Policy Impacts of High-Standard Farmland Construction on Agricultural Sustainability: Total Factor Productivity-Based Analysis
Abstract
:1. Introduction
2. Policy Background
3. Model and Data
3.1. Model
3.1.1. Total Factor Productivity Measurement Model
3.1.2. Model of the Impact of High-Standard Farmland Construction Policy on ATFP
3.1.3. Parallel Trend Test
3.1.4. Impact Mechanism Model
3.2. Variables
3.2.1. Explained Variables
3.2.2. Core explanatory Variable
3.2.3. Control Variables
3.3. Data
4. Empirical Results
4.1. The Results of ATFP Measurement
4.2. Baseline Regression Results
4.3. Dynamic Effect of the Policy
4.4. Heterogeneity Analysis
4.4.1. Heterogeneity of Natural Geographic Location
4.4.2. Productivity Heterogeneity
5. Discussion
6. Conclusions and Prospects
6.1. Conclusions
- (1)
- ATFP in China demonstrated an upward trend during the period 2008–2017, with an average annual growth rate of 3.6%. This growth was driven by technological change and technical efficiency improvement, with an average annual growth rate of 2.8% for technological change and 0.7% for technical efficiency.
- (2)
- The high-standard farmland construction policy had an average effect of 1.0% on ATFP, a result that was robust to a series of robustness tests. The effect of the policy on ATFP was time-heterogeneous, with the effect appearing only in the third year of policy implementation and showing a gradually increasing trend.
- (3)
- The improvement of ATFP by high-standard farmland construction policies has obvious regional heterogeneity. The effect of the policy on ATFP improvement is more pronounced in central China and in provinces with higher ATFP levels.
- (4)
- The policy improved ATFP by promoting technological change and technical efficiency improvement. The policies improve technical change by 1.3% and technical efficiency by 1.4%, and both are statistically significant at the 1% level.
6.2. Research Limitations and Prospects
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Godfray, H.C.J.; Beddington, J.R.; Crute, I.R.; Haddad, L.; Lawrence, D.; Muir, J.F.; Pertty, J.; Robinson, S.; Thomas, S.M.; Toulmin, C. Food security: The challenge of feeding 9 billion people. Science 2010, 327, 812–818. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Springmann, M.; Clark, M.; Mason-D’Croz, D.; Keith, W.; Benjamin, L.B.; Luis, L.; Wim, D.V.; Sonja, J.V.; Mario, H.; Kimberly, M.C.; et al. Options for keeping the food system within environmental limits. Nature 2018, 562, 519–525. [Google Scholar] [CrossRef] [PubMed]
- Ali, M.; Byerlee, D. Productivity growth and resource degradation in Pakistan’s Punjab: A decomposition analysis. Econ. Dev. Cult. Change 2002, 50, 839–863. [Google Scholar] [CrossRef] [Green Version]
- Huang, J.; Rozelle, S. Technological change: Rediscovering the engine of productivity growth in China’s rural economy. J. Dev. Econ. 1996, 49, 337–369. [Google Scholar] [CrossRef]
- Jin, S.; Ma, H.; Huang, J.; Hu, R.; Rozelle, S. Productivity, efficiency and technical change: Measuring the performance of China’s transforming agriculture. J. Prod. Anal. 2009, 33, 191–207. [Google Scholar] [CrossRef]
- Hu, Y.; Liu, C.; Peng, J. Financial inclusion and agricultural total factor productivity growth in China. Econ. Model. 2020, 96, 68–82. [Google Scholar] [CrossRef]
- Solow, R.M. Technical Change and the Aggregate Production Function. Rev. Econ. Stat. 1957, 39, 312. [Google Scholar] [CrossRef] [Green Version]
- Coomes, O.T.; Barham, B.L.; MacDonald, G.K. Leveraging total factor productivity growth for sustainable and resilient farming. Nat. Sustain. 2019, 2, 22–28. [Google Scholar] [CrossRef] [Green Version]
- Yu, Z.; Mao, S.; Lin, Q. Has China’s Carbon Emissions Trading Pilot Policy Improved Agricultural Green Total Factor Productivity? Agriculture 2022, 12, 1444. [Google Scholar] [CrossRef]
- Čechura, L. Technical efficiency and total factor productivity in Czech agriculture. Agric. Econ. 2012, 58, 147–156. [Google Scholar] [CrossRef]
- Pu, L.; Zhang, S.; Yang, J.; Yan, F.; Chang, L. Assessment of High-standard Farmland Construction Effectiveness in Liaoning Province During 2011–2015. Chin. Geogr. Sci. 2019, 29, 667–678. [Google Scholar] [CrossRef] [Green Version]
- Song, W.; Wu, K.; Zhao, H.; Zhao, R.; Li, T. Arrangement of High-standard Basic Farmland Construction Based on Village-region Cultivated Land Quality Uniformity. Chin. Geogr. Sci. 2018, 29, 325–340. [Google Scholar] [CrossRef] [Green Version]
- Zhou, Y.; Li, Y.; Xu, C. Land consolidation and rural revitalization in China: Mechanisms and paths. Land Use Policy 2020, 91, 104379. [Google Scholar] [CrossRef]
- Zhang, Q.; Razzaq, A.; Qin, J.; Feng, Z.; Ye, F.; Xiao, M. Does the Expansion of Farmers’ Operation Scale Improve the Efficiency of Agricultural Production in China? Implications for Environmental Sustainability. Front. Environ. Sci. 2022, 10, 683. [Google Scholar] [CrossRef]
- Aigner, D.; Lovell, C.A.K.; Schmidt, P. Formulation and estimation of stochastic frontier production function models. J. Econom. 1977, 6, 21–37. [Google Scholar] [CrossRef]
- Lin, B.; Wang, X. Exploring energy efficiency in China’s iron and steel industry: A stochastic frontier approach. Energy Policy 2014, 72, 87–96. [Google Scholar] [CrossRef]
- Bai, C.; Du, K.; Yu, Y.; Feng, C. Understanding the trend of total factor carbon productivity in the world: Insights from convergence analysis. Energy Econ. 2019, 81, 698–708. [Google Scholar] [CrossRef]
- Grifell-Tatjé, E.; Lovell, C.A.K. A note on the Malmquist productivity index. Econ. Lett. 1995, 47, 169–175. [Google Scholar] [CrossRef]
- Tugcu, C.T.; Tiwari, A.K. Does renewable and/or non-renewable energy consumption matter for total factor productivity (TFP) growth? Evidence from the BRICS. Renew. Sustain. Energy Rev. 2016, 65, 610–616. [Google Scholar] [CrossRef]
- Bachewe, F.N.; Berhane, G.; Minten, B.; Taffesse, A.S. Agricultural Transformation in Africa? Assessing the Evidence in Ethiopia. World Dev. 2018, 105, 286–298. [Google Scholar] [CrossRef]
- Fakayode, B.S.; Omotesho, O.A.; Tsoho, A.B.; Ajayi, P. An economic survey of rural infrastructures and agricultural productivity profiles in Nigeria. Eur. J. Soc. Sci. 2008, 7, 158–171. Available online: https://www.researchgate.net/publication/228852275 (accessed on 13 May 2022).
- Shamdasani, Y. Rural road infrastructure & agricultural production: Evidence from India. J. Dev. Econ. 2021, 152, 102686. [Google Scholar] [CrossRef]
- Zhu, X.; Lansink, A.O. Impact of CAP Subsidies on Technical Efficiency of Crop Farms in Germany, the Netherlands and Sweden. J. Agric. Econ. 2010, 61, 545–564. [Google Scholar] [CrossRef]
- Yi, F.; Sun, D.; Zhou, Y. Grain subsidy, liquidity constraints and food security—Impact of the grain subsidy program on the grain-sown areas in China. Food Policy 2015, 50, 114–124. [Google Scholar] [CrossRef] [Green Version]
- Fan, S. Effects of Technological Change and Institutional Reform on Production Growth in Chinese Agriculture. Am. J. Agric. Econ. 1991, 73, 266–275. [Google Scholar] [CrossRef] [Green Version]
- Lin, J.Y. Rural reforms and agricultural growth in China. Am. Econ. Rev. 1992, 82, 34–51. Available online: https://www.jstor.org/stable/2117601 (accessed on 16 September 2022).
- Kumar, P.; Mittal, S.; Hossain, M. Agricultural growth accounting and total factor productivity in South Asia: A review and policy implications. Agric. Econ. Res. Rev. 2008, 21, 145–172. [Google Scholar] [CrossRef]
- Gong, B. Agricultural reforms and production in China: Changes in provincial production function and productivity in 1978–2015. J. Dev. Econ. 2018, 132, 18–31. [Google Scholar] [CrossRef]
- Mamatzakis, E. Public infrastructure and productivity growth in Greek agriculture. Agric. Econ. 2003, 29, 169–180. [Google Scholar] [CrossRef]
- Bashir, A.; Susetyo, D. The relationship between economic growth, human capital, and agriculture sector: Empirical evidence from Indonesia. Int. J. Food Agric. Econ. 2018, 6, 35–52. [Google Scholar] [CrossRef]
- Peng, J.; Zhao, Z.; Chen, L. The Impact of High-Standard Farmland Construction Policy on Rural Poverty in China. Land 2022, 11, 1578. [Google Scholar] [CrossRef]
- Zhu, J.; Wang, M.; Zhang, C. Impact of high-standard basic farmland construction policies on agricultural eco-efficiency: Case of China. Natl. Account. Rev. 2022, 4, 147–166. [Google Scholar] [CrossRef]
- Pastor, J.T.; Lovell, C.A.K. A global Malmquist productivity index. Econ. Lett. 2005, 88, 266–271. [Google Scholar] [CrossRef]
- Oh, D.-H. A global Malmquist-Luenberger productivity index. J. Prod. Anal. 2010, 34, 183–197. [Google Scholar] [CrossRef]
- Tone, K.; Tsutsui, M. An epsilon-based measure of efficiency in DEA—A third pole of technical efficiency. Eur. J. Oper. Res. 2010, 207, 1554–1563. [Google Scholar] [CrossRef]
- Färe, R.; Grosskopf, S.; Norris, M. Productivity growth, technical progress, and efficiency change in industrialized countries. Am. Econ. Rev. 1994, 84, 66–83. Available online: https://www.jstor.org/stable/2117971 (accessed on 25 October 2022).
- Nunn, N.; Qian, N. The Potato’s Contribution to Population and Urbanization: Evidence From A Historical Experiment. Q. J. Econ. 2011, 126, 593–650. [Google Scholar] [CrossRef] [PubMed]
- Zeldow, B.; Hatfield, L.A. Confounding and regression adjustment in difference-in-differences studies. Heal. Serv. Res. 2021, 56, 932–941. [Google Scholar] [CrossRef]
- Sheng, Y.; Tian, X.; Qiao, W.; Peng, C. Measuring agricultural total factor productivity in China: Pattern and drivers over the period of 1978-2016. Aust. J. Agric. Resour. Econ. 2019, 64, 82–103. [Google Scholar] [CrossRef]
- Xu, X.; Huang, X.; Huang, J.; Gao, X.; Chen, L. Spatial-Temporal Characteristics of Agriculture Green Total Factor Productivity in China, 1998–2016: Based on More Sophisticated Calculations of Carbon Emissions. Int. J. Environ. Res. Public Health 2019, 16, 3932. [Google Scholar] [CrossRef] [Green Version]
- Li, J.; Lin, Q. Can the Adjustment of China’s Grain Purchase and Storage Policy Improve Its Green Productivity? Int. J. Environ. Res. Public Health 2022, 19, 6310. [Google Scholar] [CrossRef] [PubMed]
- Li, J.; Chen, J.; Liu, H. Sustainable Agricultural Total Factor Productivity and Its Spatial Relationship with Urbanization in China. Sustainability 2021, 13, 6773. [Google Scholar] [CrossRef]
- Zhou, Y.; Liu, W.; Lv, X.; Chen, X.; Shen, M. Investigating interior driving factors and cross-industrial linkages of carbon emission efficiency in China’s construction industry: Based on Super-SBM DEA and GVAR model. J. Clean. Prod. 2019, 241, 118322. [Google Scholar] [CrossRef]
- Xu, Q.; Zhu, P.; Tang, L. Agricultural Services: Another Way of Farmland Utilization and Its Effect on Agricultural Green Total Factor Productivity in China. Land 2022, 11, 1170. [Google Scholar] [CrossRef]
- Xiang, T.; Malik, T.H.; Hou, J.W.; Ma, J. The Impact of Climate Change on Agricultural Total Factor Productivity: A Cross-Country Panel Data Analysis, 1961–2013. Agriculture 2022, 12, 2123. [Google Scholar] [CrossRef]
- Zhong, S.; Li, Y.; Li, J.; Yang, H. Measurement of total factor productivity of green agriculture in China: Analysis of the regional differences based on China. PLOS ONE 2021, 16, e0257239. [Google Scholar] [CrossRef]
- Chen, Y.; Miao, J.; Zhu, Z. Measuring green total factor productivity of China’s agricultural sector: A three-stage SBM-DEA model with non-point source pollution and CO2 emissions. J. Clean. Prod. 2021, 318, 128543. [Google Scholar] [CrossRef]
- Song, W.; Pijanowski, B.C. The effects of China’s cultivated land balance program on potential land productivity at a national scale. Appl. Geogr. 2014, 46, 158–170. [Google Scholar] [CrossRef]
- Agyire-Tettey, F.; Ackah, C.G.; Asuman, D. An Unconditional Quantile Regression Based Decomposition of Spatial Welfare Inequalities in Ghana. J. Dev. Stud. 2017, 54, 537–556. [Google Scholar] [CrossRef]
- Liu, D.; Zhu, X.; Wang, Y. China’s agricultural green total factor productivity based on carbon emission: An analysis of evolution trend and influencing factors. J. Clean. Prod. 2020, 278, 123692. [Google Scholar] [CrossRef]
- Fan, S.; Zhang, L.; Zhang, X. Reforms, Investment, and Poverty in Rural China. Econ. Dev. Cult. Chang. 2004, 52, 395–421. [Google Scholar] [CrossRef] [Green Version]
- Fan, M.; Shen, J.; Yuan, L.; Jiang, R.; Chen, X.; Davies, W.J.; Zhang, F. Improving crop productivity and resource use efficiency to ensure food security and environmental quality in China. J. Exp. Bot. 2011, 63, 13–24. [Google Scholar] [CrossRef] [PubMed]
- Zhao, Q.; Huang, J. Roadmap of resource saving agricultural science and technology development. In Agricultural Science & Technology in China: A Roadmap to 2050; Springer: Berlin/Heidelberg, Germany, 2011; pp. 80–99. [Google Scholar] [CrossRef]
- Chen, T.; Rizwan, M.; Abbas, A. Exploring the Role of Agricultural Services in Production Efficiency in Chinese Agriculture: A Case of the Socialized Agricultural Service System. Land 2022, 11, 347. [Google Scholar] [CrossRef]
- Razzaq, A.; Liu, H.; Xiao, M.; Mehmood, K.; Shahzad, M.A.; Zhou, Y. Analyzing past and future trends in Pakistan’s groundwater irrigation development: Implications for environmental sustainability and food security. Environ. Sci. Pollut. Res. 2022, 1–17. [Google Scholar] [CrossRef]
- Razzaq, A.; Qing, P.; Naseer, M.A.U.R.; Abid, M.; Anwar, M.; Javed, I. Can the informal groundwater markets improve water use efficiency and equity? Evidence from a semi-arid region of Pakistan. Sci. Total. Environ. 2019, 666, 849–857. [Google Scholar] [CrossRef] [PubMed]
- Abbas, A.; Amjath-Babu, T.S.; Kächele, H.; Usman, M.; Iqbal, M.A.; Arshad, M.; Shahid, M.A.; Müller, K. Sustainable survival under climatic extremes: Linking flood risk mitigation and coping with flood damages in rural Pakistan. Environ. Sci. Pollut. Res. 2018, 25, 32491–32505. [Google Scholar] [CrossRef]
- Adamopoulos, T.; Restuccia, D. The Size Distribution of Farms and International Productivity Differences. Am. Econ. Rev. 2014, 104, 1667–1697. [Google Scholar] [CrossRef] [Green Version]
- Liu, Y.; Li, J.T.; Yang, Y. Strategic adjustment of land use policy under the economic transformation. Land Use Policy 2018, 74, 5–14. [Google Scholar] [CrossRef]
- He, X.; Weisser, W.; Zou, Y.; Fan, S.; Crowther, T.W.; Wanger, T.C. Integrating agricultural diversification in China’s major policies. Trends Ecol. Evol. 2022, 37, 819–822. [Google Scholar] [CrossRef]
- Ali, Q.; Abbas, A.; Khan, M.T.I.; Bagadeem, S.; Alotaibi, B.A.; Tariq, M.; Traore, A. Sustainable Agriculture through Reduced Emission and Energy Efficiency: Estimation of Input–Output Energy and GHG Emission under Tunnel Cultivation of Tomato. Agronomy 2022, 12, 1730. [Google Scholar] [CrossRef]
- Wang, L.; Zhang, F.; Wang, Z.; Tan, Q. The impact of rural infrastructural investment on farmers’ income growth in China. China Agric. Econ. Rev. 2021, 14, 202–219. [Google Scholar] [CrossRef]
Variables | Abbreviation | Units | N | Mean | S.D. | Min | Max |
---|---|---|---|---|---|---|---|
Agricultural total factor productivity | ATFP | - | 300 | 1.037 | 0.055 | 0.886 | 1.210 |
Agricultural technology change | TC | - | 300 | 1.035 | 0.041 | 1.000 | 1.205 |
Agricultural technology efficiency | TE | - | 300 | 1.003 | 0.052 | 0.862 | 1.210 |
treatedi × timet | DID | - | 300 | 2.544 | 1.909 | 0.000 | 5.782 |
Total agricultural production value | Output | Billion Yuan | 300 | 232.8 | 168.7 | 14.5 | 804.3 |
Land input | Input1 | 1000 km2 | 300 | 5687.0 | 3808.0 | 123.9 | 15,205.0 |
Labor input | Input2 | 10,000 individuals | 300 | 939.5 | 666.6 | 37.1 | 2847.0 |
Mechanical input | Input3 | 10,000 kW | 300 | 3257.0 | 2923.0 | 95.3 | 13,353.0 |
Fertilizer input | Input4 | 10,000 tons | 300 | 191.6 | 146.1 | 8.0 | 716.1 |
Irrigation inputs | Input5 | 1000 km2 | 300 | 2096.0 | 1570.0 | 115.5 | 6031.0 |
Infrastructure | ROAD | Km | 300 | 0.915 | 0.506 | 0.079 | 2.297 |
Human capital | EDU | Year | 300 | 9.616 | 1.143 | 6.971 | 13.530 |
Urbanization level | UR | % | 300 | 0.547 | 0.132 | 0.291 | 0.896 |
Land quality | LAQA | % | 300 | 0.389 | 0.183 | 0.118 | 1.000 |
Disaster rate | DR | % | 300 | 0.195 | 0.138 | 0.000 | 0.695 |
Agricultural planting structure | AS | % | 300 | 0.654 | 0.130 | 0.353 | 0.958 |
Fiscal support to agriculture | AF | % | 300 | 0.111 | 0.030 | 0.030 | 0.190 |
Year | TFP | TC | TE |
---|---|---|---|
2008–2009 | 0.946 | 1.022 | 0.927 |
2009–2010 | 1.128 | 1.087 | 1.039 |
2010–2011 | 1.030 | 1.020 | 1.010 |
2011–2012 | 1.051 | 1.074 | 0.980 |
2012–2013 | 1.039 | 1.072 | 0.966 |
2013–2014 | 1.040 | 1.042 | 0.999 |
2014–2015 | 1.032 | 1.009 | 1.023 |
2015–2016 | 1.053 | 1.010 | 1.043 |
2016–2017 | 1.054 | 1.011 | 1.042 |
Mean | 1.036 | 1.028 | 1.007 |
Variables | Model 1 | Model 2 |
---|---|---|
treatedi × timet | 0.545 *** (0.003) | 0.010 *** (0.004) |
ROAD | — | 0.274 *** (0.080) |
EDU | — | 0.516 *** (0.140) |
UR | — | 0.536 *** (0.110) |
LAQA | — | 0.261 *** (0.051) |
AS | — | −0.043 (0.146) |
AF | — | 0.207 (0.356) |
DR | — | −0.012 (0.039) |
Time fixed effects | Yes | Yes |
Regional fixed effects | Yes | Yes |
_Cons | 4.624 *** (0.009) | 1.090 *** (0.412) |
R2 | 0.514 | 0.743 |
N | 300 | 300 |
Variables | Model 1 | Model 2 |
---|---|---|
Policy × 2011 | 0.024 *** (0.005) | 0.001 (0.005) |
Policy × 2012 | 0.035 *** (0.005) | 0.004 (0.005) |
Policy × 2013 | 0.042 *** (0.004) | 0.016 *** (0.005) |
Policy × 2014 | 0.048 *** (0.004) | 0.021 *** (0.005) |
Policy × 2015 | 0.053 *** (0.004) | 0.023 *** (0.005) |
Policy × 2016 | 0.063 *** (0.004) | 0.027 *** (0.005) |
Policy × 2017 | 0.077 *** (0.004) | 0.037 *** (0.006) |
Control variables | No | Yes |
Time fixed effects | Yes | Yes |
Regional fixed effects | Yes | Yes |
_Cons | 4.634 *** (0.008) | 2.560 *** (0.431) |
R2 | 0.659 | 0.784 |
N | 300 | 300 |
Variables | Model 1 | Model 2 | Model 3 |
---|---|---|---|
treatedi × timet | −0.008 (0.010) | 0.028 *** (0.007) | −0.005 (0.006) |
Control variables | Yes | Yes | Yes |
Time fixed effects | Yes | Yes | Yes |
Regional fixed effects | Yes | Yes | Yes |
_Cons | −0.410 (0.751) | 1.286 (0.797) | −0.623 (0.759) |
R2 | 0.834 | 0.835 | 0.816 |
N | 90 | 90 | 120 |
Variables | Model 1 | Model 2 | Model 3 | Model 4 |
---|---|---|---|---|
treatedi × timet | 0.041 *** (0.011) | 0.026 ** (0.012) | −0.007 (0.014) | −0.020 (0.013) |
Control variables | Yes | Yes | Yes | Yes |
Time fixed effects | Yes | Yes | Yes | Yes |
Regional fixed effects | Yes | Yes | Yes | Yes |
_Cons | 1.924 ** (0.775) | 0.939 (0.889) | −1.066 (1.491) | 0.210 (2.361) |
R2 | 0.338 | 0.605 | 0.416 | 0.204 |
N | 300 | 300 | 300 | 300 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ye, F.; Wang, L.; Razzaq, A.; Tong, T.; Zhang, Q.; Abbas, A. Policy Impacts of High-Standard Farmland Construction on Agricultural Sustainability: Total Factor Productivity-Based Analysis. Land 2023, 12, 283. https://doi.org/10.3390/land12020283
Ye F, Wang L, Razzaq A, Tong T, Zhang Q, Abbas A. Policy Impacts of High-Standard Farmland Construction on Agricultural Sustainability: Total Factor Productivity-Based Analysis. Land. 2023; 12(2):283. https://doi.org/10.3390/land12020283
Chicago/Turabian StyleYe, Feng, Lang Wang, Amar Razzaq, Ting Tong, Qing Zhang, and Azhar Abbas. 2023. "Policy Impacts of High-Standard Farmland Construction on Agricultural Sustainability: Total Factor Productivity-Based Analysis" Land 12, no. 2: 283. https://doi.org/10.3390/land12020283
APA StyleYe, F., Wang, L., Razzaq, A., Tong, T., Zhang, Q., & Abbas, A. (2023). Policy Impacts of High-Standard Farmland Construction on Agricultural Sustainability: Total Factor Productivity-Based Analysis. Land, 12(2), 283. https://doi.org/10.3390/land12020283