Inventory of China’s Net Biome Productivity since the 21st Century
Abstract
:1. Introduction
2. Materials and Methods
2.1. Data Sources
2.2. Research Methods
2.2.1. Net Ecosystem Productivity (NEP)
2.2.2. Net Biome Productivity (NBP)
2.2.3. Emission Flux of Activated Carbon and Biological Respiration
2.2.4. Ecosystem Carbon Emission Flux Caused by Human Disturbance
2.2.5. Natural Disturbance Emissions Carbon Flux
3. Results
3.1. Spatial and Temporal Evolution of Net Ecosystem Productivity
3.2. Carbon Emission by Natural and Human Factors Interference
3.3. Net Biome Productivity Spatial Distribution
3.4. The Increase in the FEAD was the Main Driving Force behind the Decrease in the NEP
4. Discussion
4.1. Comparison with Other Research Results
4.2. Analysis of Influencing Factors of Regional Net Biome Productivity
4.3. Science and Uncertainty in the Carbon Sink Assessment
5. Conclusions
- (1)
- The total amount of NBP in China is about 0.21 Pg C/yr1. It increased at a rate of 0.19 Tg C/yr1 over the study period;
- (2)
- The high value of NBP is mainly distributed in southwest and south China, among which Yunnan Province has the highest NBP (0.09 Pg C/yr1), accounting for about 43% of the total NBP in China. Northwest and central China are weak carbon sinks or carbon sources, with the lowest value in Tibet (−0.048 Pg C/yr1);
- (3)
- The relative contribution rates of carbon emission fluxes caused by anthropogenic disturbances (harvesting of agricultural and forestry products) and natural disturbances (fires, pests, etc.) are 70% and 9.87%, respectively.
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Gao, Y.; He, N.P.; Wang, Y.F. Characteristics of Carbon Sequestration by Ecosystem and Progress in Its Research. J. Nat. Resour. 2013, 28, 1264–1274. [Google Scholar]
- Liu, X.C.; Wang, S.; Zhuang, Q.; Jin, X.; Bian, Z.; Zhou, M.; Meng, Z.; Han, C.; Guo, X.; Jin, W.; et al. A Review on Carbon Source and Sink in Arable Land Ecosystems. Land 2022, 11, 580. [Google Scholar] [CrossRef]
- Chuai, X.; Guo, X.M.; Zhang, M.; Yuan, Y.; Li, J.S.; Zhao, R.Q.; Yang, W.J.; Li, J.B. Vegetation and climate zones based carbon use efficiency variation and the main determinants analysis in China. Ecol. Indic. 2020, 111, 105967. [Google Scholar] [CrossRef]
- Zhang, S.; Baia, X.; Zhao, C.; Tan, Q.; Luo, G.; Wu, L.; Xia, H.; Li, C.; Chen, F.; Ran, C.; et al. China’s carbon budget inventory from 1997 to 2017 and its challenges to achieving carbon neutral strategies. J. Clean. Prod. 2022, 347, 130966. [Google Scholar] [CrossRef]
- Li, C.; Bai, X.; Tan, Q.; Luo, G.; Wu, L.; Chen, F.; Xi, H.; Luo, X.; Ran, C.; Chen, H.; et al. High-resolution mapping of the global silicate weathering carbon sink and its long-term changes. Glob. Chang. Biol. 2022, 28, 4377–4394. [Google Scholar] [CrossRef] [PubMed]
- Fang, J.Y.; Huang, Y.; Sun, W.J.; Hu, H.F.; Zhu, J.L. Carbon budget of forest ecosystems and its driving forces. China Bas Sci. 2015, 17, 20–25. [Google Scholar]
- Qiao, Y.; Jiang, Y.J.; Zhang, C.Y. Contribution of karst ecological restoration engineering to vegetation greening in southwest China during recent decade. Ecol. Indic. 2021, 121, 107081. [Google Scholar] [CrossRef]
- Piao, S.L.; Fang, J.Y.; Ciais, P.; Peylin, P.; Huang, Y.; Sitch, S.; Wang, T. The carbon balance of terrestrial ecosystems in China. Nature 2009, 458, 1009–1013. [Google Scholar] [CrossRef]
- Yang, Y.; Shi, Y.; Sun, W.; Chang, J.; Zhu, J.; Chen, L.; Wang, X.; Guo, Y.; Zhang, H.; Yu, L.; et al. Terrestrial carbon sinks in China and around the world and their contribution to carbon neutrality. Sci. China Life Sci. 2022, 65, 861–895. [Google Scholar] [CrossRef]
- Hu, Q.; Li, T.; Deng, X.; Wu, T.; Zhai, P.; Huang, D.; Fan, X.; Zhu, Y.; Lin, Y.; Xiao, X.; et al. Intercomparison of global terrestrial carbon fluxes estimated by MODIS and Earth system models. Sci. Total Environ. 2022, 54, 145–163. [Google Scholar] [CrossRef] [PubMed]
- Schimel, D.S.; House, J.I.; Hibbard, K.A.; Bousquet, P.; Ciais, P.; Peylin, P.; Braswell, B.H.; Apps, M.J.; Baker, D.; Bondeau, A.; et al. Recent patterns and mechanisms of carbon exchange by terrestrial ecosystems. Nature 2001, 414, 169–172. [Google Scholar] [CrossRef]
- Luo, Y.; Weng, E. Dynamic disequilibrium of the terrestrial carbon cycle under global change. Trends Ecol. Evol. 2011, 26, 96–104. [Google Scholar] [CrossRef] [PubMed]
- Fatichi, S.; Pappas, C.; Zscheischler, J.; Leuzinger, S. Modelling carbon sources and sinks in terrestrial vegetation. New Phytol. 2019, 221, 652–668. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Steffen, W.; Noble, I.; Canadell, J.; Apps, M.; Schulze, E.D.; Jarvis, P.G.; Baldocchi, D.; Ciais, P.; Cramer, W.; Ehleringer, J.; et al. The terrestrial carbon cycle: Implications for the Kyoto Protocol. Science 1998, 280, 1393–1394. [Google Scholar]
- Jonsson, A.; Algesten, G.; Bergstrom, A.K.; Bishop, K.; Sobek, S.; Tranvik, L.J.; Jansson, M. Carbon and water exchange of terrestrial systems. Ournal Hydrol. 2007, 334, 141–150. [Google Scholar] [CrossRef]
- Schulze, E.D.; Lloyd, J.; Kelliher, F.M.; Wirth, C.; Rebmann, C.; Luhker, B.; Mund, M.; Knohl, A.; Milyhukova, J.M.; Schulze, W.; et al. Productivity of forests in the Eurosiberian boreal region and their potential to act as a carbon sink—A synthesis. Glob. Chang. Biol. 1999, 5, 703–722. [Google Scholar] [CrossRef]
- Schulze, E.D.; Wirth, C.; Heimann, M. Climate change: Managing forests after Kyoto. Science 2000, 289, 2058–2059. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Friedlingstein, P.; O’Sullivan, M.; Jones, M.W.; Andrew, R.M.; Hauck, J.; Olsen, A.; Peters, G.P.; Peters, W.; Pongratz, J.; Sitch, S.; et al. Global carbon budget 2020. Earth Syst. Sci. Data. 2020, 12, 3269–3340. [Google Scholar] [CrossRef]
- Zhang, F.; Wang, Z.; Glidden, S.; Wu, Y.P.; Tang, L.; Liu, Q.Y.; Li, C.S.; Frolking, S. Changes in the soil organic carbon balance on China’s cropland during the last two decades of the 20th century. Sci. Rep. 2017, 7, 7144. [Google Scholar] [CrossRef] [Green Version]
- Zhang, L.; Zhou, G.S.; Ji, Y.H.; Bai, Y. Spatiotemporal dynamic simulation of grassland carbon storage in China. Sci. China Earth Sci. 2016, 59, 1946–1958. [Google Scholar] [CrossRef]
- Pu, J.B.; Jiang, Z.C.; Yuan, D.X.; Zhang, C. Some Opinions on Rock-Weathering-Related Carbon Sinks from the IPCC Fifth Assessment Report. Adv. Earth Sci. 2015, 30, 1081–1090. [Google Scholar]
- IPCC. Annex I: Glossary. In Global Warming of 1.5 °C; an IPCC Special Report on the Impacts of Global Warming of 1.5 °C above Pre-Industrial Levels and Related Global Greenhouse Gas Emission Pathways, in the Context of Strengthening the Global Response to the Threat of Climate Change, Sustainable Development, and Efforts to Eradicate Poverty; Matthews, R., Babiker, M., Coninck, H.D., Connors, S., Diemen, R., Djalante, R., Masson-Delmotte, V., Zhai, P.M., Pörtner, H.O., Reisinger, A., et al., Eds.; World Meteorological Organization: Geneva, Switzerland, 2018. [Google Scholar]
- Li, J.; Zhou, K.C.; Xie, B.G.; Xiao, J.Y. Impact of landscape pattern change on water-related ecosystem services: Comprehensive analysis based on heterogeneity perspective. Ecol. Indic. 2021, 133, 108372. [Google Scholar] [CrossRef]
- Tian, H.; Melillo, J.; Lu, C.; Kicklighter, D.; Liu, M.; Ren, W.; Xu, X.; Chen, G.; Zhang, C.; Pan, S.; et al. China’s terrestrial carbon balance: Contributions from multiple global change factors. Glob. Biogeochem. Cycles 2011, 25, GB1007. [Google Scholar] [CrossRef]
- Jiang, F.; Wang, H.W.; Chen, J.M.; Zhou, L.X.; Ju, W.M.; Ding, A.J.; Liu, L.X.; Peters, W. Nested atmospheric inversion for the terrestrial carbon sources and sinks in China. Biogeosciences 2013, 10, 5311–5324. [Google Scholar] [CrossRef] [Green Version]
- Zhang, C.; Ju, W.; Chen, J.M.; Zan, M.; Li, D.; Zhou, Y.; Wang, X. China’s forest biomass carbon sink based on seven inventories from 1973 to 2008. Clim Chang. 2013, 118, 933–948. [Google Scholar] [CrossRef]
- Wang, J.; Feng, L.; Palmer, P.I.; Liu, Y.; Fang, S.; Bösch, H.; O’Dell, C.W.; Tang, X.; Yang, D.; Liu, L.; et al. Large Chinese land carbon sink estimated from atmospheric carbon dioxide data. Nature 2020, 586, 720–723. [Google Scholar] [CrossRef] [PubMed]
- Lu, F.X.; Zhang, Y.; Qin, Y.C.; Chen, Z.L.; Wang, G.H. Spatial patterns of provincial carbon source and sink in China. Prog. Geogr. 2014, 32, 1751–1759. [Google Scholar]
- Yang, Y.H.; Wang, Z.; Li, J.; Gang, C.; Zhang, Y.; Odeh, I.; Qi, J. Assessing the spatiotemporal dynamic of global grassland carbon use efficiency in response to climate change from 2000 to 2013. Acta Oecolog. Interna Tional J. Ecol. 2017, 81, 22–31. [Google Scholar] [CrossRef] [Green Version]
- Zhang, Y.; Yu, G.; Yang, J.; Wimberly, M.C.; Zhang, X.Z.; Tao, J.; Jiang, Y.; Zhu, J. Climate-driven global changes in carbon use efficiency Glob. Ecol. Biogeogr. 2014, 23, 144–155. [Google Scholar] [CrossRef]
- Peng, S.L.; Ding, Y.; Liu, W.; Li, Z. 1 km monthly temperature and precipitation dataset for China from 1901 to 2017. Earth Syst. Sci. Data 2019, 11, 1931–1946. [Google Scholar] [CrossRef] [Green Version]
- Yu, G.R.; Zhu, X.J.; Fu, Y.L.; He, H.L.; Wang, Q.F.; Wen, X.F.; Li, X.R.; Zhang, L.M.; Zhang, L.; Su, W.; et al. Spatial patterns and climate drivers of carbon fluxes in terrestrial ecosystems of China. Glob. Chang. Biol. 2013, 19, 798–810. [Google Scholar] [CrossRef] [PubMed]
- Wang, Q.F.; Zheng, H.; Zhu, X.J.; Yu., G.R. Primary estimation of Chinese terrestrial carbon sequestration during 2001–2010. Sci. Bull. 2015, 60, 577–590. [Google Scholar] [CrossRef] [Green Version]
- Wang, Y.; Wang, X.; Wang, K.; Chevallier, F.; Zhu, D.; Lian, J.; He, Y.; Tian, H.; Li, J.; Zhu, J.; et al. The size of the land carbon sink in China. Nature 2022, 603, E7–E9. [Google Scholar] [CrossRef]
- Zhang, S.; Bai, X.; Zhao, C.; Tan, Q.; Luo, G.; Cao, Y.; Deng, Y.; Li, Q.; Li, C.; Wu, L.; et al. Limitations of soil moisture and formation rate on vegetation growth in karst areas. Sci. Total Environ. 2021, 810, 151209. [Google Scholar] [CrossRef] [PubMed]
- Kong, R.; Zhang, Z.X.; Huang, R.C.; Tian, J.X.; Feng, R.; Chen, X. Projected global warming-induced terrestrial ecosystem carbon across China under SSP scenarios. Ecol. Indic. 2022, 139, 108963. [Google Scholar] [CrossRef]
- Smith, P.; Lanigan, G.; Kutsch, W.L.; Buchmann, N.; Jones, M. Measurements necessary for assessing the net ecosystem carbon budget of croplands. Agric. Ecosyst. Environ. 2010, 139, 302–315. [Google Scholar] [CrossRef]
- Begum, K.; Kuhnert, M.; Yeluripati, J.; Ogle, S.; Parton, W.; Kader, M.A.; Smith, P. Model-Based Regional Estimates of Soil Organic Carbon Sequestration and Greenhouse Gas Mitigation Potentials from Rice Croplands in Bangladesh. Land 2018, 7, 82. [Google Scholar] [CrossRef] [Green Version]
- Li, H.; Zhao, M.; Peng, C.; Guo, H.; Wang, Q.; Zhao, B. Gross Ecosystem Productivity Dominates the Control of Ecosystem Methane Flux in Rice Paddies. Land 2021, 10, 1186. [Google Scholar] [CrossRef]
- Guo, X.; Fang, C. Integrated Land Use Change Related Carbon Source/Sink Examination in Jiangsu Province. Land 2021, 10, 1310. [Google Scholar] [CrossRef]
- Jiang, Y.J.; Cao, M.; Yuan, D.X.; Zhang, Y.Z.; He, Q.F. Hydrogeological characterization and environmental effects of the deteriorating urban karst groundwater in a karst trough valley: Nanshan, SW China. Hydrogeol. J. 2018, 26, 1487–1497. [Google Scholar] [CrossRef]
- Pu, J.B.; Liu, W.; Jiang, G.H.; Zhang, C. Karst Dissolution Rate and Implication under the Impact of Rainfall in a Typical Subtropic Karst Dynamic System: A Strontium Isotope 637 Method. Geol. Rev. 2017, 63, 165–176. [Google Scholar]
- Sannigrahi, S.; Pilla, F.; Basu, B.; Basu, A.S.; Sarkar, K.; Chakraborti, S.; Joshi, P.K.; Zhang, Q.; Wang, Y.; Bhatt, S.; et al. Examining the effects of forest fire on terrestrial carbon emission and ecosystem production in India using remote sensing approaches. Sci. Total Environ. 2020, 725, 138331. [Google Scholar] [CrossRef] [PubMed]
- Huang, Y.; Sass, R.L.; Fisher, F.M. Model estimates of methane emission from irrigated rice cultivation of China. Glob. Chang. Biol. 2010, 4, 809–821. [Google Scholar] [CrossRef]
- Kai, F.M.; Tyler, R.C.; Randerson, R.T. Modeling methane emissions from rice agriculture in China during 1961–2007. J. Integr. Environ. Sci. 2010, 7, 49–60. [Google Scholar] [CrossRef]
- Kang, G.D.; Cong, C.Z.; Zhang, H.; Xiao, P.F. Estimate of methane emissions from rice fields in china by climate-based net primary productivity. Chin. Geogr. Sci. 2004, 14, 326–331. [Google Scholar] [CrossRef]
- Li, C.; Qiu, J.; Frolking, S.; Xiao, X.; Salas, W.; Moore, B.; Boles, S.; Huang, Y.; Sass, R. Reduced methane emissions from large-scale changes in water management of China’s rice paddies during 1980-2000. Geophys. Res. Lett. 2002, 29, 1972. [Google Scholar] [CrossRef] [Green Version]
- Wang, Z.; Zhang, X.; Liu, L.; Wang, S.; Zhao, L.; Wu, X.; Zhang, W.; Huang, X. Estimates of methane emissions from Chinese rice fields using the DNDC model. Agric. For. Meteorol. 2021, 303, 108368. [Google Scholar] [CrossRef]
- Jing, L.; Wang, M.; Yao, H.; Wang, Y. New estimates of methane emissions from Chinese rice paddies. Nutr. Cycl. Agroecosyst. 2002, 64, 33–42. [Google Scholar] [CrossRef]
- Chen, H.; Peng, C.; Zhu, Q.; Wu, N.; Yang, G. Methane emissions from rice paddies natural wetlands, lakes in China. Glob. Chang. Biol. 2015, 19, 19–32. [Google Scholar] [CrossRef]
- Ding, W.; Cai, Z.; Wang, D. Preliminary budget of methane emissions from natural wetlands in China. Atmos. Environ. 2004, 38, 751–759. [Google Scholar] [CrossRef]
- Keppler, F.; Hamilton, J.T.; Brass, M.; Rockmann, T. Methane emissions from terrestrial plants under aerobic conditions. Nature 2006, 439, 187–191. [Google Scholar] [CrossRef] [PubMed]
- Guenther, A.; Hewitt, C.N.; Erickson, D.; Fall, R.; Zimmerman, P. A global model of natural volatile organic compound emissions. J. Geophys. Res. Atmos. 1995, 100, 8873–8892. [Google Scholar] [CrossRef]
- Liu, X.Y.; Huang, H.; Yang, Z.P.; Yu, J.B.; Dai, Z.Y.; Wang, D.J.; Tan, S.T. Methane emission from rice-duck-fish complex ecosystem. Ecol. Environ. 2006, 15, 265–269. [Google Scholar]
- Chao, F.; Fang, H.; Yu, G.R. Carbon Emissions from Forest Vegetation Caused by Three Major Disturbances in China. J. Resour. 2011, 2, 202–209. [Google Scholar] [CrossRef]
- Zhu, X.J.; Yu, G.R.; Gao, Y.; Wang, Q.F.; Sun, Z. Fluxes of Particulate Carbon from Rivers to the Ocean and Their Changing Tendency in China. Prog. Geogr. 2012, 31, 118–122. [Google Scholar]
- Guenther, A. The contribution of reactive carbon emissions from vegetation to the carbon balance of terrestrial ecosystems. Chemosphere 2003, 49, 837–844. [Google Scholar] [CrossRef] [Green Version]
- Xi, T.T.; Li, S.L. Analysis of Forestry Carbon Mitigation Potential in Heilongjiang Province. Probl. For. Econ. 2006, 6, 519–526. [Google Scholar]
- Zhang, H.F.; Chen, B.Z.; van der Laan-Luijkx, I.T.; Chen, J.; Xu, G.; Yan, J.W.; Zhou, L.X.; Fukuyama, Y.; Tans, P.P.; Peters, W. Net terrestrial CO2 exchange over China during 2001–2010 estimated with an ensemble data assimilation system for atmospheric CO2. J. Geophys. Res. 2014, 119, 3500–3515. [Google Scholar] [CrossRef] [Green Version]
- Gong, P.; Xu, M.; Chen, J.M.; Qi, Y.; Greg, B.G.; Liu, J.Y.; Wang, S.Q. A preliminary study on the carbon dynamics of China’s terrestrial ecosystems in the past 20 years. Earth Sci. Front. 2002, 9, 55–61. [Google Scholar]
- Gong, S.H.; Wang, S.J.; Bai, X.Y.; Luo, G.J.; Zeng, C. Response of the weathering carbon sink in terrestrial rocks to climate variables and ecological restoration in China. Sci. Total Environ. 2020, 750, 141525. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.; Fang, F.; Li, Y. Key issues of land use in China and implications for policy-making. Land Use Policy 2014, 40, 6–12. [Google Scholar] [CrossRef]
- Chuai, X.; Huang, X.; Lu, Q.; Zhang, M.; Zhao, R.; Lu, J. Spatiotemporal Changes of Built-Up Land Expansion and Carbon Emissions Caused by the Chinese Construction Industry. Environ. Sci. Technol. 2015, 49, 13021–13030. [Google Scholar] [CrossRef] [PubMed]
- Chasmer, L.; Baker, T.; Carey, S.K.; Straker, J.; Strilesky, S.; Petrone, R. Monitoring ecosystem reclamation recovery using optical remote sensing: Comparison with field measurements and eddy covariance. Sci. Total Environ. 2018, 642, 436–446. [Google Scholar] [CrossRef] [PubMed]
- Liu, Z.; Pan, Y.P.; Song, T.; Hu, B.; Wang, L.L.; Wang, Y.S. Eddy covariance measurements of ozone flux above and below a southern subtropical forest canopy. Sci. Total Environ. 2021, 791, 148338. [Google Scholar] [CrossRef] [PubMed]
- Inoue, Y.; Olioso, A. Chapter 13 Methods of Estimating Plant Productivity and CO2 Flux in Agro-Ecosystems-Liking Measurements, Process Models, and Remotely Sensed Information. Glob. Clim. Chang. Response Carbon Cycle Equat. Pac. Indian Ocean. Adjac. Landmasses 2007, 73, 295–502. [Google Scholar]
- Lu, F.; Hu, H.; Sun, W.; Zhu, J.; Liu, G.; Zhou, W.; Zhang, Q.; Shi, P.; Liu, X.; Wu, X.; et al. Effects of national ecological restoration projects on carbon sequestration in China from 2001 to 2010. Proc. Natl. Acad. Sci. USA 2018, 115, 4039–4044. [Google Scholar] [CrossRef] [PubMed] [Green Version]
FERCCI | CH4 Emission (Tg C/yr1) | Study Period | References |
---|---|---|---|
CH4 emission flux statistics from rice fields in China | 3.90~8.52 | 2008 | [50] |
6.77 | 2000–2018 | This study | |
The CH4 emissions from natural wetlands and lakes (including reservoirs and ponds) | 1.48~1.76 | [51] | |
1.16 | 2000–2018 | This study | |
CH4 emissions of aerobic plants | 11.83 | [52] | |
10.66 | 2000–2018 | This study | |
NVOCs | 13.23~17.71 | [37,53] | |
15.15 | 2000–2018 | This study | |
CO | 38.5 | 2001–2010 | [33,56] |
38.53 | 2000–2018 | This study | |
Creature ingestion | 4.29 | 1990–2009 | [55] |
4.2 | 2000–2018 | This study | |
FEAD | 806 | 2001–2010 | [55,57] |
742 | 2000–2018 | This study | |
FEP | 1.61 | [55] | |
1.45 | 2000–2018 | This study |
Model | Study Period | NBP (Pg C/yr1) | Reference |
---|---|---|---|
Biomass and soil carbon inventories, Atmospheric inversions method. | 1980–1990 | 0.19~0.26 | [8] |
Atmospheric inversion method | 2001–2010 | 0.31~0.33 | [59] |
DEM | 2001–2005 | 0.28 | [3] |
Resource inventory method | 2004–2008 | 0.28 | [60] |
Meta-analyses | 0.20~0.25 | [9] | |
Eddy covariance measurements | 2000–2018 | 0.212 | This study |
Method | Advantages | Disadvantages | References |
---|---|---|---|
Resource inventory method | The observation results of vegetation and soil carbon storage at the sample scale are more accurate. |
| [26,32] |
Eddy covariance measurements | Long-term continuous positioning observations of carbon flux in the ecosystem. Contributes to understanding the response and mechanism of the carbon cycle process to environmental changes. |
| [64,65] |
Ecophysiological Process Models | Quantitatively distinguish the contributions of different driving factors to terrestrial carbon sink changes, which can predict future changes in terrestrial carbon sinks. |
| [66,67] |
Atmospheric inversion method | Real-time changes in carbon sources and sinks can be estimated on a global scale. |
| [25,47,57] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Du, C.; Bai, X.; Li, Y.; Tan, Q.; Zhao, C.; Luo, G.; Wu, L.; Chen, F.; Li, C.; Ran, C.; et al. Inventory of China’s Net Biome Productivity since the 21st Century. Land 2022, 11, 1244. https://doi.org/10.3390/land11081244
Du C, Bai X, Li Y, Tan Q, Zhao C, Luo G, Wu L, Chen F, Li C, Ran C, et al. Inventory of China’s Net Biome Productivity since the 21st Century. Land. 2022; 11(8):1244. https://doi.org/10.3390/land11081244
Chicago/Turabian StyleDu, Chaochao, Xiaoyong Bai, Yangbing Li, Qiu Tan, Cuiwei Zhao, Guangjie Luo, Luhua Wu, Fei Chen, Chaojun Li, Chen Ran, and et al. 2022. "Inventory of China’s Net Biome Productivity since the 21st Century" Land 11, no. 8: 1244. https://doi.org/10.3390/land11081244
APA StyleDu, C., Bai, X., Li, Y., Tan, Q., Zhao, C., Luo, G., Wu, L., Chen, F., Li, C., Ran, C., Luo, X., Xi, H., Chen, H., Zhang, S., Liu, M., Gong, S., Xiong, L., Song, F., & Xiao, B. (2022). Inventory of China’s Net Biome Productivity since the 21st Century. Land, 11(8), 1244. https://doi.org/10.3390/land11081244