Verification of Immersive Virtual Reality as a Streetscape Evaluation Method in Urban Residential Areas
Abstract
:1. Introduction
2. Literature Review
2.1. Meaning of Landscape Evaluation and Evaluation Factors
2.2. Possibilities and Limitations of Web-Based Landscape Evaluations
2.3. Applicability of Virtual Reality Technology
2.4. Research Gaps and Research Directions
3. Data and Methods
3.1. Data Source and Research Procedure
3.2. Web-Based Urban Landscape Evaluation
3.3. Immersive Virtual Reality–based Residential Streetscape Evaluation
3.4. Experiment Participants
3.5. Evaluation Method
4. Analysis
4.1. Descriptive Analysis
4.2. Multi-Level Ordered Logistic Regression Analysis
5. Discussion
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Tufte, E.R. Visual Explanations: Images and quantities, evidence and narrative. Appl. Spectrosc. 1997, 51, 304A. [Google Scholar] [CrossRef] [Green Version]
- Tufte, E.R. Beautiful Evidence; Graphics Press: Cheshire, CT, USA, 2006. [Google Scholar]
- Bernasconi, C.; Strager, M.P.; Maskey, V.; Hasenmyer, M. Assessing public preferences for design and environmental attributes of an urban automated transportation system. Landsc. Urban Plan. 2009, 90, 155–167. [Google Scholar] [CrossRef]
- Pflüger, Y.; Rackham, A.; Larned, S. The aesthetic value of river flows: An assessment of flow preferences for large and small rivers. Landsc. Urban Plan. 2010, 95, 68–78. [Google Scholar] [CrossRef]
- Park, K.; Ewing, R.; Sabouri, S.; Larsen, J. Street life and the built environment in an auto-oriented US region. Cities 2019, 88, 243–251. [Google Scholar] [CrossRef]
- Lydon, M.; Garcia, A. A tactical urbanism how-to. In Tactical Urbanism; Island Press: Washington, DC, USA, 2015; pp. 171–208. [Google Scholar]
- LaPlante, J.; McCann, B. Complete streets: We can get there from here. ITE J. 2008, 78, 24. [Google Scholar]
- Cervero, R. Transit-Oriented Development in the United States: Experiences, Challenges, and Prospects; Transportation Research Board: Washington, DC, USA, 2004. [Google Scholar]
- Pastor, I.O.; Martinez, M.A.C.; Canalejoa, A.E.; Marino, P.E. Landscape evaluation: Comparison of evaluation methods in a region of Spain. J. Environ. Manag. 2007, 85, 204–214. [Google Scholar] [CrossRef]
- Matsuoka, R.H.; Kaplan, R. People needs in the urban landscape: Analysis of landscape and urban planning contributions. Landsc. Urban Plan. 2008, 84, 7–19. [Google Scholar] [CrossRef]
- Tveit, M.; Ode, Å.; Fry, G. Key concepts in a framework for analysing visual landscape character. Landsc. Res. 2006, 31, 229–255. [Google Scholar] [CrossRef]
- Hanyu, K. Visual properties and affective appraisals in residential areas in daylight. J. Environ. Psychol. 2000, 20, 273–284. [Google Scholar] [CrossRef]
- Wang, Y.; Ijaz, K.; Calvo, R.A. A software application framework for developing immersive virtual reality experiences in health domain. In Proceedings of the 2017 IEEE Life Sciences Conference (LSC), Sydney, Australia, 13–15 December 2017; p. 37-30. [Google Scholar]
- Aoki, Y. Trends in the study of the psychological evaluation of landscape. Landsc. Res. 1999, 24, 85–94. [Google Scholar] [CrossRef]
- Daniel, T.C. Measuring Landscape Esthetics: The Scenic Beauty Estimation Method; Department of Agriculture, Forest Service, Rocky Mountain Forest and Range Experiment Station: Fort Collins, CO, USA, 1976; Volume 167. [Google Scholar]
- Arthur, L.M. Predicting scenic beauty of forest environments: Some empirical tests. For. Sci. 1977, 23, 151–160. [Google Scholar]
- Zube, E.H.; Sell, J.L.; Taylor, J.G. Landscape perception: Research, application and theory. Landsc. Plan. 1982, 9, 1–33. [Google Scholar] [CrossRef]
- Daniel, T.C. Whither scenic beauty? Visual landscape quality assessment in the 21st century. Landsc. Urban Plan. 2001, 54, 267–281. [Google Scholar] [CrossRef]
- Scott, A. Assessing public perception of landscape: The LANDMAP experience. Landsc. Res. 2002, 27, 271–295. [Google Scholar] [CrossRef]
- Brabyn, L. Landscape classification using GIS and national digital databases. Landsc. Res. 1996, 21, 277–300. [Google Scholar] [CrossRef]
- Shafer, E.L., Jr.; Hamilton, J.F., Jr.; Schmidt, E.A. Natural landscape preferences: A predictive model. J. Leisure Res. 1969, 1, 1–19. [Google Scholar] [CrossRef]
- Stedman, R.C. Is it really just a social construction?: The contribution of the physical environment to sense of place. Soc. Nat. Resour. 2003, 16, 671–685. [Google Scholar] [CrossRef]
- Landon, A.C.; Woosnam, K.M.; Kyle, G.T.; Keith, S.J. Psychological needs satisfaction and attachment to natural landscapes. Environ. Behav. 2021, 53, 661–683. [Google Scholar] [CrossRef]
- Hunziker, M.; Kienast, F. Potential impacts of changing agricultural activities on scenic beautyÅ—A prototypical technique for automated rapid assessment. Landsc. Ecol. 1999, 14, 161–176. [Google Scholar] [CrossRef]
- Fry, G.; Tveit, M.S.; Ode, Å.; Velarde, M.D. The ecology of visual landscapes: Exploring the conceptual common ground of visual and ecological landscape indicators. Ecol. Indic. 2009, 9, 933–947. [Google Scholar] [CrossRef]
- Ode, Å.; Hagerhall, C.M.; Sang, N. Analysing visual landscape complexity: Theory and application. Landsc. Res. 2010, 35, 111–131. [Google Scholar] [CrossRef]
- Appleton, J. Landscape evaluation: The theoretical vacuum. Trans. Inst. Br. Geogr. 1975, 66, 120–123. [Google Scholar] [CrossRef]
- Sahraoui, Y.; Youssoufi, S.; Foltête, J.C. A comparison of in situ and GIS landscape metrics for residential satisfaction modeling. Appl. Geogr. 2016, 74, 199–210. [Google Scholar] [CrossRef]
- Kaplan, R.; Kaplan, S. The Experience of Nature: A Psychological Perspective; Cambridge University Press: Cambridge, UK, 1989. [Google Scholar]
- Wartmann, F.M.; Stride, C.B.; Kienast, F.; Hunziker, M. Relating landscape ecological metrics with public survey data on perceived landscape quality and place attachment. Landsc. Ecol. 2021, 36, 2367–2393. [Google Scholar] [CrossRef]
- Hadavi, S.; Kaplan, R. Neighborhood satisfaction and use patterns in urban public outdoor spaces: Multidimensionality and two-way relationships. Urban For. Urban Green. 2016, 19, 110–122. [Google Scholar] [CrossRef] [Green Version]
- Woo, S.K. A study on the urban streetscape evaluation focused on pedestrian. Korean Soc. Basic Des. Art 2009, 10, 275–284. [Google Scholar]
- Osgood, C.E. Semantic differential technique in the comparative study of cultures. Am. Anthropol. 1964, 66, 171–200. [Google Scholar] [CrossRef]
- Tuan, Y.F. Topophilia: A Study of Environmental Perception, Attitudes, and Values; Columbia University Press: New York, NY, USA, 1990. [Google Scholar]
- Osgood, C.E.; Suci, G.J.; Tannenbaum, P.H. The Measurement of Meaning; University of Illinois Press: Champaign, IL, USA, 1957; No. 47. [Google Scholar]
- Buendia, A.V.P.; Pérez-Albert, Y.; Serrano Gine, D. Mapping landscape perception: An assessment with public participation geographic information systems and spatial analysis techniques. Land 2021, 10, 632. [Google Scholar] [CrossRef]
- Ólafsdóttir, R.; Sæþórsdóttir, A.D. Public perception of wilderness in Iceland. Land 2020, 9, 99. [Google Scholar] [CrossRef] [Green Version]
- Baczyńska, E.; Lorenc, M.W.; Kaźmierczak, U. The landscape attractiveness of abandoned quarries. Geoheritage 2018, 10, 271–285. [Google Scholar] [CrossRef] [Green Version]
- Lim, E.M.; Honjo, T.; Umeki, K. The validity of VRML images as a stimulus for landscape assessment. Landsc. Urban Plan. 2006, 77, 80–93. [Google Scholar] [CrossRef]
- Zube, E.H. Cross-disciplinary and intermode agreement on the description and evaluation of landscape resources. Environ. Behav. 1974, 6, 69. [Google Scholar]
- Uhlig, C.E.; Seitz, B.; Eter, N.; Promesberger, J.; Busse, H. Efficiencies of Internet-based digital and paper-based scientific surveys and the estimated costs and time for different-sized cohorts. PLoS ONE 2014, 9, e108441. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wherrett, J.R. Issues in using the Internet as a medium for landscape preference research. Landsc. Urban Plan. 1999, 45, 209–217. [Google Scholar] [CrossRef]
- Truell, A.D.; Bartlett, J.E.; Alexander, M.W. Response rate, speed, and completeness: A comparison of Internet-based and mail surveys. Behav. Res. Methods Instrum. Comput. 2002, 34, 46–49. [Google Scholar] [CrossRef] [Green Version]
- Wright, K.B. Researching Internet-based populations: Advantages and disadvantages of online survey research, online questionnaire authoring software packages, and web survey services. J. Comput. Mediat. Commun. 2005, 10, JCMC1034. [Google Scholar] [CrossRef]
- Akl, E.A.; Maroun, N.; Klocke, R.A.; Montori, V.; Schünemann, H.J. Electronic mail was not better than postal mail for surveying residents and faculty. J. Clin. Epidemiol. 2005, 58, 425–429. [Google Scholar] [CrossRef] [PubMed]
- Bishop, I.D. Testing perceived landscape colour difference using the Internet. Landsc. Urban Plan. 1997, 37, 187–196. [Google Scholar] [CrossRef]
- Wherrett, J.R. Natural Landscape Scenic Preference: Predictive Modelling and the World Wide Web. In Proceedings of the Conference on Urban, Regional, Environmental Planning and Informatics in Planning in an Era of Transition, National Technical University of Athens, Athens, Greece, 22–24 October 1997; pp. 775–794. [Google Scholar]
- Wherrett, J.R. Creating landscape preference models using internet survey techniques. Landsc. Res. 2000, 25, 79–96. [Google Scholar] [CrossRef]
- Zhao, W.; Zhang, L.; Li, X.; Peng, L.; Wang, P.; Wang, Z.; Jiao, L.; Wang, H. Residents’ Preference for Urban Green Space Types and Their Ecological-Social Services in China. Land 2022, 11, 2239. [Google Scholar] [CrossRef]
- Mitra, A.; Jain-Shukla, P.; Robbins, A.; Champion, H.; Durant, R. Differences in rate of response to web-based surveys among college students. Int. J. E-Learn. 2008, 7, 265–281. [Google Scholar]
- Archer, T.M. Response rates to expect from web-based surveys and what to do about it. J. Ext. 2008, 46, 1–5. [Google Scholar]
- Cook, C.; Heath, F.; Thompson, R.L. A meta-analysis of response rates in web-or internet-based surveys. Educ. Psychol. Meas. 2000, 60, 821–836. [Google Scholar] [CrossRef]
- Solomon, D.J. Conducting web-based surveys. Pract. Assess. Res. Eval. 2000, 7, 19. [Google Scholar]
- Johnson, T.; Owens, L. Survey response rate reporting in the professional literature. In Proceedings of the 58th Annual Meeting of the American Association for Public Opinion Research, Nashville, TN, USA, 15–18 May 2003; Volume 2003. [Google Scholar]
- Settgast, V.; Pirker, J.; Lontschar, S.; Maggale, S.; Gütl, C. Evaluating experiences in different virtual reality setups. In International Conference on Entertainment Computing; Springer: Cham, Switzerland, 2016; pp. 115–125. [Google Scholar]
- Lin, Z.; Wang, Y.; Song, Y.; Huang, T.; Gan, F.; Ye, X. Research on Ecological Landscape Design and Healing Effect Based on 3D Roaming Technology. Int. J. Environ. Res. Public Health 2022, 19, 11406. [Google Scholar] [CrossRef]
- Jo, H.I.; Jeon, J.Y. Perception of urban soundscape and landscape using different visual environment reproduction methods in virtual reality. Appl. Acoust. 2022, 186, 108498. [Google Scholar] [CrossRef]
- Chandler, T.; Richards, A.E.; Jenny, B.; Dickson, F.; Huang, J.; Klippel, A.; Neylan, M.; Wang, F.; Prober, S.M. Immersive landscapes: Modelling ecosystem reference conditions in virtual reality. Landsc. Ecol. 2022, 37, 1293–1309. [Google Scholar] [CrossRef]
- Lin, Z.; Zhang, L.; Tang, S.; Song, Y.; Ye, X. Evaluating cultural landscape remediation design based on VR Technology. ISPRS Int. J. Geo-Inform. 2021, 10, 423. [Google Scholar] [CrossRef]
- Kim, J.; Kim, S. Finding the optimal D/H ratio for an enclosed urban square: Testing an urban design principle using immersive virtual reality simulation techniques. Int. J. Environ. Res. Public Health 2019, 16, 865. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kim, S.; Kim, J.; Kim, B. Immersive virtual reality-aided conjoint analysis of urban square preference by living environment. Sustainability 2020, 12, 6440. [Google Scholar] [CrossRef]
- Ki, D.; Lee, S. Analyzing the effects of Green View Index of neighborhood streets on walking time using Google Street View and deep learning. Landsc. Urban Plan. 2021, 205, 103920. [Google Scholar] [CrossRef]
- Sanchez, G.M.E.; Van Renterghem, T.; Sun, K.; De Coensel, B.; Botteldooren, D. Using Virtual Reality for assessing the role of noise in the audio-visual design of an urban public space. Landsc. Urban Plan. 2017, 167, 98–107. [Google Scholar] [CrossRef] [Green Version]
- Felnhofer, A.; Kothgassner, O.D.; Schmidt, M.; Heinzle, A.K.; Beutl, L.; Hlavacs, H.; Kryspin-Exner, I. Is virtual reality emotionally arousing? Investigating five emotion inducing virtual park scenarios. Int. J. Hum. Comput. Stud. 2015, 82, 48–56. [Google Scholar] [CrossRef]
- Harpe, S.E. How to analyze Likert and other rating scale data. Curr. Pharm. Teach. Learn. 2015, 7, 836–850. [Google Scholar] [CrossRef]
- Wang, W.; Li, P.; Wang, W.; Namgung, M. Exploring determinants of pedestrians’ satisfaction with sidewalk environments: Case study in Korea. J. Urban Plan. Dev. 2012, 138, 166–172. [Google Scholar] [CrossRef]
- Kaplan, R. Nature at the doorstep: Residential satisfaction and the nearby environment. J. Archit. Plan. Res. 1985, 115–127. [Google Scholar]
- O’Connell, K.A. The harmony of spaces: Feng shui, the ancient Chinese art of placement, is increasingly used today to create meaningful spaces-but how relevant is it to landscape architecture? Landsc. Archit. 1999, 89, 102. [Google Scholar]
- Mak, W.W.; Cheung, R.Y.; Law, L.S. Sense of community in Hong Kong: Relations with community-level characteristics and residents’ well-being. Am. J. Commun. Psychol. 2009, 44, 80–92. [Google Scholar] [CrossRef]
- Wang, Y.C.; Lin, J.C.; Liu, W.Y.; Lin, C.C.; Ko, S.H. Investigation of visitors’ motivation, satisfaction and cognition on urban forest parks in Taiwan. J. For. Res. 2016, 21, 261–270. [Google Scholar] [CrossRef]
- Youssoufi, S.; Foltête, J.C. Determining appropriate neighborhood shapes and sizes for modeling landscape satisfaction. Landsc. Urban Plan. 2013, 110, 12–24. [Google Scholar] [CrossRef]
- Lee, S.W.; Ellis, C.D.; Kweon, B.S.; Hong, S.K. Relationship between landscape structure and neighborhood satisfaction in urbanized areas. Landsc. Urban Plan. 2008, 85, 60–70. [Google Scholar] [CrossRef]
- Jeon, J.Y.; Jo, H.I. Effects of audio-visual interactions on soundscape and landscape perception and their influence on satisfaction with the urban environment. Build. Environ. 2020, 169, 106544. [Google Scholar] [CrossRef]
- Leite, S.K.; Vendruscolo, G.S.; Renk, A.A.; Kissmann, C. Perception of farmers on landscape change in southern Brazil: Divergences and convergences related to gender and age. J. Rural Stud. 2019, 69, 11–18. [Google Scholar] [CrossRef]
- Sevenant, M.; Antrop, M. Landscape representation validity: A comparison between on-site observations and photographs with different angles of view. Landsc. Res. 2011, 36, 363–385. [Google Scholar] [CrossRef]
- Roth, M. Validating the use of Internet survey techniques in visual landscape assessment—An empirical study from Germany. Landsc. Urban Plan. 2006, 78, 179–192. [Google Scholar] [CrossRef]
- Axelsson, Ö.; Nilsson, M.E.; Hellström, B.; Lundén, P. A field experiment on the impact of sounds from a jet-and-basin fountain on soundscape quality in an urban park. Landsc. Urban Plan. 2014, 123, 49–60. [Google Scholar] [CrossRef] [Green Version]
- Shr, Y.H.J.; Ready, R.; Orland, B.; Echols, S. How do visual representations influence survey responses? Evidence from a choice experiment on landscape attributes of green infrastructure. Ecol. Econ. 2019, 156, 375–386. [Google Scholar] [CrossRef]
- Kroh, D.P.; Gimblett, R.H. Comparing live experience with pictures in articulating landscape preference. Landsc. Res. 1992, 17, 58–69. [Google Scholar] [CrossRef]
- Palmer, J.F.; Hoffman, R.E. Rating reliability and representation validity in scenic landscape assessments. Landsc. Urban Plan. 2001, 54, 149–161. [Google Scholar] [CrossRef]
- Stewart, T.R.; Middleton, P.; Downton, M.; Ely, D. Judgments of photographs vs field observations in studies of perception and judgment of the visual environment. J. Environ. Psychol. 1984, 4, 283–302. [Google Scholar] [CrossRef]
- Scott, M.J.; Canter, D.V. Picture or place? A multiple sorting study of landscape. J. Environ. Psychol. 1997, 17, 263–281. [Google Scholar] [CrossRef]
- Stewart, W.P.; Hull, R.B., IV. Capturing the moments: Concerns of in situ leisure research. J. Travel Tour. Mark. 1996, 5, 3–20. [Google Scholar] [CrossRef]
- Huang, S.C.L. The validity of visual surrogates for representing waterscapes. Landsc. Res. 2009, 34, 323–335. [Google Scholar] [CrossRef]
- Reips, U.D. Standards for Internet-based experimenting. Exp. Psychol. 2002, 49, 243. [Google Scholar]
- Weible, R.; Wallace, J. Cyber research: The impact of the Internet on data collection. Mark. Res. 1998, 10, 19. [Google Scholar]
- Llieva, J.; Baron, S.; Healey, N.M. Online surveys in marketing research. Int. J. Mark. Res. 2002, 44, 1–14. [Google Scholar]
- Sacchelli, S.; Grilli, G.; Capecchi, I.; Bambi, L.; Barbierato, E.; Borghini, T. Neuroscience application for the analysis of cultural ecosystem services related to stress relief in forest. Forests 2020, 11, 190. [Google Scholar] [CrossRef] [Green Version]
- Annerstedt, M.; Jönsson, P.; Wallergård, M.; Johansson, G.; Karlson, B.; Grahn, P.; Hansen, A.M.; Währborg, P. Inducing physiological stress recovery with sounds of nature in a virtual reality forest—Results from a pilot study. Physiol. Behav. 2013, 118, 240–250. [Google Scholar] [CrossRef]
Jan. | Feb. | Mar. | April | May | June | July | Aug. | Sep. | Oct. | Nov. | Dec. | |
---|---|---|---|---|---|---|---|---|---|---|---|---|
No. of GSV images | 6612 | 3786 | 75,027 | 210,029 | 97,467 | 2425 | 5553 | 6313 | 11,680 | 16,057 | 21,225 | 12,135 |
Percent (%) | 1.41 | 0.81 | 16.02 | 44.85 | 20.81 | 0.52 | 1.19 | 1.35 | 2.49 | 3.43 | 4.53 | 2.59 |
Classification | No. of Obs. | Percent (%) | |
---|---|---|---|
Gender | Woman | 12 | 48.0 |
Man | 13 | 52.0 | |
Age | 20–29 years | 15 | 60.0 |
30–39 years | 9 | 36.0 | |
40+ years | 1 | 4.0 | |
Total | 25 | 100.0 |
Variable | Mean | Differences (VR-Based–Web-Based) | t-Value | ||
---|---|---|---|---|---|
Web-Based | VR-Based | ||||
Comfort | 2.33 | 2.31 | −0.02 | 0.379 | |
Friendliness | 2.82 | 2.84 | 0.02 | −0.323 | |
Harmony | 2.43 | 2.57 | 0.14 | −2.302 | ** |
Naturalness | 1.98 | 2.09 | 0.11 | −2.124 | ** |
Beauty | 2.09 | 2.17 | 0.08 | −1.436 | |
Regularity | 2.66 | 2.73 | 0.07 | −1.096 | |
Personality | 2.14 | 2.22 | 0.08 | −1.252 | |
Cleanliness | 2.72 | 2.57 | −0.15 | 2.482 | ** |
Artificiality | 3.13 | 3.32 | 0.19 | −3.419 | *** |
Safety | 2.47 | 2.57 | 0.10 | −1.789 | * |
Overall satisfaction | 2.53 | 2.64 | 0.11 | −2.005 | ** |
Variable | Web-Based Survey | VR-Based Survey | |||||
---|---|---|---|---|---|---|---|
Overall Landscape Satisfaction | Overall Landscape Satisfaction | ||||||
Coef. | z | Coef. | z | ||||
Personal characteristics | Male | −0.784 | * | −1.80 | −0.593 | ** | −2.20 |
Age | 0.036 | 0.66 | 0.026 | 0.80 | |||
Landscape evaluation questionnaire | Comfort | 0.679 | *** | 4.01 | 0.385 | ** | 2.34 |
Friendliness | 0.383 | *** | 2.93 | 0.151 | 1.04 | ||
Harmony | 0.168 | 1.14 | 0.458 | *** | 2.68 | ||
Naturalness | 0.499 | *** | 3.20 | 0.591 | *** | 3.67 | |
Beauty | 0.499 | ** | 2.49 | 0.992 | *** | 5.06 | |
Regularity | 0.056 | 0.47 | 0.001 | 0.01 | |||
Personality | 0.522 | *** | 3.78 | 0.268 | ** | 2.07 | |
Cleanliness | 0.855 | *** | 5.77 | 0.763 | *** | 4.82 | |
Artificiality | 0.009 | 0.08 | −0.042 | −0.37 | |||
Safety | 0.955 | *** | 6.24 | 1.329 | *** | 7.33 | |
cuts | cut1 | 7.725 | 6.890 | ||||
cut2 | 11.569 | 11.278 | |||||
cut3 | 15.476 | 16.260 | |||||
cut4 | 19.640 | 21.746 | |||||
Obs. | 375 | 375 | |||||
Wald chi2 (12) | 200.62 | *** | 205.03 | *** | |||
ICC | 0.164 | 0.000 | |||||
AIC | 622.2 | 522.3 | |||||
BIC | 689.0 | 585.1 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Han, J.; Lee, S. Verification of Immersive Virtual Reality as a Streetscape Evaluation Method in Urban Residential Areas. Land 2023, 12, 345. https://doi.org/10.3390/land12020345
Han J, Lee S. Verification of Immersive Virtual Reality as a Streetscape Evaluation Method in Urban Residential Areas. Land. 2023; 12(2):345. https://doi.org/10.3390/land12020345
Chicago/Turabian StyleHan, Jaewon, and Sugie Lee. 2023. "Verification of Immersive Virtual Reality as a Streetscape Evaluation Method in Urban Residential Areas" Land 12, no. 2: 345. https://doi.org/10.3390/land12020345
APA StyleHan, J., & Lee, S. (2023). Verification of Immersive Virtual Reality as a Streetscape Evaluation Method in Urban Residential Areas. Land, 12(2), 345. https://doi.org/10.3390/land12020345