Cross-Scaling Approach for Water-Flow-Regulating Ecosystem Services: A Trial in Bochum, Germany
Abstract
:1. Introduction
2. Materials and Methods
2.1. Case Study Area
2.2. Water-Flow-Regulating ES Indicators
2.2.1. Hydroclimate and Population Indicators on the Macroscale
2.2.2. Construction-Related Indicators on the Microscale
2.3. Database
2.3.1. Hydrological Data
2.3.2. Land Use Data
2.3.3. Population Data
2.3.4. Imperviousness Data
2.3.5. Digital Elevation Model
2.4. Cross-Scale Approach for Assessing Water-Flow-Regulating ES
2.5. Mapping of Water-Flow-Regulating ESs
2.5.1. Supply-Demand Budget Mapping on the Macroscale
2.5.2. Mapping and Field Research Approaches on the Microscale
3. Results
3.1. Water-Flow-Regulating ES Budget on the Macroscale
3.2. Change of Water-Flow-Regulating ES Budget on the Macroscale
3.3. Mapping of Water-Flow-Regulating ESs on the Microscale
3.4. Urban form Assessment by Field Research
4. Discussion
4.1. The Use of a Cross-Scale Approach for Water-Flow-Regulating ESs
4.2. Building the Cross-Scale Approach to Bridge the Gap
4.3. Effectiveness of theMicroscale Approach in Urban Planning towards Water-Flow-Regulating ESs
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Millennium Ecosystem Assessment. Ecosystems and Human Well-Being; Island Press: Washington, DC, USA, 2005; Volume 5. [Google Scholar]
- La Rosa, D.; Spyra, M.; Inostroza, L. Indicators of Cultural Ecosystem Services for urban planning: A review. Ecol. Indic. 2016, 61, 74–89. [Google Scholar] [CrossRef]
- Gómez-Baggethun, E.; Barton, D.N. Classifying and valuing ecosystem services for urban planning. Ecol. Econ. 2013, 86, 235–245. [Google Scholar] [CrossRef]
- de Groot, R.S.; Alkemade, R.; Braat, L.; Hein, L.; Willemen, L. Challenges in integrating the concept of ecosystem services and values in landscape planning, management and decision making. Ecol. Complex. 2010, 7, 260–272. [Google Scholar] [CrossRef]
- Chen, C.; Wang, Y.; Jia, J.; Mao, L.; Meurk, C.D. Ecosystem services mapping in practice: A Pasteur ’ s quadrant perspective. Ecosyst. Serv. 2019, 40, 101042. [Google Scholar] [CrossRef]
- Sutherland, I.J.; Villamagna, A.M.; Ouellet, C.; Bennett, E.M.; Chin, A.T.M.; Yeung, A.C.Y.; Lamothe, K.A.; Tomschae, S.A.; Cormie, R. Undervalued and under pressure: A plea for greater attention toward regulating ecosystem services. Ecol. Indic. 2018, 94, 23–32. [Google Scholar] [CrossRef]
- Cortinovis, C.; Geneletti, D. A framework to explore the effects of urban planning decisions on regulating ecosystem services in cities. Ecosyst. Serv. 2019, 38, 100946. [Google Scholar] [CrossRef]
- Haines-Young, R.; Potschin-Young, M. Revision of the common international classification for ecosystem services (CICES V5. 1): A policy brief. One Ecosyst. 2018, 3, e27108. [Google Scholar] [CrossRef]
- de Groot, R.S.; Wilson, M.A.; Boumans, R.M.J. A typology for the classification, description and vauation of ecosystem functions, goods and services. Ecol. Econ. 2002, 41, 393–408. [Google Scholar] [CrossRef] [Green Version]
- Li, C. Ecohydrology and good urban design for urban storm water-logging in Beijing, China. Ecohydrol. Hydrobiol. 2012, 12, 287–300. [Google Scholar] [CrossRef] [Green Version]
- Daily, G.C.; Matson, P.A. Ecosystem services: From theory to implementation. Proc. Natl. Acad. Sci. USA 2008, 105, 9455–9456. [Google Scholar] [CrossRef] [Green Version]
- Maitre, D.C.L.; Kotzee, I.M.; O’Farrell, P.J. Impacts of land-cover change on the water flow regulation ecosystem service: Invasive alien plants, fire and their policy implications. Land Use Policy 2014, 36, 171–181. [Google Scholar] [CrossRef]
- Zimmermann, E.; Bracalenti, L.; Piacentini, R.; Inostroza, L. Urban Flood Risk Reduction by Increasing Green Areas for Adaptation to Climate Change. In Procedia Engineering; Elsevier Ltd.: Amsterdam, The Netherlands, 2016; pp. 2241–2246. [Google Scholar]
- Pappalardo, V.; La Rosa, D.; Campisano, A.; La Greca, P. The potential of green infrastructure application in urban runoff control for land use planning: A preliminary evaluation from a southern Italy case study. Ecosyst. Serv. 2017, 26, 345–354. [Google Scholar] [CrossRef]
- Burkhard, B.; Kroll, F.; Nedkov, S.; Müller, F. Mapping ecosystem service supply, demand and budgets. Ecol. Indic. 2012, 21, 17–29. [Google Scholar] [CrossRef]
- Zepp, H.; Mizgajski, A.; Mess, C.; Zwierzchowska, I. A preliminary assessment of urban ecosystem services in central European urban areas. A methodological outline with examples from Bochum (Germany) and Poznań (Poland). Ber. Geogr. Landeskd. 2016, 90. Available online: https://www.researchgate.net/publication/315492264_Zepp_H_Mizgajski_A_Mess_C_Zwierzchowska_I_2016_-_A_Preliminary_Assessment_of_Urban_Ecosystem_Services_in_Central_European_Urban_areas_A_Methodological_Outline_with_Examples_from_Bochum_Germany_and_Poz (accessed on 26 March 2022).
- Vargo, J.; Habeeb, D.; Stone, B. The importance of land cover change across urban–rural typologies for climate modeling. J. Environ. Manag. 2013, 114, 243–252. [Google Scholar] [CrossRef]
- Zhou, X.; Chen, H. Impact of urbanization-related land use land cover changes and urban morphology changes on the urban heat island phenomenon. Sci. Total Environ. 2018, 635, 1467–1476. [Google Scholar] [CrossRef]
- Viana, C.M.; Oliveira, S.; Oliveira, S.C.; Rocha, J. Land Use/Land Cover Change Detection and Urban Sprawl Analysis. In Spatial Modeling in GIS and R for Earth and Environmental Sciences; Pourghasemi, H.R., Gokceoglu, C., Eds.; Elsevier: Amsterdam, The Netherlands, 2019; Volume 29, pp. 621–651. [Google Scholar]
- Hassan, M.M. Monitoring land use/land cover change, urban growth dynamics and landscape pattern analysis in five fastest urbanized cities in Bangladesh. Remote Sens. Appl. Soc. Environ. 2017, 7, 69–83. [Google Scholar] [CrossRef]
- Bochum Climate_ Average Temperature, Weather by Month, Bochum Weather Average—Climate-Data. 2019. Available online: climate-data.org (accessed on 26 March 2022).
- Van Oudenhoven, A.P.E.; Petz, K.; Alkemade, R.; Hein, L.; De Groot, R.S. Framework for systematic indicator selection to assess effects of land management on ecosystem services. Ecol. Indic. 2012, 21, 110–122. [Google Scholar] [CrossRef]
- Takács, Á.; Kiss, M.; Hof, A.; Tanács, E.; Gulyás, Á.; Kántor, N. Microclimate modification by urban shade trees–an integrated approach to aid ecosystem service based decision-making. Procedia Environ. Sci. 2016, 32, 97–109. [Google Scholar] [CrossRef] [Green Version]
- Takács, Á.; Kiss, M.; Gulyás, Á. Some aspects of indicator development for mapping microclimate regulation ecosystem service of urban tree stands. Acta Climatol. Chorol. 2014, 47, 99–108. [Google Scholar]
- Scholes, R.; Reyers, B.; Biggs, R.; Spierenburg, M.; Duriappah, A. Multi-scale and cross-scale assessments of social–ecological systems and their ecosystem services. Curr. Opin. Environ. Sustain. 2013, 5, 16–25. [Google Scholar] [CrossRef]
- Tiwary, A.; Kumar, P. Impact evaluation of green–grey infrastructure interaction on built-space integrity: An emerging perspective to urban ecosystem service. Sci. Total Environ. 2014, 487, 350–360. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Norton, L.; Greene, S.; Scholefield, P.; Dunbar, M. The importance of scale in the development of ecosystem service indicators? Ecol. Indic. 2016, 61, 130–140. [Google Scholar] [CrossRef] [Green Version]
- Onaindia, M.; de Manuel, B.F.; Madariaga, I.; Rodríguez-Loinaz, G. Co-benefits and trade-offs between biodiversity, carbon storage and water flow regulation. For. Ecol. Manag. 2013, 289, 1–9. [Google Scholar] [CrossRef]
- Vélez, J.J.; Puricelli, M.; López Unzu, F.; Francés, F. Parameter extrapolation to ungauged basins with a hydrological distributed model in a regional framework. Hydrol. Earth Syst. Sci. 2009, 13, 229–246. [Google Scholar]
- Finn, S.; Keiffer, S.; Koroncai, B.; Koroncai, B. Assessment of InVEST 2.1 Beta: Ecosystem service valuation software. Assessment 2011, 1, 1–25. [Google Scholar]
- Slonecker, E.T.; Jennings, D.B.; Garofalo, D. Remote sensing of impervious surfaces: A review. Remote Sens. Rev. 2001, 20, 227–255. [Google Scholar] [CrossRef]
- Mejía, A.I.; Moglen, G.E. Spatial Patterns of Urban Development from Optimization of Flood Peaks and Imperviousness-Based Measures. J. Hydrol. Eng. 2009, 14, 416–424. [Google Scholar] [CrossRef]
- Yao, L.; Wei, W.; Chen, L. How does imperviousness impact the urban rainfall-runoff process under various storm cases? Ecol. Indic. 2016, 60, 893–905. [Google Scholar] [CrossRef]
- Bin Ghomash, S.K.; Caviedes-Voullieme, D.; Hinz, C. Effects of erosion-induced changes to topography on runoff dynamics. J. Hydrol. 2019, 573, 811–828. [Google Scholar] [CrossRef]
- Friesland, H.; Löpmeier, F.-J. The performance of the model AMBAV for evapotranspiration and soil moisture on Müncheberg data. In Modelling Water and Nutrient Dynamics in Soil–Crop Systems; Springer: Berlin/Heidelberg, Germany, 2007; pp. 19–26. [Google Scholar] [CrossRef]
- Langanke, T.; Moran, A.; Dulleck, B.; Schleicher, C. Copernicus land monitoring service–high resolution layer water and wetness: Product specifications document. Copernic. Team EEA 2016. Available online: https://land.copernicus.eu/user-corner/technical-library/hrl-water-wetness-technical-document-prod-2015 (accessed on 26 March 2022).
- Schmalz, B.; Kruse, M.; Kiesel, J.; Müller, F.; Fohrer, N. Water-related ecosystem services in Western Siberian lowland basins—Analysing and mapping spatial and seasonal effects on regulating services based on ecohydrological modelling results. Ecol. Indic. 2016, 71, 55–65. [Google Scholar] [CrossRef]
- Aznar-Sánchez, J.A.; Velasco-Muñoz, J.F.; Belmonte-Ureña, L.J.; Manzano-Agugliaro, F. The worldwide research trends on water ecosystem services. Ecol. Indic. 2019, 99, 310–323. [Google Scholar] [CrossRef]
- Nedkov, S.; Burkhard, B. Flood regulating ecosystem services—Mapping supply and demand, in the Etropole municipality, Bulgaria. Ecol. Indic. 2012, 21, 67–79. [Google Scholar] [CrossRef]
- Stürck, J.; Poortinga, A.; Verburg, P.H. Mapping ecosystem services: The supply and demand of flood regulation services in Europe. Ecol. Indic. 2014, 38, 198–211. [Google Scholar] [CrossRef]
- Ghazi, H.; Messouli, M.; Khebiza, M.Y.; Egoh, B.N. Mapping regulating services in Marrakesh Safi region—Morocco. J. Arid Environ. 2018, 159, 54–65. [Google Scholar] [CrossRef]
- Guo, Z.; Xiao, X.; Li, D. An Assessment of Ecosystem Services: Water Flow Regulation and Hydroelectric Power Production. Ecol. Appl. 2000, 10, 925–936. [Google Scholar] [CrossRef]
- Tarigan, S.; Wiegand, K.; Slamet, B.; Sunarti. Minimum forest cover required for sustainable water flow regulation of a watershed: A case study in Jambi Province, Indonesia. Hydrol. Earth Syst. Sci. 2018, 22, 581–594. [Google Scholar] [CrossRef] [Green Version]
- Xiao, Y.; Xiao, Q.; Ouyang, Z.; Maomao, Q. Assessing changes in water flow regulation in Chongqing region, China. Environ. Monit. Assess. 2015, 187, 362. [Google Scholar] [CrossRef]
- Wentz, E.A.; York, A.M.; Alberti, M.; Conrow, L.; Fischer, H.; Inostroza, L.; Jantz, C.; Pickett, S.T.; Seto, K.C.; Taubenböck, H. Six fundamental aspects for conceptualizing multidimensional urban form: A spatial mapping perspective. Landsc. Urban Plan. 2018, 179, 55–62. [Google Scholar] [CrossRef]
Dimensions | Water-Flow-Regulating ESs Indicators | |||
---|---|---|---|---|
Indicators | Formula | Description | ||
Hydroclimate and population indicators on macroscale | Supply | Water regulation capacity (WC) | R = P | WC is the water flow regulation capacity; Hu is the water storage in the soil (mm/year); R is the annual water flow (mm/year); P is the annual rainfall (mm/year); is the corrected annual potential evapotranspiration (mm/year). is the percent plant useable water %; is the soil volume; is the index of WC. In this study, was regarded as a fixed value for each measuring unit. Therefore, was used as a variable to express the water-flow-regulating capacity (WC). |
Demand | Annual drought index (dMI) | The values T (in Celsius degree) from temperature grids and P (in mm) from precipitation grids. For quality, considerations refer to the quality of the input data (temperature grids, precipitation grids) (Deutscher Wetterdienst, 2018). | ||
Population density(D) | D is the population density; P is the amount of population in one unit; S is the area of the unit. | |||
Constructed–related indicators on microscale | Supply | Average slope (AS) | —— | The average slope of a pixel in the downscaling analysis. |
Area of the catchment (AC) | —— | The area of the catchment in the downscaling analysis sites. | ||
Demand | Imperviousness ratio (I) | —— | The ratio of impermeable surfaces to all areas in a downscaling analysis pixel. |
Data | Source | Detail | ||
---|---|---|---|---|
Hydrological data | Precipitation | Deutscher Wetterdienst Climate Data Center | 1 km × 1 km 1991/2018 unit: mm | |
Evapotranspiration | Deutscher Wetterdienst Climate Data Center | 1 km × 1 km 1991/2018 unit: mm | ||
InVEST- Integrated Valuation of ESs and Tradeoffs | evapotranspiration coefficient table | |||
Soil moisture | Deutscher Wetterdienst Climate Data Center | 1 km × 1 km 1991/2018 | ||
unit: percent plant useable water % | ||||
Drought index | Deutscher Wetterdienst Climate Data Center | 1 km × 1 km | 1991/2018 | |
unit: mm/°C | ||||
Land use data | CORINE land cover 1990 | 100 m × 100 m | ||
CORINE land cover 2018 | 100 m × 100 m | |||
Population data | Statistisches Jahrbuch Bochum | 2018/1991 | ||
Imperviousness data | Copernicus | 20 m × 20 m | ||
DEM | TIM-online 2.0 | 1 m × 1 m |
Category | Overdemand Areas | ||||
---|---|---|---|---|---|
Dense Residential Area | Parking Lot | Plant | Football Field | Urban Vehicles Road | |
Site A | 2 | 3 | 2 | 1 | 6 |
Site B | 3 | 0 | 0 | 0 | 2 |
Photo | |||||
Category | oversupply areas | ||||
urban green area | forests | grasslands with columns of tree | greenway | ||
Site A | 2 | 0 | 0 | 1 | |
Site B | 0 | 1 | 2 | 1 | |
Photo |
Macroscale | Overdemand Areas | Oversupply Areas | |
---|---|---|---|
Microscale | |||
Overdemand areas | Optimizing: Transform existing streets without greenery to shaded streets separated by planting belts. Reduce surface parking, build vertical parking lots, and underground parking lot. Increase vegetation and permeable paving in dense residential areas. | Enhancing: Improve the vegetation quality of existing urban green areas. Avoid over flat square and lawn construction. | |
Oversupply areas | Protecting: New development should combine or improve drainage topography (golf course, residential area, and so on). For developing the existing natural landscape, the construction of impervious areas should be limited. |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Xiong, Z.; Wang, Y. Cross-Scaling Approach for Water-Flow-Regulating Ecosystem Services: A Trial in Bochum, Germany. Land 2022, 11, 740. https://doi.org/10.3390/land11050740
Xiong Z, Wang Y. Cross-Scaling Approach for Water-Flow-Regulating Ecosystem Services: A Trial in Bochum, Germany. Land. 2022; 11(5):740. https://doi.org/10.3390/land11050740
Chicago/Turabian StyleXiong, Zhehao, and Yuncai Wang. 2022. "Cross-Scaling Approach for Water-Flow-Regulating Ecosystem Services: A Trial in Bochum, Germany" Land 11, no. 5: 740. https://doi.org/10.3390/land11050740
APA StyleXiong, Z., & Wang, Y. (2022). Cross-Scaling Approach for Water-Flow-Regulating Ecosystem Services: A Trial in Bochum, Germany. Land, 11(5), 740. https://doi.org/10.3390/land11050740