Carbon Metabolism in Urban “Production–Living–Ecological” Space Based on Ecological Network Analysis
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Data Sources
2.3. Methods
2.3.1. The Carbon Metabolic Network Model
- 1.
- Carbon Emissions Accounting
- 2.
- Carbon Sink Accounting
- 3.
- Horizontal Carbon Flow Accounting
2.3.2. Ecological Network Analysis (ENA) Method
- 1.
- Throughflow analysis
- 2.
- Utility analysis
- 3.
- Structure Analysis
3. Results
3.1. Carbon Emissions and Carbon Sequestration Changes
3.2. Horizontal Carbon Flow Changes
3.3. The Ecological Relationships between PLE Spaces
3.4. Hierarchical Structure of Urban Carbon Metabolism Network
4. Discussion
4.1. The Changes in PLE Space Types and Carbon Flow
4.2. The ecological Relationships between PLE Space and Urban Expansion
4.3. Policy Recommendations for Low-Carbon Urban Development
4.4. Limitations and Future Directions of This Study
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Grimm, N.B.; Faeth, S.H.; Golubiewski, N.E.; Redman, C.L.; Wu, J.; Bai, X.; Briggs, J.M. Global change and the ecology of cities. Science 2008, 319, 756–760. [Google Scholar] [CrossRef]
- Zhao, R.Q.; Huang, X.J.; Peng, B.Z. Research on carbon cycle and carbon balance of Nanjing urban system. Acta Geogr. Sin. 2012, 67, 758–770. (In Chinese) [Google Scholar]
- Xu, Q.; Yang, R.; Dong, Y.X.; Liu, Y.X.; Qiu, L.R. The influence of rapid urbanization and land use changes on terrestrial carbon sources/sinks in Guangzhou, China. Ecol. Indic. 2016, 70, 304–316. [Google Scholar] [CrossRef]
- Lin, Q.; Zhang, L.; Qiu, B.; Zhao, Y.; Wei, C. Spatiotemporal Analysis of Land Use Patterns on Carbon Emissions in China. Land 2021, 10, 141. [Google Scholar] [CrossRef]
- Xia, C.; Li, Y.; Xu, T.; Chen, Q.; Ye, Y.; Shi, Z.; Liu, J.; Ding, Q.; Li, X. Analyzing spatial patterns of urban carbon metabolism and its response to change of urban size: A Case of the Yangtze River Delta, China. Ecol. Indic. 2019, 104, 615–625. [Google Scholar] [CrossRef]
- Ergas, C.; Clement, M.; McGee, J. Urban density and the metabolic reach of metropolitan areas: A panel analysis of per capita transportation emissions at the county-level. Soc. Sci. Res. 2016, 58, 243–253. [Google Scholar] [CrossRef] [PubMed]
- Xia, L.L.; Zhang, Y.; Li, M.J. A review of urban carbon metabolism. Acta Ecol. Sin. 2017, 37, 4268–4277. (In Chinese) [Google Scholar] [CrossRef]
- Thomson, G.; Newman, P. Urban fabrics and urban metabolism—From sustainable to regenerative cities. Resour. Conserv. Recycl. 2018, 132, 218–229. [Google Scholar] [CrossRef]
- Zhang, Y.; Yang, Z.; Fath, B.D. Ecological network analysis of an urban water metabolic system: Model development, and a case study for Beijing. Sci. Total Environ. 2010, 408, 4702–4711. [Google Scholar] [CrossRef]
- Forkes, J. Nitrogen balance for the urban food metabolism of Toronto, Canada. Resour. Conserv. Recycl. 2007, 52, 74–94. [Google Scholar] [CrossRef]
- Pincetl, S.; Bunje, P.; Holmes, T. An expanded urban metabolism method: Toward a systems approach for assessing urban energy processes and causes. Landsc. Urban Plan. 2012, 107, 193–202. [Google Scholar] [CrossRef]
- Cortés-Borda, D.; Ruiz-Hernández, A.; Guillén-Gosálbez, G.; Llop, M.; Guimerà, R.; Sales-Pardo, M. Identifying strategies for mitigating the global warming impact of the EU-25 economy using a multi-objective input–output approach. Energy Policy 2015, 77, 21–30. [Google Scholar] [CrossRef]
- Ye, H.; Wang, K.; Zhao, X.; Chen, F.; Li, X.; Pan, L. Relationship between construction characteristics and carbon emissions from urban household operational energy usage. Energy Build. 2011, 43, 147–152. [Google Scholar] [CrossRef]
- Kennedy, C.; Steinberger, J.; Gasson, B.; Hansen, Y.; Hillman, T.; Havránek, M.; Pataki, D.; Phdungsilp, A.; Ramaswami, A.; Mendez, G.V. Methodology for inventorying greenhouse gas emissions from global cities. Energy Policy 2010, 38, 4828–4837. [Google Scholar] [CrossRef]
- Li, J.; Huang, G.; Liu, L. Ecological network analysis for urban metabolism and carbon emissions based on input-output tables: A case study of Guangdong Province. Ecol. Model. 2018, 383, 118–126. [Google Scholar] [CrossRef]
- Li, S.; Zhang, Y.; Yang, Z.; Liu, H.; Zhang, J. Ecological relationship analysis of the urban metabolic system of Beijing, China. Environ. Pollut. 2012, 170, 169–176. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Zheng, H.; Fath, B.D. Analysis of the energy metabolism of urban socioeconomic sectors and the associated carbon footprints: Model development and a case study for Beijing. Energy Policy 2014, 73, 540–551. [Google Scholar] [CrossRef]
- Zhang, Y.; Xia, L.; Fath, B.D.; Yang, Z.; Yin, X.; Su, M.; Liu, G.; Li, Y. Development of a spatially explicit network model of urban metabolism and analysis of the distribution of ecological relationships: Case study of Beijing, China. J. Clean. Prod. 2016, 112, 4304–4317. [Google Scholar] [CrossRef]
- Xia, L.; Fath, B.D.; Scharler, U.M.; Zhang, Y. Spatial variation in the ecological relationships among the components of Beijing’s carbon metabolic system. Sci. Total Environ. 2016, 544, 103–113. [Google Scholar] [CrossRef]
- Purushothaman, S.; Patil, S.; Francis, I. Assessing the impact of policy-driven agricultural practices in Karnataka, India. Sustain. Sci. 2013, 8, 173–185. [Google Scholar] [CrossRef]
- Zhou, D.; Xu, J.; Lin, Z. Conflict or coordination? Assessing land use multi-functionalization using production-living-ecology analysis. Sci. Total Environ. 2017, 577, 136–147. [Google Scholar] [CrossRef] [PubMed]
- Duan, Y.; Wang, H.; Huang, A.; Xu, Y.; Lu, L.; Ji, Z. Identification and spatial-temporal evolution of rural “production-living-ecological” space from the perspective of villagers’ behavior—A case study of Ertai Town, Zhangjiakou City. Land Use Policy 2021, 106, 105457. [Google Scholar] [CrossRef]
- Zhao, Y.; Cheng, J.; Zhu, Y.; Zhao, Y. Spatiotemporal Evolution and Regional Differences in the Production-Living-Ecological Space of the Urban Agglomeration in the Middle Reaches of the Yangtze River. Int. J. Environ. Res. Public Health 2021, 18, 12497. [Google Scholar] [CrossRef]
- Li, G.D.; Fang, C.L. Quantitative function identification and analysis of urban ecological-production-living spaces. Acta Geogr. Sin. 2016, 71, 49–65. (In Chinese) [Google Scholar] [CrossRef]
- Tu, X.; Fu, C.; Huang, A.; Chen, H.; Ding, X. DBSCAN Spatial Clustering Analysis of Urban “Production–Living–Ecological” Space Based on POI Data: A Case Study of Central Urban Wuhan, China. Int. J. Environ. Res. Public Health 2022, 19, 5153. [Google Scholar] [CrossRef]
- Guo, S.; Han, M.; Yang, Y.; Di, H. Embodied energy flows in China’s Economic Zones: Jing-Jin-Ji, Yangtze-River-Delta and Pearl-River-Delta. J. Clean. Prod. 2020, 268, 121710. [Google Scholar] [CrossRef]
- Du, Q.; Guo, X.; Bao, T.; Huang, Y.; Han, X. CO2 flows in the inter-regional and inter-sectoral network of the Yangtze River Economic Zone. Environ. Sci. Pollut. Res. 2020, 27, 16293–16316. [Google Scholar] [CrossRef]
- Long, H.; Liu, Y.; Wu, X.; Dong, G. Spatio-temporal dynamic patterns of farmland and rural settlements in Su–Xi–Chang Region: Implications for building a new countryside in Coastal China. Land Use Policy 2009, 26, 322–333. [Google Scholar] [CrossRef]
- Yang, Y.; Bao, W.; Li, Y.; Wang, Y.; Chen, Z. Land Use Transition and Its Eco-Environmental Effects in the Beijing–Tianjin–Hebei Urban Agglomeration: A Production–Living–Ecological Perspective. Land 2020, 9, 285. [Google Scholar] [CrossRef]
- West, T.O.; Marland, G. A synthesis of carbon sequestration, carbon emissions, and net carbon flux in agriculture: Comparing tillage practices in the United States. Agric. Ecosyst. Environ. 2002, 91, 217–232. [Google Scholar] [CrossRef]
- Xia, C.; Li, Y.; Xu, T.; Ye, Y.; Shi, Z.; Peng, Y.; Liu, J. Quantifying the spatial patterns of urban carbon metabolism: A case study of Hangzhou, China. Ecol. Indic. 2018, 95, 474–484. [Google Scholar] [CrossRef]
- Hannon, B. The structure of ecosystems. J. Theor. Biol. 1973, 41, 535–546. [Google Scholar] [CrossRef]
- Fath, B.D. Network mutualism: Positive community-level relations in ecosystems. Ecol. Model. 2007, 208, 56–67. [Google Scholar] [CrossRef]
- Hines, D.; Lisa, J.; Song, B.; Tobias, C.; Borrett, S. Estimating the effects of seawater intrusion on an estuarine nitrogen cycle by comparative network analysis. Mar. Ecol. Prog. Ser. 2015, 524, 137–154. [Google Scholar] [CrossRef]
- Dame, J.K.; Christian, R.R. Uncertainty and the use of network analysis for ecosystem-based fishery management. Fisheries 2006, 31, 331–341. [Google Scholar] [CrossRef]
- Finn, J.T. Flow analysis of models of the hubbard brook ecosystem. Ecology 1980, 61, 562–571. [Google Scholar] [CrossRef]
- Chen, S.; Xu, B.; Chen, B. Unfolding the interplay between carbon flows and socioeconomic development in a city: What can network analysis offer? Appl. Energy 2018, 211, 403–412. [Google Scholar] [CrossRef]
- Fath, B.D.; Patten, B.C. Quantifying resource homogenization using network flow analysis. Ecol. Model. 1999, 123, 193–205. [Google Scholar] [CrossRef]
- Chen, S.; Chen, B. Network environ perspective for urban metabolism and carbon emissions: A case study of Vienna, Austria. Environ. Sci. Technol. 2012, 46, 4498–4506. [Google Scholar] [CrossRef]
- Borrett, S.R. Bibliometric review of ecological network analysis: 2010–2016. Ecol. Model. 2018, 382, 63–82. [Google Scholar] [CrossRef]
- Zhang, Y.; Liu, H.; Li, Y.; Yang, Z.; Li, S.; Yang, N. Ecological network analysis of China’s societal metabolism. J. Environ. Manag. 2012, 93, 254–263. [Google Scholar] [CrossRef] [PubMed]
- Piezer, K.; Petit-Boix, A.; Sanjuan-Delmás, D.; Briese, E.; Celik, I.; Rieradevall, J.; Gabarrell, X.; Josa, A.; Apul, D. Ecological network analysis of growing tomatoes in an urban rooftop greenhouse. Sci. Total Environ. 2019, 651, 1495–1504. [Google Scholar] [CrossRef] [PubMed]
- Xia, L.; Zhang, Y.; Yu, X.; Li, Y.; Zhang, X. Hierarchical structure analysis of urban carbon metabolism: A case study of Beijing, China. Ecol. Indic. 2019, 107, 105602. [Google Scholar] [CrossRef]
- Zhang, Y.; Zheng, H.; Yang, Z.; Su, M.; Liu, G.; Li, Y. Multi-regional input–output model and ecological network analysis for regional embodied energy accounting in China. Energy Policy 2015, 86, 651–663. [Google Scholar] [CrossRef]
- Schramski, J.R.; Gattie, D.K.; Patten, B.C.; Borrett, S.R.; Fath, B.D.; Thomas, C.R.; Whipple, S.J. Indirect effects and distributed control in ecosystems: Distributed control in the environ networks of a seven-compartment model of nitrogen flow in the Neuse River Estuary, USA—Steady-state analysis. Ecol. Model. 2006, 194, 189–201. [Google Scholar] [CrossRef]
- Xia, C.; Chen, B. Urban land-carbon nexus based on ecological network analysis. Appl. Energy 2020, 276, 115465. [Google Scholar] [CrossRef]
- Liu, Y. Introduction to land use and rural sustainability in China. Land Use Policy 2018, 74, 1–4. [Google Scholar] [CrossRef]
- Deng, Y.; Yang, R. Influence Mechanism of Production-Living-Ecological Space Changes in the Urbanization Process of Guangdong Province, China. Land 2021, 10, 1357. [Google Scholar] [CrossRef]
- De Groot, R. Function-analysis and valuation as a tool to assess land use conflicts in planning for sustainable, multi-functional landscapes. Landsc. Urban Plan. 2006, 75, 175–186. [Google Scholar] [CrossRef]
- Liang, X.; Jin, X.; Ren, J.; Gu, Z.; Zhou, Y. A research framework of land use transition in Suzhou City coupled with land use structure and landscape multifunctionality. Sci. Total Environ. 2020, 737, 139932. [Google Scholar] [CrossRef]
- Zhao, R.; Huang, X.; Zhong, T.; Liu, Y.; Chuai, X. Carbon Flow of urban system and its policy implications: The case of Nanjing. Renew. Sustain. Energy Rev. 2014, 33, 589–601. [Google Scholar] [CrossRef]
- Chuai, X.; Huang, X.; Wang, W.; Zhao, R.; Zhang, M.; Wu, C. Land use, total carbon emissions change and low carbon land management in Coastal Jiangsu, China. J. Clean. Prod. 2015, 103, 77–86. [Google Scholar] [CrossRef]
- Fan, L.Y. Analysis of process and characteristics of Sunan rural urbanization from the perspective of social space: A case study of Suzhou. Urban Plan. Forum 2015, 4, 27–35. (In Chinese) [Google Scholar] [CrossRef]
- Mohajeri, N.; Perera, A.T.D.; Coccolo, S.; Mosca, L.; Le Guen, M.; Scartezzini, J.L. Integrating urban form and distributed energy systems: Assessment of sustainable development scenarios for a Swiss Village to 2050. Renew. Energy 2019, 143, 810–826. [Google Scholar] [CrossRef]
- Carpio, A.; Ponce-Lopez, R.; Lozano-Garcia, D.F. Urban Form, Land use, and cover change and their impact on carbon emissions in the Monterrey Metropolitan Area, Mexico. Urban Clim. 2021, 39, 100947. [Google Scholar] [CrossRef]
- Yuan, F.; Wei, Y.D.; Chen, W. Economic transition, industrial location and corporate networks: Remaking the Sunan Model in Wuxi City, China. Habitat Int. 2014, 42, 58–68. [Google Scholar] [CrossRef]
- Wu, Y.; Shan, L.; Guo, Z.; Peng, Y. Cultivated land protection policies in China facing 2030: Dynamic balance system versus basic farmland zoning. Habitat Int. 2017, 69, 126–138. [Google Scholar] [CrossRef]
- Liu, J.; Sleeter, B.M.; Zhu, Z.; Loveland, T.R.; Sohl, T.; Howard, S.M.; Key, C.H.; Hawbaker, T.; Liu, S.; Reed, B.; et al. Critical land change information enhances the understanding of carbon balance in the United States. Glob. Chang. Biol. 2020, 26, 3920–3929. [Google Scholar] [CrossRef]
- Zhang, D.; Huang, Q.; He, C.; Yin, D.; Liu, Z. Planning urban landscape to maintain key ecosystem services in a rapidly urbanizing area: A scenario analysis in the Beijing-Tianjin-Hebei Urban Agglomeration, China. Ecol. Indic. 2019, 96, 559–571. [Google Scholar] [CrossRef]
- Jia, Y.Y.; Li, H.; Wang, Z.Q.; Du, X.L.; Yang, Y.; Li, J.L. Quantitative evaluation of eco-environment quality of the terrestrial ecological red line area in Wuzhong District, Suzhou City. J. Ecol. Rural Environ. 2017, 33, 525–532. (In Chinese) [Google Scholar] [CrossRef]
- Liao, X.; Shu, T.H.; Shen, L.Y.; Ren, Y.T.; Yang, N. Identification and evolution of peri-urban areas in the context of urban-rural integrated development: A case study of Suzhou City. Prog. Geogr. 2021, 40, 1847–1860. (In Chinese) [Google Scholar] [CrossRef]
- Hendriks, C.; Obernosterer, R.; Müller, D.; Kytzia, S.; Baccini, P.; Brunner, P.H. Material Flow Analysis: A tool to support environmental policy decision making. Case-studies on the city of Vienna and the Swiss Lowlands. Local Environ. 2000, 5, 311–328. [Google Scholar] [CrossRef]
- Yu, L. Low carbon eco-city: New approach for Chinese urbanisation. Habitat Int. 2014, 44, 102–110. [Google Scholar] [CrossRef]
- Liu, W.; Qin, B. Low-Carbon City Initiatives in China: A review from the policy paradigm perspective. Cities 2016, 51, 131–138. [Google Scholar] [CrossRef]
- Bernués, A.; Rodríguez-Ortega, T.; Alfnes, F.; Clemetsen, M.; Eik, L.O. Quantifying the multifunctionality of fjord and mountain agriculture by means of sociocultural and economic valuation of ecosystem services. Land Use Policy 2015, 48, 170–178. [Google Scholar] [CrossRef]
- Wei, L.; Zhang, Y.; Wang, L.; Mi, X.; Wu, X.; Cheng, Z. Spatiotemporal Evolution Patterns of “Production-Living-Ecological” Spaces and the Coordination Level and Optimization of the Functions in Jilin Province. Sustainability 2021, 13, 13192. [Google Scholar] [CrossRef]
- Walker, G.; Karvonen, A.; Guy, S. Zero carbon homes and zero carbon living: Sociomaterial interdependencies in carbon governance. Trans. Inst. Br. Geogr. 2015, 40, 494–506. [Google Scholar] [CrossRef]
- Xin, Y.; Tao, F. Have the agricultural production systems in the North China Plain changed towards to climate smart agriculture since 2000? J. Clean. Prod. 2021, 299, 126940. [Google Scholar] [CrossRef]
- Li, Y.; Shen, J.; Xia, C.; Xiang, M.; Cao, Y.; Yang, J. The impact of urban scale on carbon metabolism—A case study of Hangzhou, China. J. Clean. Prod. 2021, 292, 126055. [Google Scholar] [CrossRef]
- Xia, C.; Xiang, M.; Fang, K.; Li, Y.; Ye, Y.; Shi, Z.; Liu, J. Spatial-Temporal Distribution of Carbon Emissions by Daily Travel and Its Response to Urban Form: A Case Study of Hangzhou, China. J. Clean. Prod. 2020, 257, 120797. [Google Scholar] [CrossRef]
PLE Space Types Based on PLE Dominant Function | Secondary Classification of Land Use System | Carbon Metabolism Function | ||
---|---|---|---|---|
First Category | Code | Secondary Category | ||
Production space | CU | Agricultural production space | Paddy field, dry farm | carbon source, carbon sink |
IN | Industrial production space | Industrial, mining, and transportation construction land | carbon source | |
Living space | UR | Urban living space | Urban land | carbon source |
RU | Rural living space | Rural settlements | carbon source | |
Ecological space | G | Grassland ecological space | Grassland with low, medium, and high cover | carbon sink |
F | Forest ecological space | Open woodland, shrubland, wooded land, other woodland | carbon sink | |
W | Water ecological space | Rivers, lakes | carbon sink | |
B | Other ecological space | Bare rocky gravel land, bare land, saline land | - |
Signs of Elements in Matrix U | Positive (+) | Neutral (0) | Negative (−) |
---|---|---|---|
Positive (+) | (+, +) mutualism | (+, 0) commensalism | (+, −) exploitation |
Neutral (0) | (0, +) commensalism host | (0, 0) neutralism | (0, −) amensalism |
Negative (−) | (−, +) control | (−, 0) amensal host | (−, −) competition |
PLE Space Type | 2000 | 2005 | 2010 | 2018 | ||||
---|---|---|---|---|---|---|---|---|
Carbon Emissions | Carbon Sequestration | Carbon Emissions | Carbon Sequestration | Carbon Emissions | Carbon Sequestration | Carbon Emissions | Carbon Sequestration | |
CU | 447,016.27 | 3012.05 | 299,002.39 | 2735.98 | 259,636.20 | 2063.94 | 143,945.71 | 1976.50 |
IN | 930,984.47 | 0 | 2,098,900.08 | 0 | 3,758,572.52 | 0 | 11,880,749.79 | 0 |
UR | 341,810.20 | 0 | 480,438.64 | 0 | 944,859.50 | 0 | 1,385,291.59 | 0 |
RU | 297,185.88 | 0 | 336,873.62 | 0 | 591,065.42 | 0 | 793,878.20 | 0 |
G | 0 | 312.00 | 0 | 310.99 | 0 | 275.41 | 0 | 1172.36 |
F | 0 | 9010.98 | 0 | 9034.67 | 0 | 8783.14 | 0 | 8737.29 |
W | 0 | 111,668.43 | 0 | 113,008.93 | 0 | 87,491.62 | 0 | 81,862.22 |
O | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Feng, X.; Li, Y.; Zhang, L.; Xia, C.; Yu, E.; Yang, J. Carbon Metabolism in Urban “Production–Living–Ecological” Space Based on Ecological Network Analysis. Land 2022, 11, 1445. https://doi.org/10.3390/land11091445
Feng X, Li Y, Zhang L, Xia C, Yu E, Yang J. Carbon Metabolism in Urban “Production–Living–Ecological” Space Based on Ecological Network Analysis. Land. 2022; 11(9):1445. https://doi.org/10.3390/land11091445
Chicago/Turabian StyleFeng, Xinhui, Yan Li, Lu Zhang, Chuyu Xia, Er Yu, and Jiayu Yang. 2022. "Carbon Metabolism in Urban “Production–Living–Ecological” Space Based on Ecological Network Analysis" Land 11, no. 9: 1445. https://doi.org/10.3390/land11091445
APA StyleFeng, X., Li, Y., Zhang, L., Xia, C., Yu, E., & Yang, J. (2022). Carbon Metabolism in Urban “Production–Living–Ecological” Space Based on Ecological Network Analysis. Land, 11(9), 1445. https://doi.org/10.3390/land11091445