322. [Google Scholar]
- Zingg, T. Beitrag Zur Schotteranalyse. Ph.D. Dissertation, ETH, Zurich, Switzerland, 1935. [Google Scholar]
- Powers, M.C. A New Roundness Scale for Sedimentary Particles. J. Sediment. Res. 1953, 23, 117–119. [Google Scholar] [CrossRef]
- Stoops, G. Guidelines for Analysis and Description of Soil and Regolith Thin Sections; John Wiley & Sons: Hoboken, NJ, USA, 2021; Volume 184. [Google Scholar]
- Vos, C.; Don, A.; Prietz, R.; Heidkamp, A.; Freibauer, A. Field-Based Soil-Texture Estimates Could Replace Laboratory Analysis. Geoderma 2016, 267, 215–219. [Google Scholar] [CrossRef]
- Telford, W.M.; Telford, W.M.; Geldart, L.P.; Sheriff, R.E. Applied Geophysics; Cambridge University Press: Cambridge, UK, 1990. [Google Scholar]
- Binley, A.; Kemna, A. DC Resistivity and Induced Polarization Methods. In Hydrogeophysics; Rubin, Y., Hubbard, S.S., Eds.; Springer: Dordrecht, The Netherlands, 2005; pp. 129–156. [Google Scholar]
- Diallo, M.C.; Cheng, L.Z.; Rosa, E.; Gunther, C.; Chouteau, M. Integrated GPR and ERT Data Interpretation for Bedrock Identification at Cléricy, Québec, Canada. Eng. Geol. 2019, 248, 230–241. [Google Scholar] [CrossRef]
- Coulouma, G.; Samyn, K.; Grandjean, G.; Follain, S.; Lagacherie, P. Combining Seismic and Electric Methods for Predicting Bedrock Depth along a Mediterranean Soil Toposequence. Geoderma 2012, 170, 39–47. [Google Scholar] [CrossRef] [Green Version]
- Tsokas, G.N.; Tsourlos, P.I.; Vargemezis, G.; Novack, M. Non-destructive Electrical Resistivity Tomography for Indoor Investigation: The Case of Kapnikarea Church in Athens. Archaeol. Prospect. 2008, 15, 47–61. [Google Scholar] [CrossRef]
- Nowaczinski, E.; Schukraft, G.; Hecht, S.; Rassmann, K.; Bubenzer, O.; Eitel, B. A Multimethodological Approach for the Investigation of Archaeological Ditches–Exemplified by the Early Bronze Age Settlement of Fidvár Near Vráble (Slovakia). Archaeol. Prospect. 2012, 19, 281–295. [Google Scholar] [CrossRef]
- Chambers, J.E.; Wilkinson, P.B.; Wardrop, D.; Hameed, A.; Hill, I.; Jeffrey, C.; Loke, M.H.; Meldrum, P.I.; Kuras, O.; Cave, M. Bedrock Detection beneath River Terrace Deposits Using Three-Dimensional Electrical Resistivity Tomography. Geomorphology 2012, 177, 17–25. [Google Scholar] [CrossRef] [Green Version]
- Barbieri, A.; Bachofer, F.; Schmaltz, E.M.; Leven, C.; Conard, N.J.; Miller, C.E. Interpreting Gaps: A Geoarchaeological Point of View on the Gravettian Record of Ach and Lone Valleys (Swabian Jura, SW Germany). J. Archaeol. Sci. 2021, 127, 105335. [Google Scholar] [CrossRef]
- de la Vega, M.; Osella, A.; Lascano, E. Joint Inversion of Wenner and Dipole–Dipole Data to Study a Gasoline-Contaminated Soil. J. Appl. Geophys. 2003, 54, 97–109. [Google Scholar] [CrossRef]
- Blanchy, G.; Saneiyan, S.; Boyd, J.; McLachlan, P.; Binley, A. ResIPy, an Intuitive Open Source Software for Complex Geoelectrical Inversion/Modeling. Comput. Geosci. 2020, 137, 104423. [Google Scholar] [CrossRef]
- Nettleton, I.M.; Martin, S.; Hencher, S.; Moore, R. Debris Flow Types and Mechanisms. In Scottish Road Network Landslides Study; Transport Scotland: Edinburgh, Scotland, 2005; pp. 45–67. [Google Scholar]
- Bertran, P.; Texier, J.-P. Facies and Microfacies of Slope Deposits. Catena 1999, 35, 99–121. [Google Scholar] [CrossRef]
- Blikra, L.H.; Nemec, W. Postglacial Colluvium in Western Norway: Depositional Processes, Facies and Palaeoclimatic Record. Sedimentology 1998, 45, 909–960. [Google Scholar] [CrossRef]
- Savin, C.; Robineau, B.; Monteil, G.; Beauvais, A.; Parisot, J.C.; Ritz, M. Electrical Imaging of Peridotite Weathering Mantles as a Complementary Tool for Nickel Ore Exploration in New Caledonia. ASEG Ext. Abstr. 2003, 2003, 1–5. [Google Scholar] [CrossRef] [Green Version]
- Bondar, K.M.; Sokhatskyi, M.P.; Chernov, A.; Popko, Y.; Petrokushyn, O.; Baryshnikova, M.; Khomenko, R.; Boyko, M. Geophysical Assessment of Verteba Cave Eneolithic Site, Ukraine. Geoarchaeology 2021, 36, 238–251. [Google Scholar] [CrossRef]
- Reynolds, J.M. An Introduction to Applied and Environmental Geophysics; John Wiley & Sons: Hoboken, NJ, USA, 2011. [Google Scholar]
- Verdet, C.; Sirieix, C.; Marache, A.; Riss, J.; Portais, J.-C. Detection of Undercover Karst Features by Geophysics (ERT) Lascaux Cave Hill. Geomorphology 2020, 360, 107177. [Google Scholar] [CrossRef]
- Testone, V.; Longo, V.; Mameli, P.; Rovina, D. Geophysical Prospection Pilot in Rock-Cut Tombs: The Case Study of Anghelu Ruju Necropolis (Sardinia). Archaeol. Prospect. 2018, 25, 271–277. [Google Scholar] [CrossRef]
- Barbieri, A.; Regala, F.T.; Cascalheira, J.; Bicho, N. The Sediment at the End of the Tunnel: Geophysical Research to Locate the Pleistocene Entrance of Gruta Da Companheira (Algarve, Southern Portugal). Archaeol. Prospect. 2022. [Google Scholar] [CrossRef]
- Nett, J.J.; Chu, W.; Fischer, P.; Hambach, U.; Klasen, N.; Zeeden, C.; Obreht, I.; Obrocki, L.; Pötter, S.; Gavrilov, M.B.; et al. The Early Upper Paleolithic Site Crvenka-At, Serbia–The First Aurignacian Lowland Occupation Site in the Southern Carpathian Basin. Front. Earth Sci. 2021, 9, 599986. [Google Scholar] [CrossRef]
- Hussain, Y.; Hamza, O.; Cárdenas-Soto, M.; Borges, W.R.; Dou, J.; Rebolledo, J.F.R.; Prado, R.L. Characterization of Sobradinho Landslide in Fluvial Valley Using MASW and ERT Methods. REM Int. Eng. J. 2020, 73, 487–497. [Google Scholar] [CrossRef]
- Fankhauser, K.; Guzman, D.R.L.; Oggier, N.; Maurer, H.; Springman, S.M. Seasonal Response and Characterization of a Scree Slope and Active Debris Flow Catchment Using Multiple Geophysical Techniques: The Case of the Meretschibach Catchment, Switzerland. In Proceedings of the EGU General Assembly Conference Abstracts, Vienna, Austria, 12–17 April 2015; p. 11833. [Google Scholar]
- Pavlović, M.B.; Stevanović, P.; Eremija, M. Чачанскo—Краљевачки (Или Западнoмoравски) Басен (Čačak-Kraljevo (or West Morava) Basin). In Геoлoгија Србије; Zavod za regionalnu geologiju i paleontologiju Rudarsko—Geološkog fakulteta, Univerzitet u Beogradu: Beograd, Serbia, 1977; Volume 3, pp. 270–275. [Google Scholar]
- Kuhn, S.; Zwyns, N. Rethinking the Initial Upper Paleolithic. Quat. Int. 2014, 347, 29–38. [Google Scholar] [CrossRef]
- Kuhn, S.L. In What Sense Is the Levantine Initial Upper Paleolithic a “Transitional” Industry. In The Chronology of the Aurignacian and of the Transitional Technocomplexes. Dating, Stratigraphies, Cultural Implications; Instituto Português de Arqueologia Lisbon: Lisboa, Portugal, 2003; Volume 33, pp. 61–70. [Google Scholar]
- Marks, A.E.; Ferring, C.R. The Early Upper Paleolithic of the Levant in The Early Upper Paleolithic. Evidence from Europe and the Near East. BAR Int. Ser. 1988, 437, 43–72. [Google Scholar]
- Dibble, H.L.; Chase, P.G.; McPherron, S.P.; Tuffreau, A. Testing the Reality of a “Living Floor” with Archaeological Data. Am. Antiq. 1997, 62, 629–651. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lesage, C.; Barbieri, A.; Galfi, J.; Jovanović, D.; Bogosavljević Petrović, V. The Becoming of a Prehistoric Landscape: Palaeolithic Occupations and Geomorphological Processes at Lojanik (Serbia). Land 2022, 11, 2292. https://doi.org/10.3390/land11122292
Lesage C, Barbieri A, Galfi J, Jovanović D, Bogosavljević Petrović V. The Becoming of a Prehistoric Landscape: Palaeolithic Occupations and Geomorphological Processes at Lojanik (Serbia). Land. 2022; 11(12):2292. https://doi.org/10.3390/land11122292
Chicago/Turabian StyleLesage, Camille, Alvise Barbieri, Jovan Galfi, Dragan Jovanović, and Vera Bogosavljević Petrović. 2022. "The Becoming of a Prehistoric Landscape: Palaeolithic Occupations and Geomorphological Processes at Lojanik (Serbia)" Land 11, no. 12: 2292. https://doi.org/10.3390/land11122292
APA StyleLesage, C., Barbieri, A., Galfi, J., Jovanović, D., & Bogosavljević Petrović, V. (2022). The Becoming of a Prehistoric Landscape: Palaeolithic Occupations and Geomorphological Processes at Lojanik (Serbia). Land, 11(12), 2292. https://doi.org/10.3390/land11122292