Identification of Urban Functional Areas and Their Mixing Degree Using Point of Interest Analyses
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Data Sources and Processing
2.2.1. POI Data
2.2.2. Plot Data
2.3. Methodology
2.3.1. Random Forest Algorithm
2.3.2. Identification of Dominant Functional Areas
2.3.3. The Mixing Degree of Urban Functions
3. Results
3.1. POI Weight Determination Based on the Random Forest Model
3.2. Identification of Single Dominant Functional Areas
3.3. Evaluation of the Mixing Degree of Functional Areas
3.4. Verifying the Accuracy of the Results
4. Discussion
4.1. Analysis of Model Sensitivity
4.2. Analysis of Recognition Results
4.3. Innovations and Shortcomings
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Wang, Z.; Ma, D.; Sun, D.; Zhang, J. Identification and analysis of urban functional area in Hangzhou based on OSM and POI data. PLoS ONE 2021, 16, e0251988. [Google Scholar] [CrossRef] [PubMed]
- Chen, Y.; Chen, X.; Liu, Z.; Li, X. Understanding the spatial organization of urban functions based on co-location patterns mining: A comparative analysis for 25 Chinese cities. Cities 2020, 97, 102563. [Google Scholar] [CrossRef]
- Xue, B.; Xiao, X.; Li, J.Z.; Xie, X. Analysis of spatial economic structure of northeast China cities based on points of interest big data. Sci. Geogr. Sin. 2020, 40, 691–700. [Google Scholar]
- Li, Q.; Zheng, X.Q.; Chao, Y. Research on function identification and distribution characteristics of Wuhan supported by big data. Sci. Surv. Mapp. 2020, 45, 119–125. [Google Scholar]
- Li, J.; Xie, X.; Zhao, B.; Xiao, X.; Qiao, J.; Ren, W. Identification of urban functional area by using multisource geographic data: A case study of Zhengzhou, China. Complexity 2021, 2021, 8875276. [Google Scholar] [CrossRef]
- Zheng, Z.J.; Zheng, R.B.; Xu, J.Y.; Wang, J.Q. Identification of Urban Functional Regions Based on POI Data and Place2vec Model. Geogr. Geo Inf. Sci. 2020, 36, 48–56. [Google Scholar]
- Yang, J.; Li, C.; Liu, Y. Urban functional area identification method and its application combined OSM road network data with POI data. Geomat. World 2020, 27, 1–6. [Google Scholar]
- Chen, Y.; Liu, X.; Li, X.; Liu, X.; Yao, Y.; Hu, G.; Xu, X.; Pei, F. Delineating urban functional areas with building-level social media data: A dynamic time warping (DTW) distance based k-medoids method. Landsc. Urban Plan. 2017, 160, 48–60. [Google Scholar] [CrossRef]
- Long, Y.; Liu, X. Automated identification and characterization of parcels (AICP) with OpenStreetMap and Points of Interest. Environ. Plan. B 2013, 43, 498–510. [Google Scholar]
- Sun, Z.; Jiao, H.; Wu, H.; Peng, Z.; Liu, L. Block2vec: An Approach for Identifying Urban Functional Regions by Integrating Sentence Embedding Model and Points of Interest. Int. J. Geo Inf. 2021, 10, 339. [Google Scholar] [CrossRef]
- Liu, H.; Xu, Y.; Tang, J.; Deng, M.; Huang, J.; Yang, W.; Wu, F. Recognizing urban functional zones by a hierarchical fusion method considering landscape features and human activities. Trans. GIS 2020, 24, 1359–1381. [Google Scholar] [CrossRef]
- Jia, F.X.; Yan, J.F.; Tian, W. Research on scoring evaluation model and functional regions indentification constructed by big data. Sci. Surv. Mapp. 2021, 46, 172–178. [Google Scholar]
- Chi, J.; Jiao, L.M.; Dong, T.; Gu, Y.Y.; Ma, Y.L. Quantitative identification and visualization of urban functional area based on POI data. J. Geomat. 2016, 41, 68–73. [Google Scholar]
- Miao, R.; Wang, Y.; Li, S. Analyzing Urban Spatial Patterns and Functional Zones Using Sina Weibo POI Data: A Case Study of Beijing. Sustainability 2021, 13, 647. [Google Scholar] [CrossRef]
- Yu, B.; Wang, Z.; Mu, H.; Sun, L.; Hu, F. Identification of Urban Functional Regions Based on Floating Car Track Data and POI Data. Sustainability 2019, 11, 6541. [Google Scholar] [CrossRef] [Green Version]
- Yang, Z.S.; Su, J.H.; Yang, H.; Zhao, Y.H. Exploring urban functional areas based on multi-source data: A case study of Beijin. Geogr. Res. 2021, 40, 477–494. [Google Scholar]
- Lan, T.; Shao, G.; Xu, Z.; Tang, L.; Sun, L. Measuring urban compactness based on functional characterization and human activity intensity by integrating multiple geospatial data sources. Ecol. Indic. 2021, 121, 107177. [Google Scholar] [CrossRef]
- Jiang, S.; Alves, A.; Rodrigues, F.; Ferreira, J.J.; Pereira, F.C. Mining point-of-interest data from social networks for urban land use classification and disaggregation. Comput. Environ. Urban Syst. 2015, 53, 36–46. [Google Scholar] [CrossRef] [Green Version]
- Kefalas, P.; Manolopoulos, Y. A time-aware spatio-textual recommender system. Expert Syst. Appl. 2017, 78, 396–406. [Google Scholar] [CrossRef]
- Massimo, D.; Ricci, F. Tourism, Popularity, novelty and relevance in point of interest recommendation: An experimental analysis. Inf. Technol. 2021, 23, 473–508. [Google Scholar]
- Rahmani, H.A.; Aliannejadi, M.; Baratchi, M.; Crestani, F. A Systematic Analysis on the Impact of Contextual Information on Point-of-Interest Recommendation. ACM Trans. Inf. Syst. 2021, 34, 88. [Google Scholar] [CrossRef]
- Niu, H.; Silva, E.A. Delineating urban functional use from points of interest data with neural network embedding: A case study in Greater London. Comput. Environ. Urban Syst. 2021, 88, 101651. [Google Scholar] [CrossRef]
- Rodrigues, F.; Pereira, F.C.; Alves, A.; Jiang, S.; Ferreira, J. Automatic classification of points-of-interest for land-use analysis. In Proceedings of the Geoprocessing: The Fourth International Conference on Advanced Geographic Information Systems, Valencia, Spain, 30 January–4 February 2012. [Google Scholar]
- Rim, N.W.; Choe, K.W.; Scrivner, C.; Berman, M.G. Introducing Point-of-Interest as an alternative to Area-of-Interest for fixation duration analysis. PLoS ONE 2021, 16, e0250170. [Google Scholar] [CrossRef] [PubMed]
- Zhang, J.Q.; Shi, W.B.; Xiu, C.L. Urban research using Points of Interest data in China. Sci. Geogr. Sin. 2021, 41, 140–148. [Google Scholar]
- Brezzi, M.; Veneri, P. Assessing Polycentric Urban Systems in the OECD: Country, Regional and Metropolitan Perspectives. Eur. Plan. Stud. 2014, 23, 1128–1145. [Google Scholar] [CrossRef]
- Śleszyński, P. Problemy delimitacji miejskich obszarów funkcjonalnych w Polsce. Rozw. Reg. Polit. Reg. 2015, 29, 37–53. [Google Scholar] [CrossRef] [Green Version]
- Kudełko, J.; Musiał-Malago, M. The diversity of demographic potential and socioeconomic development of urban functional areas—Evidence from Poland. Cities 2022, 123, 103516. [Google Scholar] [CrossRef]
- Zhao, W.F.; Li, Q.Q.; Li, B.J. Extracting hierarchical landmarks from urban POI data. J. Remote Sens. 2011, 15, 973–988. [Google Scholar]
- Wu, S.Y. Urban Functional Area Identification Based on Remote Sensing Images and User Visit Data. Ph.D. Thesis, Beijing University of Civil Engineering and Architecture, Beijing, China, 2021. [Google Scholar]
- Wu, H.; Lin, A.; Xing, X.; Song, D.; Li, Y. Identifying core driving factors of urban land use change from global land cover products and POI data using the random forest method. Int. J. Appl. Earth Obs. Geoinf. 2021, 103, 102475. [Google Scholar] [CrossRef]
- Zhang, L.; Wang, L.L.; Zhang, X.D.; Liu, S.R.; Sun, P.S.; Wang, T.L. The basic principle of random forest and its application in ecology: A case study 0f Pinus yunnanensis. Acta Ecol. Sin. 2014, 34, 650–659. [Google Scholar]
- Zhao, H.B.; Wei, J.C.; Sun, D.Q.; Liu, Y.X.; Wang, S.; Tan, J.T.; Miao, C.H. Recognition and spatio-temporal evolution analysis of productionliving-ecological spaces based on the random forest model: A case study of Zhengzhou city, China. Geogr. Res. 2021, 40, 945–957. [Google Scholar]
- Yao, Y.; Li, X.; Liu, X.P.; Liu, P.H.; Liang, Z.T.; Zhang, J.B.; Mai, K. Sensing spatial distribution of urban land use by integrating points-of-interest and Google Word2Vec model. Int. J. Geogr. Inf. Sci. 2016, 31, 825–848. [Google Scholar] [CrossRef]
- Jonietz, D.; Zipf, A. Defining Fitness-for-Use for Crowdsourced Points of Interest (POI). ISPRS Int. J. Geo Inf. 2016, 5, 149. [Google Scholar] [CrossRef] [Green Version]
- Cao, Y.H.; Liu, J.P.; Wang, Y.; Wang, L.J.; Wu, W.Z.; Su, F.Z. A Study on the Method for Functional Classification of Urban Buildings by Using POI Data. J. Geo Inf. Sci. 2020, 22, 1339–1348. [Google Scholar]
- Xue, B.; Li, J.Z.; Xiao, X.; Xie, X.; Lu, C.P.; Ren, W.X.; Jiang, L. Overview of man-land relationship research based on POI data: Theory, method and application. Geogr. Geo Inf. Sci. 2019, 35, 51–60. [Google Scholar]
- Ministry of Housing and Urban–Rural Development of the People’s Republic of China. National Standards of the People’s Republic of China; Code for Classification of Urban Land Use and Planning Standards of Development; China Planning Press: Beijing, China, 2012. [Google Scholar]
- Zhao, Y.C.; Zhang, Y.; Wang, H.Y.; Du, X.; Li, Q.Z.; Zhu, J. Intraday variation mapping of population age structure via urban-functional-region-based Scaling. Remote Sens. 2021, 13, 805. [Google Scholar] [CrossRef]
- Gong, P.; Chen, B.; Li, X.; Liu, H.; Xu, B. Mapping Essential Urban Land Use Categories in China (EULUC-China): Preliminary results for 2018. Sci. Bull. 2019, 65, 182–187. [Google Scholar] [CrossRef] [Green Version]
- Hong, Y.; Yao, Y. Hierarchical community detection and functional area identification with OSM roads and complex graph theory. Int. J. Geogr. Inf. Sci. 2019, 33, 1569–1587. [Google Scholar] [CrossRef]
- Xiao, L. The Research on Urban Block. Ph.D. Thesis, Tongji University, Shanghai, China, 2006. [Google Scholar]
- Kang, Y.H.; Wang, Y.Y.; Xia, Z.J.; Chi, J.; Jiao, L.M.; Wei, Z.W. Identification and classification of Wuhan urban districts based on POI. J. Geomat. 2018, 43, 81–85. [Google Scholar]
- Chen, A.X. Research on Classification of Essential Urban Land Use Categories (EULUC) in the Central City of Chongqing; Chongqing Normal University: Chingqing, China, 2021. [Google Scholar]
- Breiman, L. Random forest. Mach. Learn. 2001, 45, 5–32. [Google Scholar] [CrossRef] [Green Version]
- Nicodemus, K.K. Letter to the Editor: On the stability and ranking of predictors from random forest variable importance measures. Brief. Bioinform. 2011, 12, 369–373. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Han, H.; Guo, X.; Yu, H. Variable selection using mean decrease accuracy and mean decrease gini based on random forest. In Proceedings of the 2016 7th IEEE International Conference on Software Engineering and Service Science (ICSESS), Beijing, China, 26–28 August 2016. [Google Scholar]
- Pu, D.C.; Wang, G.Z.; Zhang, Z.M.; Niu, X.F.; He, G.J.; Long, T.F.; Yin, R.Y.; Jiang, W.; Sun, J.Y. Urban Area Extraction based on Independent Component Analysis and Random Forest Algorithm. J. Geo Inf. Sci. 2020, 22, 1597–1606. [Google Scholar]
- Chen, M.J.; Wang, X.Q.; Wu, S.Y. Importance analysis of soil erosion influencing factors based on random forest. J. Nat. Disasters 2019, 28, 209–219. [Google Scholar]
- Zhao, P.J.; Cao, Y.S. Identifying metro trip purpose using multi-source geographic big data and machine learning approach. J. Geo Inf. Sci. 2020, 22, 1753–1765. [Google Scholar]
- Hu, X.M.; Li, X.L.; Wei, F. A POI data- based study of the urban functional areas of Chongqing and their mix degree recognition. J. Southwest Univ. Nat. Sci. Ed. 2021, 43, 164–173. [Google Scholar]
- Li, M.Y.; Ma, Y.; Sun, X.M.; Wang, J.Y.; Dang, A.R. Application of spatial and temporal entropy based on multi-source data for measuring the mix degree of urban functions. City Plan. Rev. 2018, 42, 97–103. [Google Scholar]
- Luo, S.H.; Liu, Y.; Du, M.Y.; Gao, S.Y.; Wang, P.F.; Liu, X.Y. The influence of spatial grid division on the layout analysis of urban functional areas. Int. J. Geo Inf. 2021, 10, 189. [Google Scholar] [CrossRef]
- Duan, Y.M.; Liu, Y.; Liu, X.H.; Wang, H.L. Identification of polycentric urban structure of central Chongqing using points of interest big data. J. Nat. Resour. 2018, 33, 788–800. [Google Scholar]
- Yu, W.; Ai, T. The visualization and analysis of POI features under network space supported by kernel density estimation. Acta Geod. Cartogr. Sin. 2015, 44, 82–90. [Google Scholar]
- Ding, Y.W.; Xu, H.W.; Wang, C.H. Research on urban functional area recognition integrating OSM road network and POI data. Geogr. Geo Inf. Sci. 2020, 36, 57–63. [Google Scholar]
- Liu, K.; Yin, L.; Lu, F.; Mou, N. Visualizing and exploring POI configurations of urban regions on POI-type semantic space. Cities 2020, 99, 102610. [Google Scholar] [CrossRef]
Functional Area Classification | Type of POI | MDA | MDA Standardized Value |
---|---|---|---|
Green Spaces and Squares | Green Spaces and Squares | 26.65 | 3.61 |
Industrial | Company | 156.06 | 21.14 |
Industrial Park | 11.27 | 1.53 | |
Catering Service | Catering Service | 55.26 | 7.49 |
Life Service | Shopping Service | 98.91 | 13.40 |
Life Service | 32.63 | 4.42 | |
Residential Service | Residence | 33.69 | 4.56 |
Accommodation Service | 36.65 | 4.96 | |
Transportation Service | Car Service | 44.92 | 6.08 |
Transportation Facilities | 39.30 | 5.32 | |
Administration and Public Service | Government Agencies | 10.62 | 1.44 |
Communal Facilities | 21.77 | 2.95 | |
Education | Education | 28.90 | 3.91 |
Sports and Leisure | 42.67 | 5.78 | |
Medical Care | Medical Care | 84.71 | 11.47 |
Financial Insurance | Financial Insurance | 14.23 | 1.93 |
Class | A | B | C | D | E | F | G | H | I | J | Total | Consumer’s Accuracy |
---|---|---|---|---|---|---|---|---|---|---|---|---|
A | 80 | 7 | 1 | 1 | 11 | 0 | 0 | 0 | 0 | 0 | 100 | 80% |
B | 2 | 80 | 6 | 0 | 6 | 4 | 2 | 0 | 0 | 0 | 100 | 80% |
C | 0 | 1 | 87 | 0 | 8 | 4 | 0 | 0 | 0 | 0 | 100 | 87% |
D | 0 | 2 | 1 | 36 | 4 | 7 | 0 | 0 | 0 | 0 | 50 | 72% |
E | 0 | 1 | 0 | 0 | 47 | 2 | 0 | 0 | 0 | 0 | 50 | 94% |
F | 0 | 0 | 0 | 0 | 2 | 47 | 1 | 0 | 0 | 0 | 50 | 94% |
G | 0 | 9 | 2 | 0 | 4 | 2 | 82 | 1 | 0 | 0 | 100 | 82% |
H | 0 | 3 | 0 | 0 | 3 | 3 | 1 | 40 | 0 | 0 | 50 | 80% |
I | 0 | 3 | 0 | 0 | 2 | 0 | 1 | 1 | 25 | 0 | 32 | 78% |
J | 1 | 4 | 0 | 0 | 1 | 6 | 0 | 0 | 0 | 38 | 50 | 76% |
Total | 83 | 110 | 97 | 37 | 88 | 75 | 87 | 42 | 25 | 38 | 682 | |
Producer’s accuracy | 96% | 73% | 90% | 97% | 53% | 63% | 94% | 95% | 100% | 100% | ||
Overall accuracy | 82% | |||||||||||
Kappa coefficient | 0.80 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, Y.; Liu, C.; Li, Y. Identification of Urban Functional Areas and Their Mixing Degree Using Point of Interest Analyses. Land 2022, 11, 996. https://doi.org/10.3390/land11070996
Li Y, Liu C, Li Y. Identification of Urban Functional Areas and Their Mixing Degree Using Point of Interest Analyses. Land. 2022; 11(7):996. https://doi.org/10.3390/land11070996
Chicago/Turabian StyleLi, Ya, Chunxia Liu, and Yuechen Li. 2022. "Identification of Urban Functional Areas and Their Mixing Degree Using Point of Interest Analyses" Land 11, no. 7: 996. https://doi.org/10.3390/land11070996
APA StyleLi, Y., Liu, C., & Li, Y. (2022). Identification of Urban Functional Areas and Their Mixing Degree Using Point of Interest Analyses. Land, 11(7), 996. https://doi.org/10.3390/land11070996