Applying Ecological Succession Theory to Birds in Solar Parks: An Approach to Address Protection and Planning
Abstract
:1. Introduction
1.1. Hühnerwasser Catchment
1.2. Solar Parks
1.3. Comparison and Study Goals
2. Materials and Methods
2.1. Hühnerwasser Catchment
2.2. Solar Parks
3. Results
3.1. Hühnerwasser Catchment
- Group 1: pioneer bird species that prefer open ground;
- Group 2: herbaceous plant-preferring, ground-breeding species;
- Group 3: open shrub-preferring species;
- Group 4: pre-forest species.
- 1
- Group 1: pioneer bird species that prefer open ground
- 2
- Group 2: herbaceous plant-preferring, ground-breeding species
- 3
- Group 3: open shrub-preferring species
- 4
- Group 4: pre-forest species
3.2. Solar Parks
4. Discussion
- 1
- Mid-period early successional avifauna and solar parks
- 2
- Avifauna of early and late succession
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Spielhofer, R.; Hunziker, M.; Kienast, F.; Wissen Hayek, U.; Grêt-Regamey, A. Does rated visual landscape quality match visual features? An analysis for renewable energy landscapes. Landsc. Urban. Plan. 2021, 209, 104000. [Google Scholar] [CrossRef]
- Meiners, S.J.; Cadotte, M.W.; Fridley, J.D.; Pickett, S.T.A.; Walker, L.R. Is successional research nearing its climax? New approaches for understanding dynamic communities. Funct. Ecol. 2015, 29, 154–164. [Google Scholar] [CrossRef]
- Zaplata, M.K.; Winter, S.; Fischer, A.; Kollmann, J.; Ulrich, W. Species-driven phases and increasing structure in early-successional plant communities. Am. Nat. 2013, 181, E17–E27. [Google Scholar] [CrossRef] [PubMed]
- Pickett, S.T.A.; Collins, S.L.; Armesto, J.J. A hierarchical consideration of causes and mechanisms of succession. Vegetatio 1987, 69, 109–114. [Google Scholar] [CrossRef]
- Connell, J.H.; Slatyer, R.O. Mechanisms of succession in natural communities and their role in community stability and organization. Am. Nat. 1977, 111, 1119–1144. [Google Scholar] [CrossRef]
- Apfelbeck, B.; Snep, R.P.H.; Hauck, T.E.; Ferguson, J.; Holy, M.; Jakoby, C.; MacIvor, S.; Schär, L.; Taylor, M.; Weisser, W.W. Designing wildlife-inclusive cities that support human-animal co-existence. Landsc. Urban Plan. 2020, 200, 103817. [Google Scholar] [CrossRef]
- Nordberg, E.J.; Caley, M.J.; Schwarzkopf, L. Designing solar farms for synergistic commercial and conservation outcomes. Sol. Energy 2021, 228, 586–593. [Google Scholar] [CrossRef]
- Armstrong, A.; Brown, L.; Davies, G.; Whyatt, J.D.; Potts, S.G. Honeybee pollination benefits could inform solar park business cases, planning decisions and environmental sustainability targets. Biol. Conserv. 2021, 263, 109332. [Google Scholar] [CrossRef]
- Tröltzsch, P.; Neuling, E. The breeding birds of large-scale photovoltaic power plants in Brandenburg. Vogelwelt 2013, 134, 155–179. [Google Scholar]
- Chettri, N.; Deb, D.C.; Sharma, E.; Jackson, R. The relationship between bird communities and habitat. Mt. Res. Dev. 2005, 25, 235–243. [Google Scholar] [CrossRef] [Green Version]
- Temple, S.A.; Wiens, J.A. Bird populations and environmental changes: Can birds be bio-indicators? Am. Birds 1989, 43, 260–270. [Google Scholar]
- Pinotti, P.T.; Pagotto, C.P.; Pardini, R. Habitat structure and food resources for wildlife across successional stages in a tropical forest. For. Ecol. Manag. 2012, 283, 119–127. [Google Scholar] [CrossRef]
- Begehold, H.; Rzanny, M.; Flade, M. Forest development phases as an integrating tool to describe habitat preferences of breeding birds in lowland beech forests. J. Ornithol. 2015, 156, 19–29. [Google Scholar] [CrossRef]
- Elmer, M.; Gerwin, W.; Schaaf, W.; Zaplata, M.K.; Hohberg, K.; Nenov, R.; Bens, O.; Hüttl, R.F. Dynamics of initial ecosystem development at the artificial catchment Chicken Creek, Lusatia, Germany. Environ. Earth. Sci. 2013, 69, 491–505. [Google Scholar] [CrossRef] [Green Version]
- Hüttl, R.F.; Gerwin, W.; Kögel-Knabner, I.; Schulin, R.; Hinz, C.; Subke, J.-A. Ecosystems in transition: Interactions and feedbacks with an emphasis on the initial development. Biogeosciences 2014, 11, 195–200. [Google Scholar] [CrossRef] [Green Version]
- Moghadas, D.; Schaaf, W.; Gerwin, W.; Badorreck, A.; Hüttl, R.F. A web-based platform for terrestrial data repository from Chicken Creek catchment. Earth Sci. Inform. 2019, 12, 671–684. [Google Scholar] [CrossRef]
- Hohberg, K.; Elmer, M.; Russell, D.J.; Christian, A.; Schulz, H.-J.; Lehmitz, R.; Wanner, M. First five years of soil food-web development in ‘Chicken Creek’ catchment. In The Artificial Catchment ‘Chicken Creek’—Initial Ecosystem Development 2005–2010; Elmer, M., Schaaf, W., Biemelt, D., Gerwin, W., Hüttl, R.F., Eds.; BTU Cottbus: Cottbus, Germany, 2011; Volume 3, pp. 93–114. [Google Scholar]
- Bingemer, J.; Pfeiffer, M.; Hohberg, K. First 12 years of tardigrade succession in the young soils of a quickly evolving ecosystem. Zool. J. Linn. Soc. 2020, 188, 887–899. [Google Scholar] [CrossRef]
- Eichhorn, M. Natural Systems: The Organisation of Life, 1st ed.; John Wiley & Sons: Chichester, UK, 2016; pp. 179–192. [Google Scholar]
- Beschow, R. The post-mining landscape as an opportunity for biodiversity using the development of bird life as an example. In Energie aus Heimischen Brennstoffen: Der Braunkohlentagebau Cottbus-Nord und die Lausitzer Landschaft Nach der Braunkohle; Busch, S., Grosser, R., Schroeckh, B., Rascher, J., Eds.; Exkursionsführer und Veröffentlichungen der Deutschen Gesellschaft für Geowissenschaften: Berlin/Duderstadt, Germany, 2015; Volume 254, pp. 94–113. [Google Scholar]
- Blaydes, H.; Potts, S.G.; Whyatt, J.D.; Armstrong, A. Opportunities to enhance pollinator biodiversity in solar parks. Renew. Sust. Energy Rev. 2021, 145, 111065. [Google Scholar] [CrossRef]
- Capellán-Pérez, I.; de Castro, C.; Arto, I. Assessing vulnerabilities and limits in the transition to renewable energies: Land requirements under 100% solar energy scenarios. Renew. Sust. Energy Rev. 2017, 77, 760–782. [Google Scholar] [CrossRef] [Green Version]
- van de Ven, D.-J.; Capellan-Peréz, I.; Arto, I.; Cazcarro, I.; de Castro, C.; Patel, P.; Gonzalez-Eguino, M. The potential land requirements and related land use change emissions of solar energy. Sci. Rep. 2021, 11, 2907. [Google Scholar] [CrossRef]
- Kim, J.Y.; Koide, D.; Ishihama, F.; Kadoya, T.; Nishihiro, J. Current site planning of medium to large solar power systems accelerates the loss of the remaining semi-natural and agricultural habitats. Sci. Total Environ. 2021, 779, 146475. [Google Scholar] [CrossRef] [PubMed]
- Förster, F. Vanished Villages. The Village Demolitions of the Lusatian Lignite Mining Area until 1993, 2nd ed.; Domowina: Bautzen, Germany, 1996. [Google Scholar]
- Gerwin, W.; Schaaf, W.; Biemelt, D.; Fischer, A.; Winter, S.; Hüttl, R.F. The artificial catchment “Chicken Creek” (Lusatia, Germany)—A landscape laboratory for interdisciplinary studies of initial ecosystem development. Ecol. Eng. 2009, 35, 1786–1796. [Google Scholar] [CrossRef]
- Schaaf, W.; Hinz, C.; Gerwin, W.; Zaplata, M.K.; Hüttl, R.F. Ecosystem development in the constructed catchment “Chicken Creek”. In Hydrology of Artificial and Controlled Experiments; Liu, J.F., Gu, W.Z., Eds.; IntechOpen: London, UK, 2018; pp. 75–93. [Google Scholar]
- Johnson, E.A.; Miyanishi, K. Testing the assumptions of chronosequences in succession. Ecol. Lett. 2008, 11, 419–431. [Google Scholar] [CrossRef]
- Tews, J.; Brose, U.; Grimm, V.; Tielbörger, K.; Wichmann, M.C.; Schwager, M.; Jeltsch, F. Animal species diversity driven by habitat heterogeneity/diversity: The importance of keystone structures. J. Biogeogr. 2004, 31, 79–92. [Google Scholar] [CrossRef] [Green Version]
- MacArthur, R.H.; MacArthur, J.W. On bird species diversity. Ecology 1961, 42, 594–598. [Google Scholar] [CrossRef]
- Bibby, C.J.; Burgess, N.D.; Hill, D.A.; Mustoe, S.H. Bird Census Techniques, 2nd ed.; Academic Press: London, UK, 2000; p. 17. [Google Scholar]
- Projektgruppe “Ornithologie und Landschaftsplanung” der Deutschen Ornithologen-Gesellschaft. Quality Standards for the Use of Ornithological Data in Spatially Significant Planning Processes; DO-G Eigenverlag: Minden, Germany, 1995; pp. 12–15. [Google Scholar]
- Stoefer, M.; (K&S Umweltgutachten, Panketal, Brandenburg, Germany); Flade, M.; (Schorfheide-Chorin Biosphere Reserve, Angermünde Brandenburg, Germany). Personal communication, 2022.
- Braga-Pereira, F.; Morcatty, T.Q.; El Bizri, H.R.; Tavares, A.S.; Mere-Roncal, C.; González-Crespo, C.; Bertsch, C.; Ramos Rodriguez, C.; Bardales-Alvites, C.; von Mühlen, E.M.; et al. Congruence of local ecological knowledge (LEK)-based methods and line-transect surveys in estimating wildlife abundance in tropical forests. Methods Ecol. Evol. 2022, 13, 743–756. [Google Scholar] [CrossRef]
- Badelt, O.; Niepelt, R.; Wiehe, J.; Matthies, S.; Gewohn, T.; Stratmann, M.; Brendel, R.; von Haaren, C. Integration of Solar Energy into the Energy Landscape of Lower Saxony (INSIDE); Niedersächsisches Ministerium für Umwelt, Energie, Bauen und Klimaschutz: Hannover, Germany, 2020; pp. 42–54. [Google Scholar]
- Zaplata, M.K.; Winter, S.; Biemelt, D.; Fischer, A. Immediate shift to source dynamics: The pioneer species Conyza canadensis in an initial ecosystem. Flora 2011, 206, 928–934. [Google Scholar] [CrossRef]
- Hansel, W.; (Spremberg, Brandenburg, Germany). Personal communication, 2015.
- When Nature Takes Off Once Again. Available online: https://www.lr-online.de/lausitz/spremberg/wenn-die-natur-noch-einmal-durchstartet-37083992.html (accessed on 14 April 2022).
- Gerwin, W.; Schaaf, W. Dynamic interactions between abiotic and biotic ecosystem compartments—Case study Huehnerwasser landscape observatory. In Proceedings of the General Assembly of the European Geosciences Union, Vienna, Austria, 7–12 April 2019; Available online: https://meetingorganizer.copernicus.org/EGU2019/EGU2019-4207.pdf (accessed on 6 May 2022).
- Meffert, P.M.; Marzluff, J.M.; Dziock, F. Unintentional habitats: Value of a city for the wheatear (Oenanthe oenanthe). Landsc. Urban Plan. 2012, 108, 49–56. [Google Scholar] [CrossRef]
- Cebrian, J. Role of first-order consumers in ecosystem carbon flow. Ecol. Lett. 2004, 7, 232–240. [Google Scholar] [CrossRef]
- Zaplata, M.K. Polistes paper wasps use a transient floating vegetation mat in the Banhine wetlands outflow, Mozambique. Afr. J. Ecol. 2020, 58, 849–851. [Google Scholar] [CrossRef]
- Zaplata, M.K.; Maurer, T.; Boldt-Burisch, K.; Schaaf, W.; Hinz, C. An interactive survey panel regarding the effects of mice (Microtus spec.) on a young ecosystem. In Proceedings of the General Assembly of the European Geosciences Union, Vienna, Austria, 12–17 April 2015; Available online: https://meetingorganizer.copernicus.org/EGU2015/EGU2015-13818.pdf (accessed on 6 May 2022).
- Schmitt, T.; (Senckenberg German Entomological Institute, Müncheberg, Brandenburg, Germany); Klausnitzer, B.; (German Society for General and Applied Entomology, Dresden, Saxony, Germany). Personal communication, 2021.
- Tischew, S.; Lebender, A. Distribution, site ecology and population development of the Adder’s tongue family (Ophioglossaceae) in former lignite mining areas of Saxony-Anhalt. Mitt. Florist. Kart. Sachsen-Anhalt 2003, 8, 3–18. [Google Scholar]
- Heinken, T.; Hanspach, H.; Raudnitschka, D.; Schaumann, F. Dispersal of vascular plants by four species of wild mammals in a deciduous forest in NE Germany. Phytocoenologia 2002, 32, 627–643. [Google Scholar] [CrossRef]
- Brady, C.J.; Noske, R.A. Succession in bird and plant communities over a 24-year chronosequence of mine rehabilitation in the Australian Monsoon Tropics. Restor. Ecol. 2010, 18, 855–864. [Google Scholar] [CrossRef]
- Bersier, L.-F.; Meyer, D.R. Bird assemblages in mosaic forests: The relative importance of vegetation structure and floristic composition along the successional gradient. Acta Oecol. 1994, 15, 561–576. [Google Scholar]
- ABBO—Arbeitsgemeinschaft Berlin-Brandenburgischer Ornithologen im Naturschutzbund Deutschland; Landesverbände Berlin und Brandenburg e.V. Fifty years of Spremberg Reservoir—An overview of avifaunal area development. In Proceedings of the ABBO-Tagung, Blossin, Germany, 25 November 2017. [Google Scholar]
- Durka, W.; Schmidt, T. Second-hand biotopes—Life in the post-mining landscape. In UFZ-Jahresbericht 1998–1999; UFZ Leipzig-Halle GmbH: Leipzig, Germany, 2000; pp. 83–91. [Google Scholar]
- Saunders, S.P.; Wu, J.X.; Gow, E.A.; Adams, E.; Bateman, B.L.; Bayard, T.; Beilke, S.; Dayer, A.A.; Fournier, A.M.V.; Fox, K.; et al. Bridging the research-implementation gap in avian conservation with translational ecology. Ornithol. Appl. 2021, 123, duab018. [Google Scholar] [CrossRef]
- Büntgen, U.; Urban, O.; Krusic, P.J.; Rybníček, M.; Kolář, T.; Kyncl, T.; Ač, A.; Koňasová, E.; Čáslavský, J.; Esper, J.; et al. Recent European drought extremes beyond Common Era background variability. Nat. Geosci. 2021, 14, 190–196. [Google Scholar] [CrossRef]
- LfU—Landesamt für Umwelt Brandenburg (Ed.) Biotope Mapping Brandenburg, Volume 2: Description of Biotope Types, 3rd ed.; Landesumweltamt Brandenburg: Potsdam, Germany, 2007. [Google Scholar]
- Nature on Time in Raw Material Extraction Sites—Joint Discussion Paper (NABU, MIRO, bbs). Available online: https://www.nabu.de/imperia/md/content/nabude/naturschutz/200803_diskussionspapier_natur_auf_zeit.pdf (accessed on 14 April 2022).
- Kattwinkel, M.; Biedermann, R.; Kleyer, M. Temporary conservation for urban biodiversity. Biol. Conserv. 2011, 144, 2335–2343. [Google Scholar] [CrossRef]
- Beschow, R.; Hansel, W. On the occurrence of birds of prey in a young recultivation area of the Welzow-Süd open pit mine in winter 1995/96 and winter 1996/97. OTIS: Z. Ornithol. Avifaunist. Brandenbg. Berl. 1997, 5, 74–87. [Google Scholar]
- Flade, M. The Breeding Bird Communities of Central and Northern Germany. Basics for the Use of Ornithological Data in Landscape Planning; IHW: Eching, Germany, 1994. [Google Scholar]
- BGBl. I S. 1818. Act to Reduce and End the Use of Coal to Generate Electricity and to Amend Other Laws (Coal Phase-out Act). In Bundesgesetzblatt 2020 Teil I Nr. 37; Bundesanzeiger Verlag: Bonn, Germany, 2020. [Google Scholar]
- BfN—Bundesamt für Naturschutz (Ed.) Potentials for Near-Natural Floodplain Development—Nationwide Overview and Methodological Recommendations for the Derivation of Development Objectives, 489th ed.; BfN-Skripten: Bonn, Germany, 2018. [Google Scholar]
- BMU & BfN—Bundesministerium für Umwelt; Naturschutz und Reaktorsicherheit & Bundesamt für Naturschutz (Eds.) Floodplain Condition Report. River floodplains in Germany; BMU: Berlin/Bonn, Germany, 2009. [Google Scholar]
- Macaulay, R.; Lee, K.; Johnson, K.; Williams, K. Mindful engagement, psychological restoration, and connection with nature in constrained nature experiences. Landsc. Urban Plan. 2022, 217, 104263. [Google Scholar] [CrossRef]
- Bekker, R.M.; Düttmann, H.; de Vries, Y.; Bakker, J.P.; Buchwald, R.; Brauckmann, H.-J. 30 years of hay meadow succession without fertilization: How does it affect soil and avifauna groups? Osnabrücker Nat. Mitt. 2006, 32, 145–155. [Google Scholar]
- de Vries, S.; Nieuwenhuizen, W.; Farjon, H.; van Hinsberg, A.; Dirkx, J. In which natural environments are people happiest? Large-scale experience sampling in the Netherlands. Landsc. Urban Plan. 2021, 205, 103972. [Google Scholar] [CrossRef]
Bird Species (Family) | Observed Successional Group | Expected Successional Group | Species That Use Solar Parks in Germany as Breeding Habitat (BB) or for Foraging (FG, [35]) | Species not Observed in Solar Parks, with Comments [35] |
---|---|---|---|---|
Charadrius dubius (Charadriidae) | 1 | 1 | × | |
Numenius arquata (Scolopacidae) | 1 | 2 | × “Probably not as breeding habitat, but for foraging possibly usable outside the [solar] modules.” | |
Oenanthe oenanthe (Muscicapidae) | 1 | 1 | × | |
Acrocephalus scirpaceus (Acrocephalidae) | 2 | 2 | × | |
Alauda arvensis (Alaudidae) | 2, 3 | 2 | × (BB) | |
Anthus campestris (Motacillidae) | 2 | 1 | × | |
Coturnix coturnix (Phasianidae) | 2 | 2 | × (BB) | |
Emberiza calandra (Emberizidae) | 2 | 2 | × (BB) | |
Falco peregrinus (Falconidae) | 2 | - | × 1 | |
Hirundo rustica (Hirundinidae) | 2 | - | × (FG) | |
Lanius collurio (Laniidae) | 2, 3, 4 | 3 | × (BB) | |
Motacilla flava (Motacillidae) | 2 | 2 | × | |
Perdix perdix (Phasianidae) | 2, 3, | 2 | × (BB) | |
Sturnus vulgaris (Sturnidae) | 2 | - | × (FG) | |
Tachybaptus ruficollis (Podicipedidae) | 2, 3, 4 | 3 | × | |
Anthus trivialis (Motacillidae) | 3 | 3 | × (BB) | |
Circus aeruginosus (Accipitridae) | 3 | 3 | × (FG) | |
Emberiza citrinella (Emberizidae) | 3 | 3 | × (BB) | |
Picus viridis (Picidae) | 3 | 3 | × 2 | |
Saxicola rubetra (Muscicapidae) | 3 | 2 | × (BB) | |
Sylvia communis (Sylviidae) | 3 | 3 | × 3 | |
Acrocephalus arundinaceus (Acrocephalidae) | 4 | 4 | × | |
Cuculus canorus (Cuculidae) | 4 | 4 | × “Probably usable as breeding habitat and for foraging.” | |
Fringilla coelebs (Fringillidae) | 4 | 4 | × 4 | |
Streptopelia turtur (Columbidae) | 4 | 4 | × (BB) | |
Turdus merula (Turdidae) | 4 | 4 | × 5 | |
Turdus philomelos (Turdidae) | 4 | 4 | × 5 | |
Turdus pilaris (Turdidae) | 4 | 4 | × 5 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zaplata, M.K.; Dullau, S. Applying Ecological Succession Theory to Birds in Solar Parks: An Approach to Address Protection and Planning. Land 2022, 11, 718. https://doi.org/10.3390/land11050718
Zaplata MK, Dullau S. Applying Ecological Succession Theory to Birds in Solar Parks: An Approach to Address Protection and Planning. Land. 2022; 11(5):718. https://doi.org/10.3390/land11050718
Chicago/Turabian StyleZaplata, Markus Klemens, and Sandra Dullau. 2022. "Applying Ecological Succession Theory to Birds in Solar Parks: An Approach to Address Protection and Planning" Land 11, no. 5: 718. https://doi.org/10.3390/land11050718
APA StyleZaplata, M. K., & Dullau, S. (2022). Applying Ecological Succession Theory to Birds in Solar Parks: An Approach to Address Protection and Planning. Land, 11(5), 718. https://doi.org/10.3390/land11050718