Interaction of Urban Configuration, Temperature, and De Facto Population in Seoul, Republic of Korea: Insights from Two-Stage Least-Squares Regression Using S-DoT Data
Abstract
:1. Introduction
2. Literature Review
2.1. The Association between Built Environment and the Thermal Environment
2.2. The Importance of Thermal Envrionment and Urban Configurations for Vibrant Public Spaces
3. Materials and Methods
3.1. Research Questions
3.2. Study Area and Scope
3.3. Variables and Data Sources
3.4. Methodology
3.4.1. Type of Urban Configuration Using K-Means Clustering
3.4.2. Empirical Analysis of the Relationship among Urban Configuration Types, Air Temperature, and De Facto Population Using 2-SLS
4. Results and Discussion
4.1. Result of Urban Configuration Types
4.2. Empirical Analysis of the Relationship among Urban Configuration Types, Air Temperature, and De Facto Population Using 2-SLS
4.3. Seasonal Empirical Analysis of the Relationship among Urban Configuration Types, Air Temperature, and De Facto Population Using 2-SLS
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Appendix A
Appendix B
Appendix C
Variables | Data Sources | |
---|---|---|
De facto population | Seoul Open Data Square (https://data.seoul.go.kr/ (accessed on 1 October 2023)) | |
Micro Climate | AT | Seoul Open Data Square (https://data.seoul.go.kr/ (accessed on 1 October 2023)) |
Humidity | Seoul Open Data Square (https://data.seoul.go.kr/ (accessed on 1 October 2023)) | |
Urban Configuration | BCR | Korea National Spatial Data Infrastructure Portal (http://www.nsdi.go.kr/ (accessed on 1 October 2023)) |
FAR | Korea National Spatial Data Infrastructure Portal (http://www.nsdi.go.kr/ (accessed on 1 October 2023)) | |
ISD | National Transport Information Center (https://www.its.go.kr/ (accessed on 1 October 2023)) | |
H/W Ratio | Korea National Spatial Data Infrastructure Portal (http://www.nsdi.go.kr/ (accessed on 1 October 2023)) | |
Land Use | Commercial floor area ratio | Korea National Spatial Data Infrastructure Portal (http://www.nsdi.go.kr/ (accessed on 1 October 2023)) |
Business floor area ratio | Korea National Spatial Data Infrastructure Portal (http://www.nsdi.go.kr/ (accessed on 1 October 2023)) | |
Park Ratio | Korea National Spatial Data Infrastructure Portal (http://www.nsdi.go.kr/ (accessed on 1 October 2023)) | |
Land Cover | Water area | Korea National Spatial Data Infrastructure Portal (http://www.nsdi.go.kr/ (accessed on 1 October 2023)) |
Appendix D
Appendix E
Type 1 | Type 2 | Type 3 | Type 4 | |
---|---|---|---|---|
Type 2 | 3.06 ** | |||
Type 3 | −6.63 *** | −8.14 *** | ||
Type 4 | 0.52 | −0.96 | 4.06 ** | |
Type 5 | −6.99 *** | −9.32 *** | −0.99 | −3.30 ** |
Appendix F
Type 1 | Type 2 | Type 3 | Type 4 | |
---|---|---|---|---|
Type 2 | 6.92 *** | |||
Type 3 | 2.64 ** | −4.59 *** | ||
Type 4 | 10.56 *** | 3.23 ** | 8.27 *** | |
Type 5 | 0.14 | −3.94 ** | −1.44 | −6.02 *** |
Appendix G
Type 1 | Type 2 | Type 3 | Type 4 | |
---|---|---|---|---|
Type 2 | 8.61 *** | |||
Type 3 | 5.01 *** | −5.10 *** | ||
Type 4 | 7.05 *** | −0.14 | 4.07 *** | |
Type 5 | −7.02 *** | −9.74 *** | −9.75 *** | −8.17 *** |
Appendix H
Type 1 | Type 2 | Type 3 | Type 4 | |
---|---|---|---|---|
Type 2 | −5.65 *** | |||
Type 3 | −10.12 *** | −2.89 ** | ||
Type 4 | 7.30 *** | 9.79 *** | 13.52 *** | |
Type 5 | 3.99 ** | 6.59 *** | 9.45 *** | −2.70 ** |
Appendix I
Type 1 | Type 2 | Type 3 | Type 4 | |
---|---|---|---|---|
Type 2 | −0.20 | |||
Type 3 | −12.18 *** | −10.73 *** | ||
Type 4 | 8.21 *** | 7.73 *** | 19.32 *** | |
Type 5 | 18.92 *** | 18.40 *** | 31.92 *** | 9.64 *** |
References
- Intergovernmental Panel on Climate Change. The physical science basis. In Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change; Cambridge University Press: Cambridge, UK; New York, NY, USA, 2007; Volume 996, pp. 113–119. [Google Scholar]
- Gehl, J. Life between Buildings; Island Press: Washington, DC, USA, 2011. [Google Scholar]
- Lynch, K. Good City Form; MIT Press: Cambridge, MA, USA, 1984. [Google Scholar]
- Norton, B.A.; Coutts, A.M.; Livesley, S.J.; Harris, R.J.; Hunter, A.M.; Williams, N.S. Planning for cooler cities: A framework to prioritise green infrastructure to mitigate high temperatures in urban landscapes. Landsc. Urban Plan. 2015, 134, 127–138. [Google Scholar] [CrossRef]
- Whyte, W.H. The Social Life of Small Urban Spaces; The Conversation Foundation: Washington, DC, USA, 1980. [Google Scholar]
- Park, S.; Kim, S.; Lee, Y.; Kim, J.; Kim, Y. Results of the 2022 Heat-related Illness Surveillance. Public Health Wkly. Rep. 2023, 16, 241–252. [Google Scholar] [CrossRef]
- Ballester, J.; Quijal-Zamorano, M.; Méndez Turrubiates, R.F.; Pegenaute, F.; Herrmann, F.R.; Robine, J.M.; Basagaña, X.; Tonne, C.; Antó, J.M.; Achebak, H. Heat-related mortality in Europe during the summer of 2022. Nat. Med. 2023, 29, 1857–1866. [Google Scholar] [CrossRef] [PubMed]
- Cho, H.M.; Lee, Y.H. A Study on Heat Wave Adaptation Strategies in Seoul; 2586-484X; The Seoul Institute: Seoul, Republic of Korea, 2018; pp. 1–29. [Google Scholar]
- Lin, T.-P. Thermal perception, adaptation and attendance in a public square in hot and humid regions. Build. Environ. 2009, 44, 2017–2026. [Google Scholar] [CrossRef]
- Xu, H.; Chen, H.; Zhou, X.; Wu, Y.; Liu, Y. Research on the relationship between urban morphology and air temperature based on mobile measurement: A case study in Wuhan, China. Urban Clim. 2020, 34, 100671. [Google Scholar] [CrossRef]
- Perry, J. Climate change adaptation in the world’s best places: A wicked problem in need of immediate attention. Landsc. Urban Plan. 2015, 133, 1–11. [Google Scholar] [CrossRef]
- Li, Y.; Schubert, S.; Kropp, J.P.; Rybski, D. On the influence of density and morphology on the Urban Heat Island intensity. Nat. Commun. 2020, 11, 2647. [Google Scholar] [CrossRef]
- Azhdari, A.; Soltani, A.; Alidadi, M. Urban morphology and landscape structure effect on land surface temperature: Evidence from Shiraz, a semi-arid city. Sustain. Cities Soc. 2018, 41, 853–864. [Google Scholar] [CrossRef]
- Tian, Y.; Zhou, W.; Qian, Y.; Zheng, Z.; Yan, J. The effect of urban 2D and 3D morphology on air temperature in residential neighborhoods. Landsc. Ecol. 2019, 34, 1161–1178. [Google Scholar] [CrossRef]
- Zhang, J.; Li, Z.; Hu, D. Effects of urban morphology on thermal comfort at the micro-scale. Sustain. Cities Soc. 2022, 86, 104150. [Google Scholar] [CrossRef]
- Hu, Y.; Dai, Z.; Guldmann, J.-M. Modeling the impact of 2D/3D urban indicators on the urban heat island over different seasons: A boosted regression tree approach. J. Environ. Manag. 2020, 266, 110424. [Google Scholar] [CrossRef] [PubMed]
- Yang, C.; Kui, T.; Zhou, W.; Fan, J.; Pan, L.; Wu, W.; Liu, M. Impact of refined 2D/3D urban morphology on hourly air temperature across different spatial scales in a snow climate city. Urban Clim. 2023, 47, 101404. [Google Scholar] [CrossRef]
- Oke, T.; Cleugh, H. Urban heat storage derived as energy balance residuals. Bound.-Layer Meteorol. 1987, 39, 233–245. [Google Scholar] [CrossRef]
- Yang, J.; Yang, Y.; Sun, D.; Jin, C.; Xiao, X. Influence of urban morphological characteristics on thermal environment. Sustain. Cities Soc. 2021, 72, 103045. [Google Scholar] [CrossRef]
- Yin, C.; Yuan, M.; Lu, Y.; Huang, Y.; Liu, Y. Effects of urban form on the urban heat island effect based on spatial regression model. Sci. Total Environ. 2018, 634, 696–704. [Google Scholar] [CrossRef] [PubMed]
- Sun, F.; Liu, M.; Wang, Y.; Wang, H.; Che, Y. The effects of 3D architectural patterns on the urban surface temperature at a neighborhood scale: Relative contributions and marginal effects. J. Clean. Prod. 2020, 258, 120706. [Google Scholar] [CrossRef]
- Hong, S.-W.; Yang, D.; Oh, B.-C. The Impacts of Built Environmental Features on the Land Surface Temperatures for the Heat Wave Seasons in Gwangju, South Korea. J. Korean Sol. Energy Soc. 2019, 39, 67–82. [Google Scholar] [CrossRef]
- Bakarman, M.A.; Chang, J.D. The influence of height/width ratio on urban heat island in hot-arid climates. Procedia Eng. 2015, 118, 101–108. [Google Scholar] [CrossRef]
- Johansson, E. Influence of urban geometry on outdoor thermal comfort in a hot dry climate: A study in Fez, Morocco. Build. Environ. 2006, 41, 1326–1338. [Google Scholar] [CrossRef]
- Zhu, S.; Chen, M.; Lu, S.; Mai, X. Influence of Urban Geometry on Thermal Environment of Urban Street Canyons in Hong Kong. Buildings 2022, 12, 1836. [Google Scholar] [CrossRef]
- Chun, B.-S.; Kim, H.-Y. Analysis of urban heat island effect using information from 3-dimensional city model (3DCM). Spat. Inf. Res. 2010, 18, 1–11. [Google Scholar]
- Nakata-Osaki, C.M.; Souza, L.C.L.; Rodrigues, D.S. THIS–Tool for Heat Island Simulation: A GIS extension model to calculate urban heat island intensity based on urban geometry. Comput. Environ. Urban Syst. 2018, 67, 157–168. [Google Scholar] [CrossRef]
- Joshi, M.Y.; Rodler, A.; Musy, M.; Guernouti, S.; Cools, M.; Teller, J. Identifying urban morphological archetypes for microclimate studies using a clustering approach. Build. Environ. 2022, 224, 109574. [Google Scholar] [CrossRef]
- Andreou, E. The effect of urban layout, street geometry and orientation on shading conditions in urban canyons in the Mediterranean. Renew. Energy 2014, 63, 587–596. [Google Scholar] [CrossRef]
- Ramírez-Aguilar, E.A.; Souza, L.C.L. Urban form and population density: Influences on Urban Heat Island intensities in Bogotá, Colombia. Urban Clim. 2019, 29, 100497. [Google Scholar] [CrossRef]
- Liao, W.; Hong, T.; Heo, Y. The effect of spatial heterogeneity in urban morphology on surface urban heat islands. Energy Build. 2021, 244, 111027. [Google Scholar] [CrossRef]
- Sun, R.; Chen, L. Effects of green space dynamics on urban heat islands: Mitigation and diversification. Ecosyst. Serv. 2017, 23, 38–46. [Google Scholar] [CrossRef]
- Yang, L.; Qian, F.; Song, D.-X.; Zheng, K.-J. Research on urban heat-island effect. Procedia Eng. 2016, 169, 11–18. [Google Scholar] [CrossRef]
- Peng, J.; Jia, J.; Liu, Y.; Li, H.; Wu, J. Seasonal contrast of the dominant factors for spatial distribution of land surface temperature in urban areas. Remote Sens. Environ. 2018, 215, 255–267. [Google Scholar] [CrossRef]
- Lee, K.; Hong, W. The study on the heat island and cool island according to trend toward higher temperature in urban: Case study oh Taegu metropolitian city. J. Archit. Inst. Korean 2007, 23, 219–228. [Google Scholar]
- Oh, K.-S.; Hong, J.-J. The relationship between urban spatial elements and the urban heat island effect. Urban Des. Inst. Korea 2005, 6, 47–63. [Google Scholar]
- Je, M.-H.; Jung, S.-H. Urban heat island intensity analysis by landuse types. J. Korea Contents Assoc. 2018, 18, 1–12. [Google Scholar]
- Carmona, M.; Heath, T.; Oc, T.; Tiesdell, S. Urban Spaces-Public Places: The Dimensions of Urban Design. 2003. Available online: https://www.ucl.ac.uk/bartlett/planning/publications/2021/feb/public-places-urban-spaces-dimensions-urban-design-3rd-edition (accessed on 1 October 2023).
- Carr, S. Public Space; Cambridge University Press: Cambridge, UK, 1992. [Google Scholar]
- Jacobs, J. The Death and Life of Great American Cities; Vintage: New York, NY, USA, 2016. [Google Scholar]
- Eliasson, I.; Knez, I.; Westerberg, U.; Thorsson, S.; Lindberg, F. Climate and behaviour in a Nordic city. Landsc. Urban Plan. 2007, 82, 72–84. [Google Scholar] [CrossRef]
- Huang, J.; Zhou, C.; Zhuo, Y.; Xu, L.; Jiang, Y. Outdoor thermal environments and activities in open space: An experiment study in humid subtropical climates. Build. Environ. 2016, 103, 238–249. [Google Scholar] [CrossRef]
- Montgomery, J. Making a city: Urbanity, vitality and urban design. J. Urban Des. 1998, 3, 93–116. [Google Scholar] [CrossRef]
- Xia, C.; Zhang, A.; Yeh, A.G. The varying relationships between multidimensional urban form and urban vitality in Chinese megacities: Insights from a comparative analysis. Ann. Am. Assoc. Geogr. 2022, 112, 141–166. [Google Scholar] [CrossRef]
- Cervero, R.; Kockelman, K. Travel demand and the 3Ds: Density, diversity, and design. Transp. Res. Part D Transp. Environ. 1997, 2, 199–219. [Google Scholar] [CrossRef]
- Ewing, R.; Cervero, R. Travel and the built environment: A meta-analysis. J. Am. Plan. Assoc. 2010, 76, 265–294. [Google Scholar] [CrossRef]
- Long, Y.; Huang, C. Does block size matter? The impact of urban design on economic vitality for Chinese cities. Environ. Plan. B Urban Anal. City Sci. 2019, 46, 406–422. [Google Scholar] [CrossRef]
- Kim, S. Urban Vitality, urban form, and land use: Their relations within a geographical boundary for walkers. Sustainability 2020, 12, 10633. [Google Scholar] [CrossRef]
- Sung, H.; Lee, S. Residential built environment and walking activity: Empirical evidence of Jane Jacobs’ urban vitality. Transp. Res. Part D Transp. Environ. 2015, 41, 318–329. [Google Scholar] [CrossRef]
- Hess, P.M.; Vernez Moudon, A.; Catherine Snyder, M.; Stanilov, K. Site design and pedestrian travel. Transp. Res. Rec. 1999, 1674, 9–19. [Google Scholar] [CrossRef]
- Cao, Q.; Luan, Q.; Liu, Y.; Wang, R. The effects of 2D and 3D building morphology on urban environments: A multi-scale analysis in the Beijing metropolitan region. Build. Environ. 2021, 192, 107635. [Google Scholar] [CrossRef]
- Lin, J.; Zhuang, Y.; Zhao, Y.; Li, H.; He, X.; Lu, S. Measuring the non-linear relationship between three-dimensional built environment and urban vitality based on a random forest model. Int. J. Environ. Res. Public Health 2022, 20, 734. [Google Scholar] [CrossRef] [PubMed]
- Kang, C.-D. Effects of the human and built environment on neighborhood vitality: Evidence from Seoul, Korea, using mobile phone data. J. Urban Plan. Dev. 2020, 146, 05020024. [Google Scholar] [CrossRef]
- European Commission. De Facto Population. Available online: https://home-affairs.ec.europa.eu/networks/european-migration-network-emn/emn-asylum-and-migration-glossary/glossary/de-facto-population_en (accessed on 16 November 2023).
- Manoli, G.; Fatichi, S.; Schläpfer, M.; Yu, K.; Crowther, T.W.; Meili, N.; Burlando, P.; Katul, G.G.; Bou-Zeid, E. Magnitude of urban heat islands largely explained by climate and population. Nature 2019, 573, 55–60. [Google Scholar] [CrossRef]
- Korea Meteorological Administration. Korean Climate Characteristics. Available online: https://www.weather.go.kr/w/obs-climate/climate/statistics/korea-char.do (accessed on 15 October 2023).
- Cha, Y.; Kim, H.; Heo, T. The effects of urban land use and land cover characteristics on air temperature in Seoul Metropolitan area. Seoul Stud. 2009, 10, 107–120. [Google Scholar]
- Yoon, M.-H.; Ahn, T.-M. An application of satellite image analysis to visualize the effects of urban green areas on temperature. J. Korean Inst. Landsc. Archit. 2009, 37, 46–53. [Google Scholar]
- Sung, H.; Lee, S.; Jung, S. Identifying the relationship between the objectively measured built environment and walking activity in the high-density and transit-oriented city, Seoul, Korea. Environ. Plan. B Plan. Des. 2014, 41, 637–660. [Google Scholar] [CrossRef]
- Seoul Metropolitan Government. Seoul Open Data Plaza. Available online: https://data.seoul.go.kr/ (accessed on 16 November 2023).
- Seoul Metropolitan Government. Smart Seoul Data of Things(S-DoT). Available online: https://news.seoul.go.kr/gov/archives/539344 (accessed on 16 November 2023).
- Kim, Y.; Jang, S.; Kim, K.B. Impact of urban microclimate on walking volume by street type and heat-vulnerable age groups: Seoul’s IoT sensor big data. Urban Clim. 2023, 51, 101658. [Google Scholar] [CrossRef]
- Gujarati, D. Econometrics by Example; Bloomsbury Publishing: London, UK, 2014. [Google Scholar]
- Lee, J.-A.; Jung, D.-Y.; Chon, J.-H.; Lee, S.-M.; Song, Y.-B. An evaluation of human thermal comfort and improvement of thermal environment by spatial structure. J. Korean Inst. Landsc. Archit. 2010, 38, 12–20. [Google Scholar]
- Li, X.; Li, Y.; Jia, T.; Zhou, L.; Hijazi, I.H. The six dimensions of built environment on urban vitality: Fusion evidence from multi-source data. Cities 2022, 121, 103482. [Google Scholar] [CrossRef]
Seasonal | Month | Air Temperature (°C) | Humidity (%rh) | ||||
---|---|---|---|---|---|---|---|
Mean | Min | Max | Max-Min | Mean | Min | ||
Winter | 1 | −2.2 | −6.2 | 2.6 | 8.8 | 55 | 21 |
2 | −1.1 | −5.3 | 3.8 | 9.1 | 55 | 21 | |
Spring | 3 | 7.7 | 3.2 | 12.7 | 9.5 | 62 | 15 |
4 | 14.8 | 10 | 20.6 | 10.6 | 55 | 17 | |
5 | 19.1 | 13.9 | 25 | 11.1 | 55 | 16 | |
Summer | 6 | 23.3 | 19.8 | 27.5 | 7.7 | 73 | 18 |
7 | 27.3 | 24.2 | 31 | 6.8 | 77 | 46 | |
8 | 25.7 | 23.1 | 28.9 | 5.8 | 80 | 39 | |
Autumn | 9 | 22.4 | 18.2 | 27.2 | 9 | 68 | 29 |
10 | 14.6 | 10.3 | 19.7 | 9.4 | 69 | 25 | |
11 | 10 | 5.6 | 15.4 | 9.8 | 65 | 23 | |
Winter | 12 | −2.8 | −6.6 | 1.7 | 8.3 | 59 | 21 |
Variables | Description | Measurement | |
---|---|---|---|
De facto population | Average de facto population per Day of the S-DoT | ||
Micro Climate | Air temperature | Average air temperature per Day of the S-DoT (Unit: °C) | |
Humidity | Average humidity per Day of the S-DoT (unit: %) | ||
Urban Form | Building Coverage Ratio (BCR) | Average ratio of building area to urbanized area, indicating horizontal building density in the 300 m buffer (unit: %, range: 0~100) | |
Floor Area Ratio (FAR) | Average ratio of a building gross floor area to urbanized area, indicating vertical building density in the 300 m buffer (unit: %, range: 0~∞) | ||
Intersection Density (ISD) | Number of intersections per square kilometer of urbanized area (unit: Count/km2) | ||
H/W Ratio | Ratio of average building height to average road width within 300 m buffer (unit: %) | ||
Land- Use | Commercial Floor Area Ratio | Ratio of commercial gross floor area to urbanized area within 300 m of buffer (unit: %, range: 0~∞) | |
Business Floor Area Ratio | Ratio of business gross floor area to urbanized area within 300 m of buffer (unit: %, range: 0~∞) | ||
Park Area Ratio | Ratio of park area within 300 m of buffer (unit: %, range: 0~100) | ||
Land cover | Water area | 1 if there is a water surface area, 0 if there is no water surface area | |
Seasonal Dummy | Spring | March, April, May | |
Summer | June, July, August | ||
Autumn | September, October, November | ||
Winter | December, January, February | ||
Weekend Dummy | Weekday = 0 | Monday, Tuesday, Wednesday, Thursday, Friday | |
Weekend = 1 | Saturday, Sunday |
Type | 1 | 2 | 3 | 4 | 5 | Homogeneity of Variance Test and Nonparametric Test | |
---|---|---|---|---|---|---|---|
BCR | Mean | 37.89 | 25.60 | 34.44 | 16.01 | 37.62 | (B.T.) A = 6.2529, p ≤ 0.05/ (K.W.) chi-squared = 39.824, p ≤ 0.001 |
std | 3.64 | 7.44 | 4.78 | 8.34 | 6.08 | ||
FAR | Mean | 131.32 | 68.67 | 103.99 | 70.26 | 212.89 | (B.T.) A = 2.5652, p ≤ 0.05/ (K.W.) chi-squared = 51.670, p ≤ 0.001 |
std | 17.33 | 27.35 | 17.84 | 32.83 | 44.13 | ||
ISD | Mean | 317.52 | 493.84 | 603.85 | 139.03 | 199.39 | (B.T.) A= 4.4220, p = 0.1096/ (K.W.) chi-squared=43.720, p ≤ 0.001 |
std | 76.24 | 107.36 | 115.14 | 54.38 | 41.12 | ||
H/W Ratio | Mean | 2.10 | 1.81 | 2.80 | 2.01 | 2.96 | (B.T.) A = 4.3378, p = 0.1143/ (K.W.) chi-squared = 49.076, p ≤ 0.001 |
std | 0.32 | 0.25 | 0.42 | 0.80 | 0.28 |
Type 1 | Type 2 | Type 3 | Type 4 | Type 5 | Homogeneity of Variance Test and Nonparametric Test | |
---|---|---|---|---|---|---|
De facto Population | 198.84 | 199.57 | 236.00 | 166.53 | 129.65 | (B.T.) A = 1018.93, p ≤ 0.001/ (K.W.) chi-squared = 766.87, p ≤ 0.001 |
Model | Model 1: OLS Model | Model 2: 2-SLS Model | |||||
---|---|---|---|---|---|---|---|
Variables | β | S.E. | t | β | S.E. | t | |
Micro Climate | Average Air temperature | 4.43 *** | 0.22 | 19.84 | 4.07 *** | 0.23 | 17.69 |
Urban Configuration (ref. Type 2) | Type 1 | −37.37 *** | 3.67 | −10.18 | 27.13 *** | 4.47 | 6.07 |
Type 3 | −3.38 | 3.67 | −0.92 | 67.85 *** | 4.69 | 14.47 | |
Type 4 | −107.53 *** | 4.40 | −24.45 | −56.87 *** | 4.82 | −11.79 | |
Type 5 | −105.50 *** | 4.32 | −24.41 | −40.70 *** | 4.87 | −8.36 | |
Land- Use | Commercial Floor area Ratio | 43.65 *** | 8.06 | 5.41 | 172.53 *** | 9.51 | 18.14 |
Business Floor area Ratio | 250.14 *** | 10.32 | 24.24 | 300.94 *** | 10.74 | 28.02 | |
Park Ratio | −1.93 *** | 0.15 | −12.71 | −1.21 *** | 0.16 | −7.67 | |
Land-Cover | Water area (1: yes, 0: no) | −102.88 *** | 5.28 | −19.49 | −43.81 *** | 5.74 | −7.63 |
Seasonal (ref. Summer) | Spring | 22.22 *** | 3.84 | 5.78 | 47.01 *** | 3.15 | 14.93 |
Autumn | 47.47 *** | 3.64 | 13.05 | 71.91 *** | 2.85 | 25.22 | |
Winter | 38.37 *** | 6.73 | 5.70 | 58.36 *** | 5.47 | 7.45 | |
Weekend (1: Weekend, 0: Weekday) | 8.37 *** | 2.32 | 3.60 | 18.28 *** | 2.45 | 7.45 | |
Const | 116.00 *** | 7.77 | 14.93 | - | |||
No. | 16,505 |
Seasonal (2-SLS Model) | |||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Model | Model 3 (Spring) | Model 4 (Summer) | Model 5 (Autumn) | Model 6 (Winter) | |||||||||
Variables | β | S.E. | t | β | S.E. | t | β | S.E. | t | β | S.E. | t | |
Micro Climate | Average Air temperature | 0.67 | 2.46 | 0.27 | 3.70 *** | 0.47 | 7.93 | 5.27 *** | 0.52 | 10.06 | 28.28 *** | 3.31 | 8.55 |
Urban Configuration (ref. Type 2) | Type 1 | 86.78 ** | 30.39 | 2.86 | 55.91 *** | 9.90 | 5.65 | 37.34 *** | 7.79 | 4.79 | 35.28 *** | 6.36 | 5.55 |
Type 3 | 147.61 *** | 36.43 | 4.05 | 85.87 *** | 10.41 | 8.25 | 113.48 *** | 7.85 | 14.46 | 37.05 *** | 6.76 | 5.48 | |
Type 4 | −25.19 | 24.60 | −1.02 | −36.35 *** | 10.81 | −3.36 | −48.89 *** | 8.96 | −5.45 | −36.40 *** | 8.00 | −4.55 | |
Type 5 | 13.58 | 26.55 | 0.51 | −42.52 *** | 11.73 | −3.62 | −24.90 ** | 8.43 | −2.95 | 27.20 *** | 7.18 | 3.79 | |
Land- Use | Commercial Floor area Ratio | 303.01 *** | 53.20 | 5.70 | 215.03 *** | 22.69 | 9.48 | 217.14 *** | 17.42 | 12.47 | 251.88 *** | 13.50 | 18.67 |
Business Floor area Ratio | 411.24 *** | 43.88 | 9.37 | 342.09 *** | 22.42 | 15.26 | 354.01 *** | 19.02 | 18.61 | 220.63 *** | 21.22 | 10.40 | |
Park Ratio | −1.78 *** | 0.45 | −3.92 | −1.54 *** | 0.31 | −4.91 | 2.60 *** | 0.40 | 6.45 | −1.81 *** | 0.29 | −6.13 | |
Land-Cover | Water area (1: yes, 0: no) | 6.47 | 27.99 | 0.23 | −18.04 | 13.12 | −1.37 | −38.67 *** | 9.83 | −3.93 | −4.30 | 10.06 | −0.43 |
Weekend (1: Weekend, 0: Weekday) | 36.58 *** | 8.26 | 4.43 | 20.39 *** | 5.29 | 3.85 | 20.16 *** | 4.49 | 4.49 | −19.70 ** | 6.94 | −2.84 | |
No. | 3370 | 3861 | 5197 | 4077 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Park, M.; Kim, H. Interaction of Urban Configuration, Temperature, and De Facto Population in Seoul, Republic of Korea: Insights from Two-Stage Least-Squares Regression Using S-DoT Data. Land 2023, 12, 2110. https://doi.org/10.3390/land12122110
Park M, Kim H. Interaction of Urban Configuration, Temperature, and De Facto Population in Seoul, Republic of Korea: Insights from Two-Stage Least-Squares Regression Using S-DoT Data. Land. 2023; 12(12):2110. https://doi.org/10.3390/land12122110
Chicago/Turabian StylePark, Minkyung, and Heechul Kim. 2023. "Interaction of Urban Configuration, Temperature, and De Facto Population in Seoul, Republic of Korea: Insights from Two-Stage Least-Squares Regression Using S-DoT Data" Land 12, no. 12: 2110. https://doi.org/10.3390/land12122110
APA StylePark, M., & Kim, H. (2023). Interaction of Urban Configuration, Temperature, and De Facto Population in Seoul, Republic of Korea: Insights from Two-Stage Least-Squares Regression Using S-DoT Data. Land, 12(12), 2110. https://doi.org/10.3390/land12122110