Analysis of Spatial Carbon Metabolism by ENA: A Case Study of Tongzhou District, Beijing
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Data Sources and Preparation
2.3. Methods
2.3.1. Calculating the Carbon Transitions Caused by Land Use Changes
2.3.2. Determining Ecological Relationships between Different Land Uses
3. Results
3.1. Spatial Carbon Metabolism
3.1.1. Carbon Emission
3.1.2. Carbon Sequestration
3.1.3. Carbon Flow from 2014 to 2020
3.2. Spatial Ecological Relationships of Carbon Flow
3.2.1. Ecological Relationships of Carbon Flow
3.2.2. Overall Ecological Utility Function
4. Discussion
4.1. Impact of Land Use Changes on Carbon Flow
4.1.1. Impact of Negative Carbon Flow
4.1.2. Impact of Positive Carbon Flow
4.2. Effects of Land Use Changes on Ecological Relationships
4.2.1. Exploitation and Control Relationships
4.2.2. Competition Relationships
4.2.3. Mutualism Relationships
5. Conclusions and Suggestions
5.1. Conclusions
5.2. Suggestions
5.3. Limitations and Future Insights
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Intergovernmental Panel on Climate Change (IPCC). Special Report on Global Warming of 1.5 ℃[R]; Cambridge University Press: Cambridge, UK, 2018. [Google Scholar]
- United Nations Environment Programme (UNEP). Emissions Gap Report 2020[R]; United Nations Environment Programme and UNEP DTU Partnership: Nairobi, Kenya, 2020. [Google Scholar]
- He, J.; Yang, Y.; Liao, Z.; Xu, A.; Fang, K. Linking SDG 7 to assess the renewable energy footprint of nations by 2030. Appl. Energy 2022, 317, 119167. [Google Scholar] [CrossRef]
- Wolman, A. The metabolism of cities. Sci. Am. 1965, 213, 179–190. [Google Scholar] [CrossRef] [PubMed]
- Xia, L.L.; Zhang, Y.; Li, M.J. A review of urban carbon metabolism. Acta Ecol. Sin. 2017, 37, 4268–4277. [Google Scholar]
- Xia, C.; Li, Y.; Xu, T.; Chen, Q.; Ye, Y.; Shi, Z.; Liu, J.; Ding, Q.; Li, X. Analyzing spatial patterns of urban carbon metabolism and its response to change of urban size: A case of the Yangtze River Delta, China. Ecol. Indic. 2019, 104, 615–625. [Google Scholar] [CrossRef]
- Xia, C.; Xiang, M.; Fang, K.; Li, Y.; Ye, Y.; Shi, Z.; Liu, J. Spatial-temporal distribution of carbon emissions by daily travel and its response to urban form: A case study of Hangzhou, China. J. Clean. Prod. 2020, 257, 120797. [Google Scholar] [CrossRef]
- Li, Y.; Shen, J.; Xia, C.; Xiang, M.; Cao, Y.; Yang, J. The impact of urban scale on carbon metabolism --a case study of Hangzhou, China. J. Clean. Prod. 2021, 292, 126055. [Google Scholar] [CrossRef]
- Houghton, R.A. The annual net flux of carbon to the atmosphere from changes in land use 1850–1990. Tellus B Chem. Phys. Meteorol. 1999, 51, 298–313. [Google Scholar] [CrossRef]
- Xia, C.; Chen, B. Urban land-carbon nexus based on ecological network analysis. Appl. Energy 2020, 276, 115465. [Google Scholar] [CrossRef]
- Zhu, E.; Deng, J.; Zhou, M.; Gan, M.; Jiang, R.; Wang, K.; AmirReza, S. Carbon emissions induced by land-use and land-cover change from 1970 to 2010 in Zhejiang, China. Sci. Total Environ. 2019, 646, 930–939. [Google Scholar] [CrossRef]
- Houghton, R.A.; House, J.I.; Pongratz, J.; Van Der Werf, G.R.; Defries, R.S.; Hansen, M.C.; Le Quéré, C.; Ramankutty, N. Carbon emissions from land use and land-cover change. Biogeosciences 2012, 9, 5125–5142. [Google Scholar] [CrossRef]
- Findell, K.L.; Berg, A.; Gentine, P.; Krasting, J.P.; Lintner, B.R.; Malyshev, S.; Santanello, J.A.; Shevliakova, E. The impact of anthropogenic land use and land cover change on regional climate extremes. Nat. Commun. 2017, 8, 989. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kay, S.; Rega, C.; Moreno, G.; den Herder, M.; Palma, J.H.N.; Borek, R.; Herzog, F. Agroforestry creates carbon sinks whilst enhancing the environment in agricultural landscapes in Europe. Land Use Policy 2019, 83, 581–593. [Google Scholar] [CrossRef]
- Tang, X.; Woodcock, C.E.; Olofsson, P.; Hutyra, L.R. Spatiotemporal assessment of land use/land cover change and associated carbon emissions and uptake in the Mekong River Basin. Remote Sens. Environ. 2021, 256, 112336. [Google Scholar] [CrossRef]
- Xia, C. Multi-Scale Studies on Urban Carbon Metabolism from the Perspective of Land Use and Scenario Analysis of Emission Reduction, China. Ph.D. Thesis, Zhejiang University, Zhejiang, China, 2019. [Google Scholar] [CrossRef]
- Yu, Z.; Chen, L.; Tong, H.; Chen, L.; Zhang, T.; Li, L.; Yuan, L.; Xiao, J.; Wu, R.; Bai, L.; et al. Spatial correlations of land-use carbon emissions in the Yangtze River Delta region: A perspective from social network analysis. Ecol. Indic. 2022, 142, 109147. [Google Scholar] [CrossRef]
- Zhao, J.; Shao, Z.; Xia, C.; Fang, K.; Chen, R.; Zhou, J. Ecosystem services assessment based on land use simulation: A case study in the Heihe River Basin, China. Ecol. Indic. 2022, 143, 109402. [Google Scholar] [CrossRef]
- Kellett, R.; Christen, A.; Coops, N.C.; van der Laan, M.; Crawford, B.; Tooke, T.R.; Olchovski, I. A systems approach to carbon cycling and emissions modeling at an urban neighborhood scale. Landsc. Urban Plan. 2013, 110, 48–58. [Google Scholar] [CrossRef]
- Long, Y.; Ayyoob, S.; Huang, L.; Chen, J. Urban carbon accounting: An overview. Urban Clim. 2022, 44, 101195. [Google Scholar]
- Chen, X.; Meng, Q.; Shi, J.; Liu, Y.; Sun, J.; Shen, W. Regional Differences and Convergence of Carbon Emissions Intensity in Cities along the Yellow River Basin in China. Land 2022, 11, 1042. [Google Scholar] [CrossRef]
- Sun, Y.; Jia, J.; Ju, M.; Chen, C. Spatiotemporal Dynamics of Direct Carbon Emission and Policy Implication of Energy Transition for China’s Residential Consumption Sector by the Methods of Social Network Analysis and Geographically Weighted Regression. Land 2022, 11, 1039. [Google Scholar] [CrossRef]
- Chen, S.-Q.; Chen, B. Network environ perspective for urban metabolism and carbon emissions: A case study of Vienna, Austria. Environ. Sci. Technol. 2012, 46, 4498–4506. [Google Scholar] [CrossRef]
- Chen, H.; Meng, C.; Cao, Q. Measurement and Influencing Factors of Low Carbon Urban Land Use Efficiency—Based on Non-Radial Directional Distance Function. Land 2022, 11, 1052. [Google Scholar] [CrossRef]
- Zheng, H.; Ge, L. Carbon emissions reduction effects of sustainable development policy in resource-based cities from the perspective of resource dependence: Theory and Chinese experience. Resour. Policy 2022, 78, 102799. [Google Scholar] [CrossRef]
- Vaccari, F.P.; Gioli, B.; Toscano, P.; Perrone, C. Carbon dioxide balance assessment of the city of Florence (Italy), and implications for urban planning. Landsc. Urban Plan. 2013, 120, 138–146. [Google Scholar] [CrossRef]
- Wang, S.-H.; Huang, S.-L.; Huang, P.-J. Can spatial planning really mitigate carbon dioxide emissions in urban areas? A case study in Taipei, Taiwan. Landsc. Urban Plan. 2018, 169, 22–36. [Google Scholar] [CrossRef]
- Fang, K. Moving away from sustainability. Nat. Sustain. 2022, 5, 5–6. [Google Scholar] [CrossRef]
- Ye, R.; Gao, Z.; Fang, K.; Liu, K.; Chen, J. Moving from subsidy stimulation to endogenous development: A system dynamics analysis of China’s NEVs in the post-subsidy era. Technol. Forecast. Soc. Chang. 2021, 168, 120757. [Google Scholar] [CrossRef]
- Zhang, Q.; Fang, K.; Chen, J.; Liu, H.; Liu, P. The role of sectoral coverage in emission abatement costs: Evidence from China’s industrial sectors. Environ. Res. Lett. 2022, 17, 045002. [Google Scholar] [CrossRef]
- Huang, H.; Yang, H.; Chen, Y.; Chen, T.; Bai, L.; Peng, Z.R. Urban Green Space Optimization Based on a Climate Health Risk Appraisal—A case study of Beijing city, China Science Direct. Urban For. Urban Green. 2021, 62, 127154. [Google Scholar] [CrossRef]
- Huang, H.; Chen, K.; Zhang, H.; Ren, L. Planning and coordinated response mechanism of economic and ecological services in urban expansion. Econ. Res.-Ekon. Istraživanja 2022, 35, 1–21. [Google Scholar] [CrossRef]
- Zhang, Y.; Xia, L.-L.; Fath, B.-D.; Yang, Z.-F.; Yin, X.-A.; Su, M.-R.; Liu, G.-Y.; Li, Y.-X. Development of a spatially explicit network model of urban metabolism and analysis of the distribution of ecological relationships: Case study of Beijing, China. J. Clean. Prod. 2016, 112, 4306–4317. [Google Scholar] [CrossRef]
- Chen, S.-Q.; Chen, B. Determining carbon metabolism in urban areas though network environ theory. Procedia Environ. Sci. 2012, 13, 2246–2255. [Google Scholar] [CrossRef] [Green Version]
- Du, J.-S.; Fu, J.-Y.; Hao, M.-M. Analyzing the carbon metabolism of “Production-LivingEcological” space based on ecological network utility in Zhaotong, China. J. Nat. Resour. 2021, 36, 1208–1223. [Google Scholar]
- Lin, G.; Jiang, D.; Fu, J.; Cao, C.; Li, X.; Li, Z.; Huang, S. Carbon flow analysis for production-living-ecological space: A case study of Tangshan, China. Sci. Technol. Rev. 2020, 38, 107–114. [Google Scholar] [CrossRef]
- Liu, C.; Sun, W.; Li, X. Characteristics of spatiotemporal variations in coupling coordination between integrated carbon emission and sequestration index: A case study of the Yangtze River Delta, China. Ecol. Indic. 2022, 135, 108520. [Google Scholar] [CrossRef]
- Xia, C.Y.; Li, Y.; Ye, Y.M.; Shi, Z.; Liu, J.M.; Li, X.S. Analyzing urban carbon metabolism based on ecological network utility: A case study of Hangzhou City. Acta Ecol. Sin. 2018, 38, 73–85. [Google Scholar]
- Xia, L.L.; Fath, B.D.; Scharler, U.M.; Zhang, Y. Spatial variation in the ecological relationships among the components of Beijing’s carbon metabolic system. Sci. Total Environ. 2016, 544, 101–113. [Google Scholar] [CrossRef]
- Xia, C.; Li, Y.; Xu, T.; Ye, Y.; Shi, Z.; Peng, Y.; Liu, J. Quantifying the spatial patterns of urban carbon metabolism: A case study of Hangzhou, China. Ecol. Indic. 2018, 95, 474–484. [Google Scholar] [CrossRef]
- Sun, H.; Liang, H.M.; Chang, X.-L.; Cui, Q.-C.; Tao, Y. Land Use Patterns on Carbon Emission and Spatial Association in China. Econ. Geogr. 2015, 35, 154–162. [Google Scholar]
- Zhang, Q.; Tao, X.; Yang, P. Research On Carbon Emissions From Metropolis Urban Passenger Transport and Countermeasures, China Population. Resour. Environ. 2012, 22, 35–42. [Google Scholar]
- Xie, T.; Wang, J. Comparative study on carbon emissions of transportation industry. Compr. Transp. 2011, 8, 20–24. [Google Scholar]
- Min, J. A Research of the Impacts of Agricultural Products in International Market on Greenhouse Gas Emissions in the Chinese Agricultural Production. Ph.D. Dissertation, Chinese Doctoral Dissertations Full-Text Database, Nanjing Agricultural University, Nanjing, China, 2012. [Google Scholar]
- Solomon, S. ; Intergovernmental Panel on Climate Change. Climate Change the Physical Science Basis; American Geophysical Union: Boulder, CO, USA, 2007. [Google Scholar]
- Yaoqiu, K.; Ting-ping, O.; Yi, Z.; Yu, L.; Chao, L.; De-hui, W. Present Situation of Carbon Source and Sink and Potential for Increase of Carbon Sink in Guangdong Province, China Population. Resour. Environ. 2010, 20, 56–61. [Google Scholar]
- Panqin, C.; Xiaoke, W.; Limao, W. Carbon Budget and Sink Enhancement Strategies of Terrestrial Ecosystems in China; Science Press: Beijing, China, 2008. [Google Scholar]
- Gui, X.; Wang, J. X000047 China’s Terrestrial Ecosystem Carbon Budget and Countermeasures for Increasing Sinks; Book Almanac of China, Ed.; Hubei People’s Publishing House: Hubei, China, 2009; Volume 760. [Google Scholar]
- Fang, J.; Zhao, G.; Shi, P.; Chen, A. Estimation of China’s terrestrial vegetation carbon sink from 1981 to 2000. Sci. China Ser. D Earth Sci. 2007, 6, 804–812. [Google Scholar]
- Liu, G.; Fu, B.; Fang, J. Carbon dynamics of Chinese forests and its contribution to global carbon balance. Acta Ecol. Sin. 2000, 5, 733–740. [Google Scholar]
- Duan, X.-N.; Han, B.; Fei, X.K. Carbon sequestration and its potential by wetland ecosystems in China. Acta Ecol. 2008, 2, 463–469. [Google Scholar]
- Walsh, J.J. Importance of continental margins in the marine biogeochemical cycling of carbon and nitrogen. Nature 1991, 350, 53–55. [Google Scholar] [CrossRef]
- Li, Z.C.; Xu, J.Y.; Wu, C.Y.; Zhang, Y. A review of studies using ecological network analysis. Acta Ecol. Sin. 2011, 31, 5396–5405. [Google Scholar]
- Ayres, R.U.; Kneese, A.V. Production, consumption and externalities. Am. Econ. Rev. 1969, 59, 282–297. [Google Scholar]
- Yang, S.; Fath, B.; Chen, B. Ecological network analysis of embodied particulate matter 2.5—A case study of Beijing. Appl. Energy 2016, 184, 882–888. [Google Scholar] [CrossRef]
- Ukidwe, N.R.; Bakshi, B.R. Resource intensities of chemical industry sectors in the United States via input-output network models. Comput. Chem. Eng. 2008, 32, 2050–2064. [Google Scholar] [CrossRef]
- Chen, L.; Wang, R.S.; Yang, J.X.; Shi, Y.L. Structural complexity analysis for industrial ecosystems: A case study on LuBei industrial ecosystem in China. Ecol. Complex. 2010, 7, 179–187. [Google Scholar] [CrossRef]
- Lu, Y.; Chen, B.; Hayat, T.; Alsaedi, A. Communal carbon metabolism: Methodology and case study. J. Clean. Prod. 2015, 163, S315–S321. [Google Scholar] [CrossRef]
- Bolin, B. Changes of land biota and their importance for the carbon cycle. Science 1977, 196, 613–615. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhang, Y.; Yang, Z.F.; Fath, B.D. Ecological network analysis of an urban water metabolic system: Model development and a case study for Beijing. Sci. Total Environ. 2010, 408, 4702–4711. [Google Scholar] [CrossRef]
- Fang, D.; Chen, B. Ecological network analysis for a virtual water network. Environ. Sci. Technol. 2015, 49, 6722–6730. [Google Scholar] [CrossRef] [PubMed]
- Shaikh, F.; Ji, Q.; Fan, Y. Evaluating China’s natural gas supply security based on ecological network analysis. J. Clean. Prod. 2016, 139, 1196–1206. [Google Scholar] [CrossRef]
- Finn, J.T. Measures of ecosystem structure and function derived from analysis of flows. J. Theor. Biol. 1976, 56, 363–380. [Google Scholar] [CrossRef]
- Wu, Z.-Q.; Li, X. Design Thinking Innovation in the Planning of Beijing City Sub-Center. Urban Plan. Forum. 2019, S1, 138–141. [Google Scholar] [CrossRef]
- Li, Y.-X.; Wang, K.-Y. Experience and Implications of Domestic and Foreign Secondary City Center Construction for Beijing Tongzhou. China Anc. City. 2018, 6, 10–18. [Google Scholar] [CrossRef]
- Finn, J.T. Flow analysis of models of the hubbard brook ecosystem. Ecology 1980, 61, 562–571. [Google Scholar] [CrossRef]
- Zhong, H.-X.; Li, F.-X. Land Policy Selection Based on the Principle of Social Utility Maximization in Beijing. China Land Sci. 2009, 23, 67–71. [Google Scholar]
Item | Carbon Emission Coefficient | Unit | Code |
---|---|---|---|
Raw coal | 0.7559 | kg/kgce | F1 |
Coke | 0.8550 | kg/kgce | F2 |
Fuel oil | 0.6185 | kg/kgce | F3 |
Gasoline | 0.5538 | kg/kgce | F4 |
Diesel oil | 0.5921 | kg/kgce | F5 |
Liquified petroleum gas | 0.5042 | kg/kgce | F6 |
Natural gas | 0.4483 | kg/kgce | F7 |
Family car | 22.3 | kg/100 km | K1 |
Suburban passenger car | 88.1 | kg/100 km | K2 |
Motorbike | 6.7 | kg/100 km | K3 |
Moped | 6.7 | kg/100 km | K4 |
Taxi | 28.3 | kg/100 km | K5 |
Passenger transport and freight transport of highway | 0.0556 | Kg·t−1·km−1 | K6 |
Human breathing | 79 | kg·a−1·per−1 | K7 |
Agricultural machinery | 0.18 | kg/kw | K8 |
Irrigation | 6.7 | kg/hm2 | K9 |
Fertilizer | 0.858 | kg/kg | K10 |
Pigs and sheep breathing | 82 | kg·a−1·h−1 | K11 |
Cow breathing | 796 | kg·a−1·h−1 | K12 |
Land Type | Coefficient of Carbon Sequestration | Unit |
---|---|---|
Cultivated land (CL) | 0.0007 | kgC/(m2·a) |
Forest land (FL) | 0.0657 | kgC/(m2·a) |
Water and wetland (WL) | 0.0402 | kgC/(m2·a) |
Grassland (GL) | 0.0206 | kgC/(m2·a) |
Matrix Notation | Positive + | Neutral 0 | Negative − |
---|---|---|---|
Positive + | (+,+) mutualism | (+,0) symbiotic | (+,−) snatch |
Neutral 0 | (0,+) symbiotic | (0,0) neutrality | (0,−) amensalism |
Negative − | (−,+) limitation | (−,0) control | (−,−) competition |
Exchange Value (×106 kgc/a) | 2014–2016 | 2016–2018 | 2018–2020 | |||
---|---|---|---|---|---|---|
Transitions | Direction | Transitions | Direction | Transitions | Direction | |
Beneficial carbon flow | 113.86 | + | 35.13 | + | 833.62 | + |
Harmful carbon flow | −168.48 | − | −82.48 | − | −456.14 | − |
Net carbon flow | −54.62 | − | −47.35 | − | 377.48 | + |
B1 (GL,FL) | — | — | 0.01 | GL→FL | 0.04 | GL→FL |
B2 (R&TL,GL) | — | — | — | — | 22.39 | R&TL→GL |
B3 (R&TL,CL) | 0.08 | R&TL→CL | 0.9 | R&TL→CL | 11.89 | R&TL→CL |
B4 (R&TL,FL) | — | — | 0.5 | R&TL→FL | 66.34 | R&TL→FL |
B5 (R&TL,WL) | 0.01 | R&TL→WL | 0.8 | R&TL→WL | 19.71 | R&TL→WL |
B6 (CL,GL) | — | — | — | — | 0.27 | CL→GL |
B7 (CL,FL) | 0.15 | CL→FL | 0.85 | CL→FL | 29.74 | CL→FL |
B8 (CL,WL) | — | — | 0.03 | CL→WL | 0.63 | CL→WL |
B9 (IL,GL) | — | — | — | — | 16.58 | IL→GL |
B10 (IL,R&TL) | 4.3 | IL→R&TL | — | — | — | — |
B11 (IL,CL) | — | — | 2.36 | IL→CL | 4.16 | IL→CL |
B12 (IL,FL) | 0.14 | IL→FL | 9.72 | IL→FL | 58.66 | IL→FL |
B13 (IL,WL) | — | — | 0.15 | IL→WL | 1.16 | IL→WL |
B14 (OCL,GL) | — | — | 0.03 | OCL→GL | 210.92 | OCL→GL |
B15 (OCL,R&TL) | 33.43 | OCL→R&TL | 0.21 | OCL→R&TL | 29.25 | OCL→R&TL |
B16 (OCL,CL) | 11.2 | OCL→CL | 4.13 | OCL→CL | 59.69 | OCL→CL |
B17 (OCL,IL) | 61.47 | OCL→IL | 0.69 | OCL→IL | 1.56 | OCL→IL |
B18 (OCL,FL) | 2.41 | OCL→FL | 14.13 | OCL→FL | 265.44 | OCL→FL |
B19 (OCL,WL) | 0.67 | OCL→WL | 0.55 | OCL→WL | 28.96 | OCL→WL |
B20 (WL,FL) | — | — | 0.02 | WL→FL | 0.35 | WL→FL |
B21 (R&TL,IL) | — | — | 0.05 | R&TL→IL | 5.88 | R&TL→IL |
H1 (GL,R&TL) | — | — | — | — | −0.2 | GL→R&TL |
H2 (GL,IL) | −0.13 | GL→R&TL | −0.04 | GL→IL | −0.04 | GL→IL |
H3 (GL,OCL) | −0.28 | GL→OCL | −0.13 | GL→OCL | −0.34 | GL→OCL |
H4 (R&TL,IL) | −1.7 | R&TL→IL | — | — | — | — |
H5 (R&TL,OCL) | −18.21 | R&TL→OCL | −0.9 | R&TL→OCL | −7.42 | R&TL→OCL |
H6 (CL,R&TL) | −0.31 | CL→R&TL | −12.36 | CL→R&TL | −79.41 | CL→R&TL |
H7 (CL,IL) | −10.98 | CL→IL | −5.33 | CL→IL | −25.98 | CL→IL |
H8 (CL,OCL) | −38.75 | CL→OCL | −26.63 | CL→OCL | −107.57 | CL→OCL |
H9 (IL,OCL) | −67.72 | IL→OCL | −3.53 | IL→OCL | −46.85 | IL→OCL |
H10 (FL,GL) | — | — | — | — | −0.23 | — |
H11 (FL,CL) | −0.08 | FL→CL | −0.03 | FL→CL | −0.66 | FL→CL |
H12 (FL,R&TL) | −0.2 | FL→R&TL | −4.23 | FL→R&TL | −38.38 | FL→R&TL |
H13 (FL,IL) | −2.94 | FL→IL | −1.67 | FL→IL | −6.31 | FL→IL |
H14 (FL,WL) | — | — | — | — | −0.06 | FL→WL |
H15 (FL,OCL) | −15.46 | FL→OCL | −17.85 | FL→OCL | −55.78 | FL→OCL |
H16 (WL,GL) | — | — | — | — | −0.07 | WL→GL |
H17 (WL,CL) | −0.03 | WL→CL | −0.04 | WL→CL | −0.1 | WL→CL |
H18 (WL,IL) | −2.72 | WL→IL | −0.62 | WL→IL | −6.67 | WL→IL |
H19 (WL,R&TL) | −0.21 | WL→R&TL | −1.76 | WL→R&TL | −29.7 | WL→R&TL |
H20 (WL,OCL) | −8.76 | WL→OCL | −7.35 | WL→OCL | −43.19 | WL→OCL |
H21 (IL,R&TL) | — | — | −0.01 | IL→R&TL | −7.18 | IL→R&TL |
2014–2016 | CL | FL | GL | WL | R&TL | IL | OCL |
CL | − | − | − | + | − | + | |
FL | − | − | − | + | − | + | |
GL | − | − | − | + | + | + | |
WL | − | − | − | + | − | + | |
R&TL | + | − | + | − | − | − | |
IL | − | − | − | − | + | + | |
OCL | − | − | − | − | + | − | |
2016–2018 | CL | FL | GL | WL | R&TL | IL | OCL |
CL | − | − | − | + | + | + | |
FL | − | − | − | + | − | + | |
GL | − | − | − | − | + | + | |
WL | − | − | − | + | − | + | |
R&TL | − | − | + | − | − | − | |
IL | − | − | − | − | − | + | |
OCL | − | − | − | − | − | − | |
2018–2020 | CL | FL | GL | WL | R&TL | IL | OCL |
CL | − | + | − | + | + | + | |
FL | − | + | − | + | − | + | |
GL | − | − | + | + | − | + | |
WL | − | − | + | + | − | + | |
R&TL | − | − | + | − | + | − | |
IL | − | − | + | − | − | + | |
OCL | − | − | + | − | + | − |
Land Use Type | CL | FL | GL | WL | R&TL | IL | OCL |
---|---|---|---|---|---|---|---|
Competition relationships | 9 | 11 | 6 | 11 | 2 | 8 | 1 |
Exploitation and control relationships | 9 | 7 | 8 | 6 | 13 | 10 | 16 |
Mutualism relationships | 1 | 0 | 4 | 1 | 3 | 0 | 1 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Qu, Y.; Zhang, J.; Xu, C.; Gao, Y.; Zheng, S.; Xia, M. Analysis of Spatial Carbon Metabolism by ENA: A Case Study of Tongzhou District, Beijing. Land 2022, 11, 1573. https://doi.org/10.3390/land11091573
Qu Y, Zhang J, Xu C, Gao Y, Zheng S, Xia M. Analysis of Spatial Carbon Metabolism by ENA: A Case Study of Tongzhou District, Beijing. Land. 2022; 11(9):1573. https://doi.org/10.3390/land11091573
Chicago/Turabian StyleQu, Yongchao, Jian Zhang, Chongyuan Xu, Yichao Gao, Shanwen Zheng, and Meiling Xia. 2022. "Analysis of Spatial Carbon Metabolism by ENA: A Case Study of Tongzhou District, Beijing" Land 11, no. 9: 1573. https://doi.org/10.3390/land11091573
APA StyleQu, Y., Zhang, J., Xu, C., Gao, Y., Zheng, S., & Xia, M. (2022). Analysis of Spatial Carbon Metabolism by ENA: A Case Study of Tongzhou District, Beijing. Land, 11(9), 1573. https://doi.org/10.3390/land11091573