Smart Cities Are More Populous: Evidence from China
Abstract
:1. Introduction
2. Background and Hypotheses
2.1. Brief Description of the Smart City and Its Application in China
2.2. Literature Review and Hypotheses
2.2.1. Literature of Smart Cities
2.2.2. Environment Effect and Population Outflow from Cities
2.2.3. Internet Effect and Population Inflow to Cities
2.2.4. Hypotheses
3. Methodology
3.1. Data Sources
3.2. Variable Selection
3.2.1. Outcome Variables
3.2.2. Explanatory Variable
3.2.3. Selection Concerns
3.2.4. Control Variables
3.3. Empirical Models
3.3.1. Benchmark Model
3.3.2. Robustness Check Models
3.3.3. Mechanism Models
3.3.4. Heterogeneity Analysis Model
4. Results
4.1. Baseline Results
4.2. Robustness Check
4.3. Mechanisms
5. Discussion
5.1. Heterogeneous Analysis
5.2. Analysis of Benefits
5.3. Smart Cities and Digitalization during COVID-19
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
1 | Related report link: https://www.greenpeace.org.cn/pm25-city-ranking-2015/#_ftn1, (accessed on 20 September 2023). |
2 | Related report link: https://www.sohu.com/a/211077461_800248, (accessed on 20 September 2023). |
3 | Related report link: https://www.cnnic.net.cn/hlwfzyj/hlwxzbg/hlwtjbg/201803/t20180305_70249.htm, (accessed on 14 November 2022). |
4 | Related report link: https://www.wangsu.com/report/list/DEVREPORT, (accessed on 23 November 2022). |
5 | Related report link: https://www.ndrc.gov.cn/xxgk/jd/wsdwhfz/202005/t20200515_1228150.html, (accessed on 20 September 2023). |
6 | Related report link: https://www.washingtonpost.com/news/energy-environment/wp/2016/05/12/who-global-air-pollution-is-worsening-and-poor-countries-are-being-hit-the-hardest/, (accessed on 20 September 2023). |
References
- Yu, Y.; Zhang, N. Does smart city policy improve energy efficiency? Evidence from a quasi-natural experiment in China. J. Clean. Prod. 2019, 229, 501–512. [Google Scholar] [CrossRef]
- Jiang, H.; Jiang, P.; Wang, D.; Wu, J. Can smart city construction facilitate green total factor productivity? A quasi-natural experiment based on China’s pilot smart city. Sustain. Cities Soc. 2021, 69, 102809. [Google Scholar] [CrossRef]
- Su, Y.; Fan, D. Smart cities and sustainable development. Reg. Stud. 2023, 57, 722–738. [Google Scholar] [CrossRef]
- O’Brien, R.; O’Brien, R.R. Global Financial Integration: The End of Geography; Council on Foreign Relations: Council on Foreign Relations: New York, NY, USA, 1992. [Google Scholar]
- Cairncross, F. The Death of Distance: How the Communications Revolution Will Change Our Lives; Harvard Business School: Boston, MA, USA, 1997. [Google Scholar]
- Drucker, P. From capitalism to knowledge society. Knowl. Econ. 1998, 12, 15–34. [Google Scholar]
- Tranos, E.; Ioannides, Y.M. ICT and cities revisited. Telemat. Inform. 2020, 55, 101439. [Google Scholar] [CrossRef]
- Zhang, T.; Sun, B.; Li, W.; Zhou, H. Information communication technology and manufacturing decentralisation in China. Pap. Reg. Sci. 2022, 101, 619–637. [Google Scholar] [CrossRef]
- Morgan, K. The exaggerated death of geography: Learning, proximity and territorial innovation systems. J. Econ. Geogr. 2004, 4, 3–21. [Google Scholar] [CrossRef]
- Craig, S.G.; Hoang, E.C.; Kohlhase, J.E. Does closeness in virtual space complement urban space? Socio-Econ. Plan. Sci. 2017, 58, 22–29. [Google Scholar] [CrossRef]
- Rietveld, P.; Vickerman, R. Transport in regional science: The “death of distance” is premature. Pap. Reg. Sci. 2004, 83, 229–248. [Google Scholar] [CrossRef]
- Leamer, E.E.; Storper, M. The economic geography of the internet age. J. Int. Bus. Stud. 2001, 32, 641–665. [Google Scholar] [CrossRef]
- Malecki, E.J. The Economic Geography of the Internet’s Infrastructure. Econ. Geogr. 2002, 78, 399–424. [Google Scholar] [CrossRef]
- Blum, B.S.; Goldfarb, A. Does the internet defy the law of gravity? J. Int. Econ. 2006, 70, 384–405. [Google Scholar] [CrossRef]
- Moriset, B.; Malecki, E.J. Organization versus space: The paradoxical geographies of the digital economy. Geogr. Compass 2009, 3, 256–274. [Google Scholar] [CrossRef]
- Tranos, E.; Nijkamp, P. The death of distance revisited: Cyber-place, physical and relational proximities. J. Reg. Sci. 2013, 53, 855–873. [Google Scholar] [CrossRef]
- Alcácer, J.; Cantwell, J.; Piscitello, L. Internationalization in the information age: A new era for places, firms, and international business networks? J. Int. Bus. Stud. 2016, 47, 499–512. [Google Scholar] [CrossRef]
- McCoy, D.; Lyons, S.; Morgenroth, E.; Palcic, D.; Allen, L. The impact of broadband and other infrastructure on the location of new business establishments. J. Reg. Sci. 2018, 58, 509–534. [Google Scholar] [CrossRef]
- Autio, E.; Nambisan, S.; Thomas, L.D.W.; Wright, M. Digital affordances, spatial affordances, and the genesis of entrepreneurial ecosystems. Strateg. Entrep. J. 2018, 12, 72–95. [Google Scholar] [CrossRef]
- Lu, H.; Yue, A.; Chen, H.; Long, R. Could smog pollution lead to the migration of local skilled workers? Evidence from the jing-jin-ji region in China. Resour. Conserv. Recycl. 2018, 130, 177–187. [Google Scholar] [CrossRef]
- Liu, Z.; Yu, L. Stay or leave? The role of air pollution in urban migration choices. Ecol. Econ. 2020, 177, 106780. [Google Scholar] [CrossRef]
- Liu, X.; Dong, X.; Li, S.; Ding, Y.; Zhang, M. Air pollution and high human capital population migration: An empirical study based on 35 major cities in China. Sustain. Prod. Consum. 2021, 27, 643–652. [Google Scholar] [CrossRef]
- Chen, S.; Oliva, P.; Zhang, P. The effect of air pollution on migration: Evidence from China. J. Dev. Econ. 2022, 156, 102833. [Google Scholar] [CrossRef]
- Chu, Z.; Chen, X.; Cheng, M.; Zhao, X.; Wang, Z. Booming house prices: Friend or foe of innovative firms? J. Technol. Transf. 2023. [Google Scholar] [CrossRef]
- Zheng, S.; Duan, Y.; Ward, M.R. The effect of broadband internet on divorce in China. Technol. Forecast. Soc. Chang. 2019, 139, 99–114. [Google Scholar] [CrossRef]
- Zhang, J.; Cheng, M.; Yu, N. Internet use and lower life satisfaction: The mediating effect of environmental quality perception. Ecol. Econ. 2020, 176, 106725. [Google Scholar] [CrossRef]
- Liu, J.; Cheng, M.; Wei, X.; Yu, N.N. The internet-driven sexual revolution in China. Technol. Forecast. Soc. Chang. 2020, 153, 119911. [Google Scholar] [CrossRef]
- Appio, F.P.; Lima, M.; Paroutis, S. Understanding smart cities: Innovation ecosystems, technological advancements, and societal challenges. Technol. Forecast. Soc. Chang. 2019, 142, 1–14. [Google Scholar] [CrossRef]
- Caragliu, A.; Del Bo, C.F. Smart innovative cities: The impact of smart city policies on urban innovation. Technol. Forecast. Soc. Chang. 2019, 142, 373–383. [Google Scholar] [CrossRef]
- Gaspar, J.; Glaeser, E.L. Information technology and the future of cities. J. Urban Econ. 1998, 43, 136–156. [Google Scholar] [CrossRef]
- Sinai, T.; Waldfogel, J. Geography and the internet: Is the internet a substitute or a complement for cities? J. Urban Econ. 2004, 56, 1–24. [Google Scholar] [CrossRef]
- Caragliu, A.; Bo, C.D.; Nijkamp, P. Smart cities in Europe. J. Urban Technol. 2011, 18, 65–82. [Google Scholar] [CrossRef]
- Batty, M.; Axhausen, K.W.; Giannotti, F.; Pozdnoukhov, A.; Bazzani, A.; Wachowicz, M.; Ouzounis, G.; Portugali, Y. Smart cities of the future. Eur. Phys. J. Spec. Top. 2012, 214, 481–518. [Google Scholar] [CrossRef]
- Neirotti, P.; De Marco, A.; Cagliano, A.C.; Mangano, G.; Scorrano, F. Current trends in Smart City initiatives: Some stylised facts. Cities 2014, 38, 25–36. [Google Scholar] [CrossRef]
- Chu, Z.; Cheng, M.; Yu, N.N. A smart city is a less polluted city. Technol. Forecast. Soc. Chang. 2021, 172, 121037. [Google Scholar] [CrossRef]
- Albino, V.; Berardi, U.; Dangelico, R.M. Smart cities: Definitions, dimensions, performance, and initiatives. J. Urban Technol. 2015, 22, 3–21. [Google Scholar] [CrossRef]
- Alawadhi, S.; Aldama-Nalda, A.; Chourabi, H.; Gil-Garcia, J.R.; Leung, S.; Mellouli, S.; Nam, T.; Pardo, T.A.; Scholl, H.J.; Walker, S. Building understanding of smart city initiatives. In International Conference on Electronic Government; Springer: Berlin/Heidelberg, Germany, 2012; pp. 40–53. [Google Scholar]
- Washburn, D.; Sindhu, U.; Balaouras, S.; Dines, R.A.; Hayes, N.; Nelson, L.E. Helping CIOs understand “smart city” initiatives. Growth. 2009, 17, 1–17. [Google Scholar]
- Lim, C.; Kim, K.-J.; Maglio, P.P. Smart cities with big data: Reference models, challenges, and considerations. Cities 2018, 82, 86–99. [Google Scholar] [CrossRef]
- Perera, C.; Zaslavsky, A.; Christen, P.; Georgakopoulos, D. Sensing as a service model for smart cities supported by Internet of Things. Trans. Emerg. Telecommun. Technol. 2014, 25, 81–93. [Google Scholar] [CrossRef]
- Jamil, M.S.; Jamil, M.A.; Mazhar, A.; Ikram, A.; Ahmed, A.; Munawar, U. Smart environment monitoring system by employing wireless sensor networks on vehicles for pollution free smart cities. Procedia Eng. 2015, 107, 480–484. [Google Scholar] [CrossRef]
- Ishida, T. Digital city kyoto. Commun. ACM 2002, 45, 76–81. [Google Scholar] [CrossRef]
- Cugurullo, F. How to build a sandcastle: An analysis of the genesis and development of masdar city. J. Urban Technol. 2013, 20, 23–37. [Google Scholar] [CrossRef]
- Lee, J.H.; Phaal, R.; Lee, S.-H. An integrated service-device-technology roadmap for smart city development. Technol. Forecast. Soc. Chang. 2013, 80, 286–306. [Google Scholar] [CrossRef]
- Schaffers, H.; Komninos, N.; Pallot, M.; Trousse, B.; Nilsson, M.; Oliveira, A. Smart cities and the future internet: Towards cooperation frameworks for open innovation. In The Future Internet Assembly; Springer: Berlin/Heidelberg, Germany, 2011; pp. 431–446. [Google Scholar]
- Rosen, S. Wage-based indexes of urban quality of life. In Current Issues in Urban Economics; The Johns Hopkins University Press: Baltimore, MD, USA, 1979; pp. 74–104. [Google Scholar]
- Roback, J. Wages, rents, and the quality of life. J. Polit. Econ. 1982, 90, 1257–1278. [Google Scholar] [CrossRef]
- Brunekreef, B.; Holgate, S.T. Air pollution and health. Lancet 2002, 360, 1233–1242. [Google Scholar] [CrossRef] [PubMed]
- Chay, K.Y.; Greenstone, M. The impact of air pollution on infant mortality: Evidence from geographic variation in pollution shocks induced by a recession. Q. J. Econ. 2003, 118, 1121–1167. [Google Scholar] [CrossRef]
- Graff Zivin, J.; Neidell, M. The impact of pollution on worker productivity. Am. Econ. Rev. 2012, 102, 3652–3673. [Google Scholar] [CrossRef] [PubMed]
- Levinson, A. Valuing public goods using happiness data: The case of air quality. J. Public Econ. 2012, 96, 869–880. [Google Scholar] [CrossRef]
- Saha, N.; Rahman, M.S.; Ahmed, M.B.; Zhou, J.L.; Ngo, H.H.; Guo, W. Industrial metal pollution in water and probabilistic assessment of human health risk. J. Environ. Manag. 2017, 185, 70–78. [Google Scholar] [CrossRef] [PubMed]
- Song, Y.; Li, M.; Zhang, M.; Sun, X. Study on the impact of air pollution control on urban residents’ happiness from microscopic perspective. J. Clean. Prod. 2019, 229, 1307–1318. [Google Scholar] [CrossRef]
- Sjaastad, L.A. The costs and returns of human migration. J. Polit. Econ. 1962, 70, 80–93. [Google Scholar] [CrossRef]
- Tiebout, C.M. A pure theory of local expenditures. J. Polit. Econ. 1956, 64, 416–424. [Google Scholar] [CrossRef]
- Banzhaf, H.S.; Walsh, R.P. Do people vote with their feet? An empirical test of tiebout’s mechanism. Am. Econ. Rev. 2008, 98, 843–863. [Google Scholar] [CrossRef]
- Qin, Y.; Zhu, H. Run away? Air pollution and emigration interests in China. J. Popul. Econ. 2018, 31, 235–266. [Google Scholar] [CrossRef]
- Heblich, S.; Trew, A.; Zylberberg, Y. East-side story: Historical pollution and persistent neighborhood sorting. J. Polit. Econ. 2021, 129, 1508–1552. [Google Scholar] [CrossRef]
- Allen, J. Information and subsequent migration: Further analysis and additional evidence. South. Econ. J. 1979, 45, 1274–1284. [Google Scholar] [CrossRef]
- Boyd, M. Family and personal networks in international migration: Recent developments and new agendas. Int. Migr. Rev. 1989, 23, 638–670. [Google Scholar] [CrossRef] [PubMed]
- DaVanzo, J. Repeat migration, information costs, and location-specific capital. Popul. Environ. 1981, 4, 45–73. [Google Scholar] [CrossRef]
- Goldfarb, A.; Tucker, C. Digital economics. J. Econ. Lit. 2019, 57, 3–43. [Google Scholar] [CrossRef]
- Shah, D.V.; Kwak, N.; Holbert, L.R. “Connecting” and “disconnecting” with civic life: Patterns of internet use and the production of social capital. Polit. Commun. 2001, 18, 141–162. [Google Scholar] [CrossRef]
- Kraut, R.; Kiesler, S.; Boneva, B.; Cummings, J.; Helgeson, V.; Crawford, A. Internet paradox revisited. J. Soc. Issues 2002, 58, 49–74. [Google Scholar] [CrossRef]
- Hjorth, L.; Qiu, J.L.; Zhou, B. The social in the mobile: QQ as cross-generational media in China. In The Routledge Companion to Mobile Media; Routledge: New York, NY, USA, 2014; pp. 315–323. [Google Scholar]
- Zhao, S. Do internet users have more social ties? A call for differentiated analyses of internet use. J. Comput.-Mediat. Commun. 2006, 11, 844–862. [Google Scholar] [CrossRef]
- Manago, A.M.; Taylor, T.; Greenfield, P.M. Me and my 400 friends: The anatomy of college students’ Facebook networks, their communication patterns, and well-being. Dev. Psychol. 2012, 48, 369–380. [Google Scholar] [CrossRef] [PubMed]
- Greenfield, P.M. Linking social change and developmental change: Shifting pathways of human development. Dev. Psychol. 2009, 45, 401–418. [Google Scholar] [CrossRef] [PubMed]
- Goggin, G. Facebook’s mobile career. New Media Soc. 2014, 16, 1068–1086. [Google Scholar] [CrossRef]
- Palm, R.; Danis, M. The internet and home purchase. Tijdschr. Voor Econ. En Soc. Geogr. 2002, 93, 537–547. [Google Scholar] [CrossRef]
- Kuhn, P.; Mansour, H. Is Internet Job Search Still Ineffective? Econ. J. 2014, 124, 1213–1233. [Google Scholar] [CrossRef]
- Thulin, E.; Vilhelmson, B. Virtual practices and migration plans: A qualitative study of urban young adults. Popul. Space Place 2014, 20, 389–401. [Google Scholar] [CrossRef]
- Vilhelmson, B.; Thulin, E. Does the internet encourage people to move? Investigating Swedish young adults’ internal migration experiences and plans. Geoforum 2013, 47, 209–216. [Google Scholar] [CrossRef]
- Thulin, E.; Vilhelmson, B. The internet and desire to move: The role of virtual practices in the inspiration phase of migration. Tijdschr. Voor Econ. En Soc. Geogr. 2016, 107, 257–269. [Google Scholar] [CrossRef]
- Winkler, H. How does the internet affect migration decisions? Appl. Econ. Lett. 2017, 24, 1194–1198. [Google Scholar] [CrossRef]
- van Dijk, J.A.G.M. Digital divide research, achievements and shortcomings. Poetics 2006, 34, 221–235. [Google Scholar] [CrossRef]
- Wei, K.-K.; Teo, H.-H.; Chan, H.C.; Tan, B.C.Y. Conceptualizing and testing a social cognitive model of the digital divide. Inf. Syst. Res. 2011, 22, 170–187. [Google Scholar] [CrossRef]
- Pruulmann-Vengerfeldt, P. Exploring social theory as a framework for social and cultural measurements of the information society. Inf. Soc. 2006, 22, 303–310. [Google Scholar] [CrossRef]
- Steyaert, J. Inequality and the digital divide: Myths and realities. In Advocacy, Activism and the Internet; Oxford University Press: Oxfordshire, UK, 2002. [Google Scholar]
- Jia, R. The legacies of forced freedom: China’s treaty ports. Rev. Econ. Stat. 2014, 96, 596–608. [Google Scholar] [CrossRef]
- Dohmen, T.J. Housing, mobility and unemployment. Reg. Sci. Urban Econ. 2005, 35, 305–325. [Google Scholar] [CrossRef]
- Black, D.; Henderson, V. A theory of urban growth. J. Polit. Econ. 1999, 107, 252–284. [Google Scholar] [CrossRef]
- Krugman, P. Increasing Returns and Economic Geography. J. Polit. Econ. 1991, 99, 483–499. [Google Scholar] [CrossRef]
- Winters, J.V. Why are smart cities growing? Who moves and who stays. J. Reg. Sci. 2011, 51, 253–270. [Google Scholar] [CrossRef]
- Dahlberg, M.; Eklöf, M.; Fredriksson, P.; Jofre-Monseny, J. Estimating preferences for local public services using migration data. Urban Stud. 2012, 49, 319–336. [Google Scholar] [CrossRef]
- Angrist, J.D.; Pischke, J.S. Mostly Harmless Econometrics: An Empiricist’s Companion, 1st ed.; Princeton University Press: Princeton, NJ, USA, 2009. [Google Scholar]
- Clarke, D.; Tapia-Schythe, K. Implementing the panel event study. Stata J. 2021, 21, 853–884. [Google Scholar] [CrossRef]
- Alesina, A.; Zhuravskaya, E. Segregation and the quality of government in a cross section of countries. Am. Econ. Rev. 2011, 101, 1872–1911. [Google Scholar] [CrossRef]
- Koomson, I.; Danquah, M. Financial inclusion and energy poverty: Empirical evidence from Ghana. Energy Econ. 2021, 94, 105085. [Google Scholar] [CrossRef]
- Ma, Z.; Hu, X.; Sayer, A.M.; Levy, R.; Zhang, Q.; Xue, Y.; Tong, S.; Bi, J.; Huang, L.; Liu, Y. Satellite-based spatiotemporal trends in pm2.5 concentrations: China, 2004-2013. Environ. Health Perspect. 2016, 124, 184–192. [Google Scholar] [CrossRef]
- Chen, Z.; Yu, B.; Yang, C.; Zhou, Y.; Yao, S.; Qian, X.; Wang, C.; Wu, B.; Wu, J. An extended time series (2000–2018) of global NPP-VIIRS-like nighttime light data from a cross-sensor calibration. Earth Syst. Sci. Data 2021, 13, 889–906. [Google Scholar] [CrossRef]
- Hjort, J.; Sølvsten, M.; Wüst, M. Universal investment in infants and long-run health: Evidence from Denmark’s 1937 home visiting program. Am. Econ. J. Appl. Econ. 2017, 9, 78–104. [Google Scholar] [CrossRef]
SCP | |||
---|---|---|---|
(1) | (2) | (3) | |
Population | 1.26 × 10−4 | −3.06 × 10−4 | −2.28 × 10−4 |
(0.000) | (0.000) | (0.000) | |
Gdp | 8.97 × 10−5 | 9.58 × 10−5 | |
(0.000) | (0.000) | ||
Income | 0.074 | 0.084 | |
(0.054) | (0.054) | ||
Busers | 0.002 | 0.001 | |
(0.002) | (0.002) | ||
Musers | −0.000 | −0.000 | |
(0.000) | (0.000) | ||
SO2 | 0.008 | 0.007 | |
(0.006) | (0.006) | ||
PM2.5 | 0.008 | 0.010 | |
(0.006) | (0.006) | ||
SEZ | −0.175 | ||
(0.292) | |||
RC | 0.290 | ||
(0.249) | |||
Observations | 156 | 156 | 156 |
R2 | 0.004 | 0.277 | 0.295 |
Pop | Log (Pop) | |||||
---|---|---|---|---|---|---|
(1) | (2) | (3) | (4) | (5) | (6) | |
SCP | 30.088 *** | 19.976 *** | 19.976 *** | 0.061 *** | 0.044 *** | 0.044 *** |
(3.738) | (3.855) | (3.753) | (0.010) | (0.011) | (0.012) | |
Hprice | 38.388 *** | 38.388 *** | 0.120 *** | 0.120 *** | ||
(9.343) | (11.473) | (0.028) | (0.033) | |||
Income | −1.925 | −1.925 | −0.007 | −0.007 | ||
(1.606) | (1.901) | (0.005) | (0.006) | |||
Ln_gdp | 15.076 *** | 15.076 ** | 0.067 *** | 0.067 *** | ||
(4.573) | (7.346) | (0.016) | (0.022) | |||
Road | 1.099 *** | 1.099 *** | 0.002 *** | 0.002 *** | ||
(0.245) | (0.251) | (0.001) | (0.001) | |||
Ln_University | 2.525 *** | 2.525 *** | 0.001 | 0.001 | ||
(0.563) | (0.487) | (0.001) | (0.001) | |||
Grland | 22.137 *** | 22.137 *** | 0.063 *** | 0.063 *** | ||
(5.029) | (5.039) | (0.019) | (0.019) | |||
Ln_Hospital | 9.259 *** | 9.259 *** | 0.025 *** | 0.025 ** | ||
(2.411) | (2.776) | (0.010) | (0.012) | |||
Control | No | Yes | Yes | No | Yes | Yes |
Year fixed effect | Yes | Yes | Yes | Yes | Yes | Yes |
City fixed effect | Yes | Yes | Yes | Yes | Yes | Yes |
City cluster | No | Yes | No | No | Yes | No |
Province cluster | No | No | Yes | No | No | Yes |
Observations | 2028 | 2028 | 2028 | 2028 | 2028 | 2028 |
R2 | 0.090 | 0.172 | 0.172 | 0.078 | 0.119 | 0.119 |
Log (Densi) | Log (Light) | Log (Pop) | |||
---|---|---|---|---|---|
PSM-DID | |||||
(1) | (2) | (3) | (4) | (5) | |
SCP | 0.043 *** | 0.084 ** | 0.040 *** | 0.046 *** | |
(0.009) | (0.037) | (0.010) | (0.011) | ||
Pre_5 | −0.023 | ||||
(0.025) | |||||
Pre_4 | −0.016 | ||||
(0.025) | |||||
Pre_3 | −0.002 | ||||
(0.025) | |||||
Pre_2 | −0.004 | ||||
(0.025) | |||||
Current | −0.002 | ||||
(0.025) | |||||
Post_1 | 0.028 | ||||
(0.025) | |||||
Post_2 | 0.032 | ||||
(0.025) | |||||
Post_3 | 0.037 | ||||
(0.025) | |||||
Post_4 | 0.079 *** | ||||
(0.025) | |||||
Post_5 | 0.079 *** | ||||
(0.025) | |||||
Control | Yes | Yes | Yes | Yes | Yes |
Year fixed effect | Yes | Yes | Yes | Yes | Yes |
City fixed effect | Yes | Yes | Yes | Yes | Yes |
Observations | 2028 | 2028 | 2028 | 1584 | 2028 |
R2 | 0.0513 | 0.649 | 0.127 | 0.0770 | 0.130 |
Environment | Internet User | |||
---|---|---|---|---|
SO2 | PM2.5 | Buser | Muser | |
(3) | (4) | (1) | (2) | |
SCP | −2.728 *** | −0.991 ** | 0.002 *** | 0.042 *** |
(0.487) | (0.336) | (0.0004) | (0.011) | |
Control | Yes | Yes | Yes | Yes |
Year fixed effect | Yes | Yes | Yes | Yes |
City fixed effect | Yes | Yes | Yes | Yes |
Observations | 2028 | 2028 | 2028 | 2028 |
R2 | 0.323 | 0.199 | 0.668 | 0.693 |
Environment Effect | Internet Effect | |||
---|---|---|---|---|
(1) | (2) | (3) | (4) | |
SCP | 0.025 *** | 0.027 *** | 0.032 *** | 0.036 *** |
(0.009) | (0.009) | (0.010) | (0.010) | |
SO2 | −0.006 *** | |||
(0.001) | ||||
PM2.5 | −0.016 *** | |||
(0.002) | ||||
Buser | 4.806 *** | |||
(0.715) | ||||
Muser | 0.153 *** | |||
(0.021) | ||||
Control | Yes | Yes | Yes | Yes |
Year fixed effect | Yes | Yes | Yes | Yes |
City fixed effect | Yes | Yes | Yes | Yes |
Observations | 2028 | 2028 | 2028 | 2028 |
R2 | 0.163 | 0.215 | 0.145 | 0.145 |
SCP | ||||||
---|---|---|---|---|---|---|
(1) | (2) | (3) | (4) | (5) | (6) | |
Dist | 0.440 *** | 0.441 *** | ||||
Odds ratio | 1.552 *** | 1.555 *** | ||||
(0.011) | (0.011) | |||||
Edu | 0.063 *** | 0.059 *** | ||||
Odds ratio | 1.065 *** | 1.061 *** | ||||
(0.008) | (0.010) | |||||
Inc | 0.019 *** | 0.018 *** | ||||
Odds ratio | 1.019 *** | 1.018 *** | ||||
(0.002) | (0.002) | |||||
Control | No | Yes | No | Yes | No | Yes |
Observations | 77,305 | 77,305 | 77,305 | 77,305 | 77,302 | 77,302 |
Pseudo-R2 | 0.213 | 0.219 | 0.082 | 0.106 | 0.123 | 0.164 |
Panel A: Workers | ||||
Log (Worker) | Log (Fworker) | Log (Sworker) | Log (Tworker) | |
(1) | (2) | (3) | (4) | |
SCP | 0.068 *** | −0.074 | 0.025 | 0.032 ** |
(0.017) | (0.071) | (0.026) | (0.012) | |
Observations | 2028 | 2028 | 2028 | 2028 |
R2 | 0.468 | 0.290 | 0.374 | 0.575 |
Panel B: GDP | ||||
Log (Gdp) | Log (Agri) | Log (Indus) | Log (Comm) | |
(1) | (2) | (3) | (4) | |
SCP | 0.048 ** | 0.015 | 0.044 * | 0.037 ** |
(0.020) | (0.033) | (0.026) | (0.017) | |
Control | Yes | Yes | Yes | Yes |
Year fixed effect | Yes | Yes | Yes | Yes |
City fixed effect | Yes | Yes | Yes | Yes |
Observations | 2028 | 2028 | 2028 | 2028 |
R2 | 0.886 | 0.744 | 0.776 | 0.919 |
Bpen | Mpen | |
---|---|---|
(1) | (2) | |
SCP | 0.079 | 0.669 *** |
(0.190) | (0.193) | |
Control | Yes | Yes |
Year fixed effect | Yes | Yes |
Observations | 465 | 467 |
R2 | 0.089 | 0.221 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chen, X.; Cheng, M.; Yang, X.; Chu, Z.; Duan, K. Smart Cities Are More Populous: Evidence from China. Land 2023, 12, 1917. https://doi.org/10.3390/land12101917
Chen X, Cheng M, Yang X, Chu Z, Duan K. Smart Cities Are More Populous: Evidence from China. Land. 2023; 12(10):1917. https://doi.org/10.3390/land12101917
Chicago/Turabian StyleChen, Xuanwei, Mingwang Cheng, Xue Yang, Zhen Chu, and Kaifeng Duan. 2023. "Smart Cities Are More Populous: Evidence from China" Land 12, no. 10: 1917. https://doi.org/10.3390/land12101917
APA StyleChen, X., Cheng, M., Yang, X., Chu, Z., & Duan, K. (2023). Smart Cities Are More Populous: Evidence from China. Land, 12(10), 1917. https://doi.org/10.3390/land12101917