Sustainable Urban Green Blue Space (UGBS) and Public Participation: Integrating Multisensory Landscape Perception from Online Reviews
Abstract
:1. Introduction
1.1. UGBS: Multi-Functionality and Sustainable Development
1.2. Physical Environment, Multiple Senses, and Subjective Psychology
1.3. Online Reviews Complement Public Opinions and Participation
- How do different sensory and physical environments affect the overall perception level?
- Is there a correlation between the physical environment and multiple senses?
- Compare the subjective perceptions of major UGBS in Tokyo based on online reviews.
- Supplement public participation and opinions with the overall multisensory perception to improve sustainable management.
2. Materials and Methods
2.1. Study Area
2.2. Data Acquisition
2.3. Data Processing
2.3.1. Sentiment Analysis
2.3.2. Text Processing
2.3.3. Picture Processing
2.4. Sensory Map
2.5. Statistical Analysis
2.5.1. Correlation Analysis
2.5.2. Multiple Linear Regression Analysis
3. Results
3.1. Public Overall Perception
3.2. Text Data
3.3. Picture Data
3.4. Sensory Map
3.5. Physical Environment, the Sensory Expression, and Overall Perception
3.5.1. Correlation Analysis
3.5.2. Multiple Linear Regression Analysis
4. Discussion
4.1. Public Subjective Perception and Sustainable Development of UGBS
4.2. Sustainable Management Strategies Based on Multiple Senses
4.3. Optimize the Physical Environment Based on Sensory Feedback from the Site
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
Appendix A. Semantic Segmentation Element Classification
Category | Elements |
Architecture | | wall | building; edifice | windowpane; window | door; double door | house | column; pillar | skyscraper |grandstand; covered stand | grandstand; covered stand | stairway; staircase | screen door; screen |toilet; can; commode; crapper; pot; potty; stool; throne | bar | hovel; hut; hutch; shack; shanty | tower | stage | step; stair | |
Landscape structure | | fence; fencing | lamp | signboard; sign | bench | arcade machine | bridge; span | streetlight; streetlamp | pole | stool | bannister; banister; balustrade; balusters; handrail | sculpture | ashcan; trash can; garbage can; wastebin; ash bin; ashbin; ashbin; dustbin; trash barrel; trash bin | monitor; monitoring device | bulletin board; notice board | flag | |
Road | | road; route | sidewalk; pavement | earth; ground | railing; rail | path | traffic light; traffic signal; stoplight | runway | dirt track | land; ground; soil | |
Transportation | | car; auto; automobile; machine; motorcar | boat | bus; autobus; coach; char banc; double-decker; jitney; motorbus; motorcoach; omnibus; passenger vehicle | truck; motortruck | airplane; aero plane; plane | van | ship | minibike; motorbike | bicycle; bike; wheel; cycle | |
Sky | | sky | |
Vegetation | | tree | grass | plant; flora; plant life | flower | palm; palm tree | pot; flowerpot | |
Mountain | | mountain; mount | rock; stone | sand | hill | |
Water | | water | sea | river | fountain | swimming pool; swimming bath; natatorium | waterfall; falls | lake | |
People | | person; individual; someone; somebody; mortal; soul | |
Animal | | animal; animate being beast; brute; creature; fauna | |
Food | | food; solid food | |
Interior | | floor; flooring | ceiling | bed | cabinet | table | curtain; drape; drapery; mantle; pall | chair | sofa; couch; lounge | shelf | mirror | rug; carpet; carpeting | armchair | seat | desk | wardrobe; closet; press | bathtub; bathing tub; bath; tub | cushion | base; pedestal; stand | box | chest of drawers; chest; bureau; dresser | counter | sink | fireplace; hearth; open fireplace | refrigerator; icebox | pool table; billiard table; snooker table | pillow | bookcase | blind; screen | coffee table; cocktail table | countertop | stove; kitchen stove; range; kitchen range; cooking stove | kitchen island | computer; computing machine; computing device; data processor; electronic computer; information processing system | swivel chair | towel | chandelier; pendant; pendent | television receiver; television; television set; tv; tv set; idiot box; boob tube; tally; goggle box | escalator; moving staircase; moving stairway | ottoman; pouf; pouffe; puff; hassock | buffet; counter; sideboard | washer; automatic washer; washing machine | plaything; toy | barrel; cask | basket; handbasket | bag | cradle | oven | ball | tank; storage tank | dishwasher; dish washer; dishwashing machine | screen; silver screen; projection screen | blanket; cover | hood; exhaust hood | sconce | vase | tray | microwave; microwave oven | fan | crt screen | shower | plate | radiator | glass; drinking glass | clock | |
References
- Ronchi, S.; Arcidiacono, A.; Pogliani, L. Integrating green infrastructure into spatial planning regulations to improve the performance of urban ecosystems. Insights from an Italian case study. Sustain. Cities Soc. 2020, 53, 101907. [Google Scholar] [CrossRef]
- Seiwert, A.; Rößler, S. Understanding the term green infrastructure: Origins, rationales, semantic content and purposes as well as its relevance for application in spatial planning. Land Use Policy 2020, 97, 104785. [Google Scholar] [CrossRef]
- Zhang, J.; Wang, Q.; Xia, Y.; Furuya, K. Knowledge Map of Spatial Planning and Sustainable Development: A Visual Analysis Using CiteSpace. Land 2022, 11, 331. [Google Scholar] [CrossRef]
- Monteiro, R.; Ferreira, J.C.; Antunes, P. Green Infrastructure Planning Principles: An Integrated Literature Review. Land 2020, 9, 19. [Google Scholar] [CrossRef]
- Morpurgo, J.; Remme, R.P.; Van Bodegom, P.M. CUGIC: The Consolidated Urban Green Infrastructure Classification for assessing ecosystem services and biodiversity. Landsc. Urban Plan. 2023, 234, 104726. [Google Scholar] [CrossRef]
- O’Brien, L.; De Vreese, R.; Kern, M.; Sievänen, T.; Stojanova, B.; Atmiş, E. Cultural ecosystem benefits of urban and peri-urban green infrastructure across different European countries. Urban For. Urban Green. 2017, 24, 236–248. [Google Scholar] [CrossRef]
- Charoenkit, S.; Piyathamrongchai, K. A review of urban green spaces multifunctionality assessment: A way forward for a standardized assessment and comparability. Ecol. Indic. 2019, 107, 105592. [Google Scholar] [CrossRef]
- Lafortezza, R.; Davies, C.; Sanesi, G.; Konijnendijk, C. Green Infrastructure as a tool to support spatial planning in European urban regions. Iforest-Biogeosciences For. 2013, 6, 102–108. [Google Scholar] [CrossRef] [Green Version]
- Thomas, H.; Gaetan, P.; Roberta, R.; Hugues, B.; Jacques, B.; Xavier, P.; Jean-Baptiste, N.; Manuel, A.M.J.; Stefano, B.; Cendrine, M.; et al. European blue and green infrastructure network strategy vs. the common agricultural policy. Insights from an integrated case study (Couesnon, Brittany). Land Use Policy 2022, 120, 106277. [Google Scholar] [CrossRef]
- Pilogallo, A.; Scorza, F. Ecosystem Services Multifunctionality: An Analytical Framework to Support Sustainable Spatial Planning in Italy. Sustainability 2022, 14, 3346. [Google Scholar] [CrossRef]
- Bakay, E. The Role of Housing Estates’ Green Surfaces in Forming the City Climate of Budapest. Appl. Ecol. Environ. Res. 2012, 10, 1–16. [Google Scholar] [CrossRef]
- Silva, J.M.C.D.; Wheeler, E. Ecosystems as infrastructure. Perspect. Ecol. Conserv. 2017, 15, 32–35. [Google Scholar] [CrossRef]
- Cheshmehzangi, A.; Butters, C.; Xie, L.; Dawodu, A. Green infrastructures for urban sustainability: Issues, implications, and solutions for underdeveloped areas. Urban For. Urban Green. 2021, 59, 127028. [Google Scholar] [CrossRef]
- Iungman, T.; Cirach, M.; Marando, F.; Pereira Barboza, E.; Khomenko, S.; Masselot, P.; Quijal-Zamorano, M.; Mueller, N.; Gasparrini, A.; Urquiza, J.; et al. Cooling cities through urban green infrastructure: A health impact assessment of European cities. Lancet 2023, 401, 577–589. [Google Scholar] [CrossRef]
- Reu Junqueira, J.; Serrao-Neumann, S.; White, I. Using green infrastructure as a social equity approach to reduce flood risks and address climate change impacts: A comparison of performance between cities and towns. Cities 2022, 131, 104051. [Google Scholar] [CrossRef]
- Tian, P.; Li, J.; Cao, L.; Pu, R.; Wang, Z.; Zhang, H.; Chen, H.; Gong, H. Assessing spatiotemporal characteristics of urban heat islands from the perspective of an urban expansion and green infrastructure. Sustain. Cities Soc. 2021, 74, 103208. [Google Scholar] [CrossRef]
- Veerkamp, C.J.; Schipper, A.M.; Hedlund, K.; Lazarova, T.; Nordin, A.; Hanson, H.I. A review of studies assessing ecosystem services provided by urban green and blue infrastructure. Ecosyst. Serv. 2021, 52, 101367. [Google Scholar] [CrossRef]
- Wang, J.; Foley, K. Promoting climate-resilient cities: Developing an attitudinal analytical framework for understanding the relationship between humans and blue-green infrastructure. Environ. Sci. Policy 2023, 146, 133–143. [Google Scholar] [CrossRef]
- Zou, H.; Wang, X. Progress and Gaps in Research on Urban Green Space Morphology: A Review. Sustainability 2021, 13, 1202. [Google Scholar] [CrossRef]
- Navarrete-Hernandez, P.; Laffan, K. A greener urban environment: Designing green infrastructure interventions to promote citizens’ subjective wellbeing. Landsc. Urban Plan. 2019, 191, 103618. [Google Scholar] [CrossRef]
- Behm, J.E.; Bélouard, N.; Gleditsch, J.M.; Phillips, P.M.; Swartz, T.M. Trait-based approaches for understanding how biodiversity generates sustainable benefits in urban vegetated green infrastructure. Curr. Opin. Environ. Sustain. 2022, 57, 101204. [Google Scholar] [CrossRef]
- Puppim de Oliveira, J.A.; Bellezoni, R.A.; Shih, W.-Y.; Bayulken, B. Innovations in Urban Green and Blue Infrastructure: Tackling local and global challenges in cities. J. Clean. Prod. 2022, 362, 132355. [Google Scholar] [CrossRef]
- Ying, J.; Zhang, X.; Zhang, Y.; Bilan, S. Green infrastructure: Systematic literature review. Econ. Res.-Ekon. Istraživanja 2022, 35, 343–366. [Google Scholar] [CrossRef]
- Macháč, J.; Brabec, J.; Arnberger, A. Exploring public preferences and preference heterogeneity for green and blue infrastructure in urban green spaces. Urban For. Urban Green. 2022, 75, 127695. [Google Scholar] [CrossRef]
- Labib, S.M.; Lindley, S.; Huck, J.J. Spatial dimensions of the influence of urban green-blue spaces on human health: A systematic review. Environ. Res. 2020, 180, 108869. [Google Scholar] [CrossRef]
- Li, H.; Browning, M.H.E.M.; Rigolon, A.; Larson, L.R.; Taff, D.; Labib, S.M.; Benfield, J.; Yuan, S.; McAnirlin, O.; Hatami, N.; et al. Beyond “bluespace” and “greenspace”: A narrative review of possible health benefits from exposure to other natural landscapes. Sci. Total Environ. 2023, 856, 159292. [Google Scholar] [CrossRef]
- Xiangxiang, J.; Zhimiao, Z.; Xiao, L.; Zhufang, W.; Yinjiang, Z. Advances in the blue-green space evaluation index system. Ecohydrology 2023, 16, e2527. [Google Scholar] [CrossRef]
- Dollah, A.S.; Nirwana; Mustafa, M.; Januarti Putri, A.M. The social performance of the Green Open Space (GOS) in Karebosi Field Complex. Soc. Sci. Humanit. Open 2023, 8, 100540. [Google Scholar] [CrossRef]
- Pinto, L.V.; Inácio, M.; Ferreira, C.S.S.; Ferreira, A.D.; Pereira, P. Ecosystem services and well-being dimensions related to urban green spaces—A systematic review. Sustain. Cities Soc. 2022, 85, 104072. [Google Scholar] [CrossRef]
- Xia, Z.; Yuan, C.; Gao, Y.; Shen, Z.; Liu, K.; Huang, Y.; Wei, X.; Liu, L. Integrating perceptions of ecosystem services in adaptive management of country parks: A case study in peri-urban Shanghai, China. Ecosyst. Serv. 2023, 60, 101522. [Google Scholar] [CrossRef]
- Zhou, L.; Guan, D.; Huang, X.; Yuan, X.; Zhang, M. Evaluation of the cultural ecosystem services of wetland park. Ecol. Indic. 2020, 114, 106286. [Google Scholar] [CrossRef]
- Luo, S.; Patuano, A. Multiple ecosystem services of informal green spaces: A literature review. Urban For. Urban Green. 2023, 81, 127849. [Google Scholar] [CrossRef]
- Mihalakakou, G.; Souliotis, M.; Papadaki, M.; Menounou, P.; Dimopoulos, P.; Kolokotsa, D.; Paravantis, J.A.; Tsangrassoulis, A.; Panaras, G.; Giannakopoulos, E.; et al. Green roofs as a nature-based solution for improving urban sustainability: Progress and perspectives. Renew. Sustain. Energy Rev. 2023, 180, 113306. [Google Scholar] [CrossRef]
- Włodarczyk-Marciniak, R.; Sikorska, D.; Krauze, K. Residents’ awareness of the role of informal green spaces in a post-industrial city, with a focus on regulating services and urban adaptation potential. Sustain. Cities Soc. 2020, 59, 102236. [Google Scholar] [CrossRef] [PubMed]
- Aly, D.; Dimitrijevic, B. Systems approach to the sustainable management of urban public parks. Urban For. Urban Green. 2022, 68, 127482. [Google Scholar] [CrossRef]
- Derkzen, M.L.; van Teeffelen, A.J.A.; Nagendra, H.; Verburg, P.H. Shifting roles of urban green space in the context of urban development and global change. Curr. Opin. Environ. Sustain. 2017, 29, 32–39. [Google Scholar] [CrossRef]
- Uniaty, Q. Park system concept for environmental sustainabilityin urban spatial development. IOP Conf. Ser. Earth Environ. Sci. 2018, 106, 012044. [Google Scholar] [CrossRef]
- Grahn, P.; Stigsdotter, U.K. The relation between perceived sensory dimensions of urban green space and stress restoration. Landsc. Urban Plan. 2010, 94, 264–275. [Google Scholar] [CrossRef]
- Habbak, A.L.Z.; Khodeir, L. Multi-sensory interactive interior design for enhancing skills in children with autism. Ain Shams Eng. J. 2023, 14, 102039. [Google Scholar] [CrossRef]
- Nitidara, N.P.A.; Sarwono, J.; Suprijanto, S.; Soelami, F.X.N. The multisensory interaction between auditory, visual, and thermal to the overall comfort in public open space: A study in a tropical climate. Sustain. Cities Soc. 2022, 78, 103622. [Google Scholar] [CrossRef]
- Xiang, Y.; Hedblom, M.; Wang, S.; Qiu, L.; Gao, T. Indicator selection combining audio and visual perception of urban green spaces. Ecol. Indic. 2022, 137, 108772. [Google Scholar] [CrossRef]
- White, M.P.; Elliott, L.R.; Gascon, M.; Roberts, B.; Fleming, L.E. Blue space, health and well-being: A narrative overview and synthesis of potential benefits. Environ. Res. 2020, 191, 110169. [Google Scholar] [CrossRef]
- Wu, W.; Chen, W.Y.; Yun, Y.; Wang, F.; Gong, Z. Urban greenness, mixed land-use, and life satisfaction: Evidence from residential locations and workplace settings in Beijing. Landsc. Urban Plan. 2022, 224, 104428. [Google Scholar] [CrossRef]
- Bray, I.; Reece, R.; Sinnett, D.; Martin, F.; Hayward, R. Exploring the role of exposure to green and blue spaces in preventing anxiety and depression among young people aged 14–24 years living in urban settings: A systematic review and conceptual framework. Environ. Res. 2022, 214, 114081. [Google Scholar] [CrossRef]
- Huang, W.; Lin, G. The relationship between urban green space and social health of individuals: A scoping review. Urban For. Urban Green. 2023, 85, 127969. [Google Scholar] [CrossRef]
- Yen, H.-Y.; Chiu, H.-L.; Huang, H.-Y. Green and blue physical activity for quality of life: A systematic review and meta-analysis of randomized control trials. Landsc. Urban Plan. 2021, 212, 104093. [Google Scholar] [CrossRef]
- Hong, A.; Martinez, L.; Patino, J.E.; Duque, J.C.; Rahimi, K. Neighbourhood green space and health disparities in the global South: Evidence from Cali, Colombia. Health Place 2021, 72, 102690. [Google Scholar] [CrossRef]
- Vidal Yañez, D.; Pereira Barboza, E.; Cirach, M.; Daher, C.; Nieuwenhuijsen, M.; Mueller, N. An urban green space intervention with benefits for mental health: A health impact assessment of the Barcelona “Eixos Verds” Plan. Environ. Int. 2023, 174, 107880. [Google Scholar] [CrossRef] [PubMed]
- Zhang, L.; Tan, P.Y.; Gan, D.R.Y.; Samsudin, R. Assessment of mediators in the associations between urban green spaces and self-reported health. Landsc. Urban Plan. 2022, 226, 104503. [Google Scholar] [CrossRef]
- Zhang, L.; Tan, P.Y.; Richards, D. Relative importance of quantitative and qualitative aspects of urban green spaces in promoting health. Landsc. Urban Plan. 2021, 213, 104131. [Google Scholar] [CrossRef]
- Niemelä, J. Ecology of urban green spaces: The way forward in answering major research questions. Landsc. Urban Plan. 2014, 125, 298–303. [Google Scholar] [CrossRef]
- Padró, R.; La Rota-Aguilera, M.J.; Giocoli, A.; Cirera, J.; Coll, F.; Pons, M.; Pino, J.; Pili, S.; Serrano, T.; Villalba, G.; et al. Assessing the sustainability of contrasting land use scenarios through the Socioecological Integrated Analysis (SIA) of the metropolitan green infrastructure in Barcelona. Landsc. Urban Plan. 2020, 203, 103905. [Google Scholar] [CrossRef]
- Qin, J.; Zhou, X.; Sun, C.; Leng, H.; Lian, Z. Influence of green spaces on environmental satisfaction and physiological status of urban residents. Urban For. Urban Green. 2013, 12, 490–497. [Google Scholar] [CrossRef]
- Li, D.; Sullivan, W.C. Impact of views to school landscapes on recovery from stress and mental fatigue. Landsc. Urban Plan. 2016, 148, 149–158. [Google Scholar] [CrossRef] [Green Version]
- Mishra, H.S.; Bell, S.; Vassiljev, P.; Kuhlmann, F.; Niin, G.; Grellier, J. The development of a tool for assessing the environmental qualities of urban blue spaces. Urban For. Urban Green. 2020, 49, 126575. [Google Scholar] [CrossRef]
- Xie, B.; Lu, Y.; Zheng, Y. Casual evaluation of the effects of a large-scale greenway intervention on physical and mental health: A natural experimental study in China. Urban For. Urban Green. 2022, 67, 127419. [Google Scholar] [CrossRef]
- Aoshima, I.; Uchida, K.; Ushimaru, A.; Sato, M. The influence of subjective perceptions on the valuation of green spaces in Japanese urban areas. Urban For. Urban Green. 2018, 34, 166–174. [Google Scholar] [CrossRef]
- Sharifi, F.; Nygaard, A.; Stone, W.M. Heterogeneity in the subjective well-being impact of access to urban green space. Sustain. Cities Soc. 2021, 74, 103244. [Google Scholar] [CrossRef]
- Deroy, O.; Spence, C.; Noppeney, U. Metacognition in Multisensory Perception. Trends Cogn. Sci. 2016, 20, 736–747. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ren, X. Combined effects of dominant sounds, conversational speech and multisensory perception on visitors’ acoustic comfort in urban open spaces. Landsc. Urban Plan. 2023, 232, 104674. [Google Scholar] [CrossRef]
- Bruns, P.; Röder, B. Development and experience-dependence of multisensory spatial processing. Trends Cogn. Sci. 2023, 2442, 1–13. [Google Scholar] [CrossRef] [PubMed]
- He, J.; Hao, Z.; Li, L.; Ye, T.; Sun, B.; Wu, R.; Pei, N. Sniff the urban park: Unveiling odor features and landscape effect on smellscape in Guangzhou, China. Urban For. Urban Green. 2022, 78, 127764. [Google Scholar] [CrossRef]
- He, M.; Wang, Y.; Wang, W.J.; Xie, Z. Therapeutic plant landscape design of urban forest parks based on the Five Senses Theory: A case study of Stanley Park in Canada. Int. J. Geoheritage Parks 2022, 10, 97–112. [Google Scholar] [CrossRef]
- Mouratidis, K. Urban planning and quality of life: A review of pathways linking the built environment to subjective well-being. Cities 2021, 115, 103229. [Google Scholar] [CrossRef]
- Nazneen, S.; Hong, X.; Ud Din, N.; Jamil, B. Infrastructure-driven development and sustainable development goals: Subjective analysis of residents’ perception. J. Environ. Manag. 2021, 294, 112931. [Google Scholar] [CrossRef]
- Hasan, M.A.; Nahiduzzaman, K.M.; Aldosary, A.S. Public participation in EIA: A comparative study of the projects run by government and non-governmental organizations. Environ. Impact Assess. Rev. 2018, 72, 12–24. [Google Scholar] [CrossRef]
- Perlaviciute, G.; Squintani, L. Public Participation in Climate Policy Making: Toward Reconciling Public Preferences and Legal Frameworks. One Earth 2020, 2, 341–348. [Google Scholar] [CrossRef]
- Guerola-Navarro, V.; Stratu-Strelet, D.; Botella-Carrubi, D.; Gil-Gomez, H. Media or information literacy as variables for citizen participation in public decision-making? A bibliometric overview. Sustain. Technol. Entrep. 2023, 2, 100030. [Google Scholar] [CrossRef]
- Ma, P.; Song, Y.; Zhang, M. Mediating and spatial spillover effects of public participation in environmental pollution governance mediated via traditional and new media. J. Environ. Manag. 2023, 342, 118046. [Google Scholar] [CrossRef]
- Qiu, S.; Gao, X.; Yue, W.; Zhang, Q. Government-led and Internet-empowered citizen participation in China’s policymaking: A case study of the Shanghai 2035 Master Plan. Gov. Inf. Q. 2023, 40, 101806. [Google Scholar] [CrossRef]
- Hutchings, S.C.; Dixit, Y.; Al-Sarayreh, M.; Torrico, D.D.; Realini, C.E.; Jaeger, S.R.; Reis, M.M. A critical review of social media research in sensory-consumer science. Food Res. Int. 2023, 165, 112494. [Google Scholar] [CrossRef] [PubMed]
- Bubalo, M.; van Zanten, B.T.; Verburg, P.H. Crowdsourcing geo-information on landscape perceptions and preferences: A review. Landsc. Urban Plan. 2019, 184, 101–111. [Google Scholar] [CrossRef]
- Tanveer, M.; Rastogi, A.; Paliwal, V.; Ganaie, M.A.; Malik, A.K.; Ser, J.D.; Lin, C.-T. Ensemble deep learning in speech signal tasks: A review. Neurocomputing 2023, 550, 126436. [Google Scholar] [CrossRef]
- Ganaie, M.A.; Hu, M.; Malik, A.K.; Tanveer, M.; Suganthan, P.N. Ensemble deep learning: A review. Eng. Appl. Artif. Intell. 2022, 115, 105151. [Google Scholar] [CrossRef]
- Waqas, A.; Salminen, J.; Jung, S.G.; Almerekhi, H.; Jansen, B.J. Mapping online hate: A scientometric analysis on research trends and hotspots in research on online hate. PLoS ONE 2019, 14, e0222194. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Koblet, O.; Purves, R.S. From online texts to Landscape Character Assessment: Collecting and analysing first-person landscape perception computationally. Landsc. Urban Plan. 2020, 197, 103757. [Google Scholar] [CrossRef]
- Huai, S.; Van de Voorde, T. Which environmental features contribute to positive and negative perceptions of urban parks? A cross-cultural comparison using online reviews and Natural Language Processing methods. Landsc. Urban Plan. 2022, 218, 104307. [Google Scholar] [CrossRef]
- Hanes, J.E. Tokyo and Beyond: Space and Place in Urban Japan. J. Urban Hist. 2016, 42, 972–983. [Google Scholar] [CrossRef]
- Sorensen, A. Land readjustment and metropolitan growth: An examination of suburban land development and urban sprawl in the Tokyo metropolitan area. Prog. Plan. 2000, 53, 217–330. [Google Scholar] [CrossRef] [Green Version]
- Yoshida, T.; Osada, Y.; Kawaguchi, T.; Hoshiyama, Y.; Yoshida, K.; Yamamoto, K. Effects of Road Traffic Noise on Inhabitants of Tokyo. J. Sound Vib. 1997, 205, 517–522. [Google Scholar] [CrossRef]
- Koohsari, M.J.; Yasunaga, A.; McCormack, G.R.; Shibata, A.; Ishii, K.; Nakaya, T.; Hanibuchi, T.; Nagai, Y.; Oka, K. Depression among middle-aged adults in Japan: The role of the built environment design. Landsc. Urban Plan. 2023, 231, 104651. [Google Scholar] [CrossRef]
- Ishikawa, N.; Fukushige, M. Effects of street landscape planting and urban public parks on dwelling environment evaluation in Japan. Urban For. Urban Green. 2012, 11, 390–395. [Google Scholar] [CrossRef]
- Parady, G.; Suzuki, K.; Oyama, Y.; Chikaraishi, M. Activity detection with google maps location history data: Factors affecting joint activity detection probability and its potential application on real social networks. Travel Behav. Soc. 2023, 30, 344–357. [Google Scholar] [CrossRef]
- Mathayomchan, B.; Taecharungroj, V. “How was your meal?” Examining customer experience using Google maps reviews. Int. J. Hosp. Manag. 2020, 90, 102641. [Google Scholar] [CrossRef]
- Li, L.; Mao, Y.; Wang, Y.; Ma, Z. How has airport service quality changed in the context of COVID-19: A data-driven crowdsourcing approach based on sentiment analysis. J. Air Transp. Manag. 2022, 105, 102298. [Google Scholar] [CrossRef]
- Yokoi, K.; Iribe, Y.; Kitaoka, N.; Tsuboi, T.; Hiraga, K.; Satake, Y.; Hattori, M.; Tanaka, Y.; Sato, M.; Hori, A.; et al. Analysis of spontaneous speech in Parkinson’s disease by natural language processing. Park. Relat. Disord. 2023, 105411, 1–6. [Google Scholar] [CrossRef] [PubMed]
- Bobba, P.S.; Sailer, A.; Pruneski, J.A.; Beck, S.; Mozayan, A.; Mozayan, S.; Arango, J.; Cohan, A.; Chheang, S. Natural language processing in radiology: Clinical applications and future directions. Clin. Imaging 2023, 97, 55–61. [Google Scholar] [CrossRef]
- Mei, J.; Wang, Y.; Tu, X.; Dong, M.; He, T. Incorporating BERT With Probability-Aware Gate for Spoken Language Understanding. IEEE/ACM Trans. Audio Speech Lang. Process. 2023, 31, 826–834. [Google Scholar] [CrossRef]
- Devlin, J.; Chang, M.W.; Lee, K.; Toutanova, K. Bert: Pre-training of deep bidirectional transformers for language understanding. arXiv 2018, arXiv:1810.04805. [Google Scholar]
- Bello, A.; Ng, S.-C.; Leung, M.-F. A BERT Framework to Sentiment Analysis of Tweets. Sensors 2023, 23, 506. [Google Scholar] [CrossRef]
- Oliaee, A.H.; Das, S.; Liu, J.; Rahman, M.A. Using Bidirectional Encoder Representations from Transformers (BERT) to classify traffic crash severity types. Nat. Lang. Process. J. 2023, 3, 100007. [Google Scholar] [CrossRef]
- Zhang, Y.; Wang, G.; Wang, X.; Fan, H.; Shen, B.; Sun, K. TOC estimation from logging data using principal component analysis. Energy Geosci. 2023, 4, 100197. [Google Scholar] [CrossRef]
- Macqueen, J. Some methods for classification and analysis of multivariate observations. In Proceedings of the Fifth Berkeley Symposium on Mathematical Statistics and Probability, Berkeley, CA, USA, 21 June–18 July 1965; pp. 281–297. [Google Scholar]
- Zhu, B. Garden landscape planning based on digital feature recognition. Phys. Chem. Earth Parts A/B/C 2023, 130, 103372. [Google Scholar] [CrossRef]
- Huai, S.; Chen, F.; Liu, S.; Canters, F.; Van de Voorde, T. Using social media photos and computer vision to assess cultural ecosystem services and landscape features in urban parks. Ecosyst. Serv. 2022, 57, 101475. [Google Scholar] [CrossRef]
- Liu, H.; Were, P.; Li, Q.; Gou, Y.; Hou, Z. Worldwide status of CCUS technologies and their development and challenges in China. Geofluids 2017, 2017, 6126505. [Google Scholar] [CrossRef] [Green Version]
- Kang, N.; Liu, C. Towards landscape visual quality evaluation: Methodologies, technologies, and recommendations. Ecol. Indic. 2022, 142, 109174. [Google Scholar] [CrossRef]
- Li, Y.; Zhao, H.; Qi, X.; Chen, Y.; Qi, L.; Wang, L.; Li, Z.; Sun, J.; Jia, J. Fully convolutional networks for panoptic segmentation with point-based supervision. IEEE Trans. Pattern Anal. Mach. Intell. 2022, 45, 4552–4568. [Google Scholar] [CrossRef]
- Li, X. Examining the spatial distribution and temporal change of the green view index in New York City using Google Street View images and deep learning. Environ. Plan. B Urban Anal. City Sci. 2020, 48, 2039–2054. [Google Scholar] [CrossRef]
- Shi, J.; Honjo, T.; Zhang, K.; Furuya, K. Using Virtual Reality to Assess Landscape: A Comparative Study Between On-Site Survey and Virtual Reality of Aesthetic Preference and Landscape Cognition. Sustainability 2020, 12, 2875. [Google Scholar] [CrossRef] [Green Version]
- Huang, S.-Y.; Hsu, W.-L.; Hsu, R.-J.; Liu, D.-W. Fully Convolutional Network for the Semantic Segmentation of Medical Images: A Survey. Diagnostics 2022, 12, 2765. [Google Scholar] [CrossRef]
- Jonathan, L.; Evan, S.; Trevor, D. Fully Convolutional Networks for Semantic Segmentation. In Proceedings of the Computer Vision and Pattern Recognition, Boston, MA, USA, 7–12 June 2015. [Google Scholar]
- Zhou, B.; Zhao, H.; Puig, X.; Fidler, S.; Barriuso, A.; Torralba, A. Scene Parsing through ADE20K Dataset. 2017. Available online: http://people.csail.mit.edu/bzhou/publication/scene-parse-camera-ready.pdf (accessed on 20 March 2023).
- Zhou, B.; Zhao, H.; Puig, X.; Xiao, T.; Fidler, S.; Barriuso, A.; Torralba, A. Semantic Understanding of Scenes through the ADE20K Dataset. 2018. Available online: https://arxiv.org/pdf/1608.05442.pdf (accessed on 20 March 2023).
- Arriaza, M.; Cañas-Ortega, J.F.; Cañas-Madueño, J.A.; Ruiz-Aviles, P. Assessing the visual quality of rural landscapes. Landsc. Urban Plan. 2004, 69, 115–125. [Google Scholar] [CrossRef]
- Luo, S.; Shi, J.; Lu, T.; Furuya, K. Sit down and rest: Use of virtual reality to evaluate preferences and mental restoration in urban park pavilions. Landsc. Urban Plan. 2022, 220, 104336. [Google Scholar] [CrossRef]
- Korpilo, S.; Kaaronen, R.O.; Olafsson, A.S.; Raymond, C.M. Public participation GIS can help assess multiple dimensions of environmental justice in urban green and blue space planning. Appl. Geogr. 2022, 148, 102794. [Google Scholar] [CrossRef]
- Xu, X.; Wu, H. Audio-visual interactions enhance soundscape perception in China’s protected areas. Urban For. Urban Green. 2021, 61, 127090. [Google Scholar] [CrossRef]
- Deng, L.; Luo, H.; Ma, J.; Huang, Z.; Sun, L.-X.; Jiang, M.-Y.; Zhu, C.-Y.; Li, X. Effects of integration between visual stimuli and auditory stimuli on restorative potential and aesthetic preference in urban green spaces. Urban For. Urban Green. 2020, 53, 126702. [Google Scholar] [CrossRef]
- Park, E.; Widyanta, A. Food tourism experience and changing destination foodscape: An exploratory study of an emerging food destination. Tour. Manag. Perspect. 2022, 42, 100964. [Google Scholar] [CrossRef]
- Kim, S.; Park, E.; Fu, Y.; Jiang, F. The cognitive development of food taste perception in a food tourism destination: A gastrophysics approach. Appetite 2021, 165, 105310. [Google Scholar] [CrossRef]
- Tsurumi, T.; Managi, S. Environmental value of green spaces in Japan: An application of the life satisfaction approach. Ecol. Econ. 2015, 120, 1–12. [Google Scholar] [CrossRef]
- Shanahan, D.F.; Bush, R.; Gaston, K.J.; Lin, B.B.; Dean, J.; Barber, E.; Fuller, R.A. Health Benefits from Nature Experiences Depend on Dose. Sci. Rep. 2016, 6, 28551. [Google Scholar] [CrossRef] [Green Version]
- Zhang, X.; Zhou, L.; Wu, Y.; Skitmore, M.; Deng, Z. Resolving the conflicts of sustainable world heritage landscapes in cities: Fully open or limited access for visitors? Habitat Int. 2015, 46, 91–100. [Google Scholar] [CrossRef] [Green Version]
- Harris, V.; Kendal, D.; Hahs, A.K.; Threlfall, C.G. Green space context and vegetation complexity shape people’s preferences for urban public parks and residential gardens. Landsc. Res. 2018, 43, 150–162. [Google Scholar] [CrossRef]
- Jahani, A.; Saffariha, M. Aesthetic preference and mental restoration prediction in urban parks: An application of environmental modeling approach. Urban For. Urban Green. 2020, 54, 126775. [Google Scholar] [CrossRef]
Data Source | Elements | Coef | Std Err | z | p > |t| | VIF |
---|---|---|---|---|---|---|
Pictures | Sky | −0.0175 | 0.02 | 0.65 | 0.037 | 2.056 |
Vegetation | −0.0205 | 0.018 | 1.589 | 0.024 | 2.827 | |
Mountain | 0.0288 | 0.047 | −0.679 | 0.054 | 1.169 | |
Water | −0.01 | 0.03 | 2.063 | 0.074 | 1.395 | |
Animal | 0.6121 | 0.604 | 0.007 | 0.031 | 1.006 | |
Architecture | −0.0127 | 0.024 | 0.729 | 0.06 | 1.811 | |
Structures | −0.0281 | 0.059 | 0.347 | 0.064 | 1.128 | |
Road | −0.0341 | 0.029 | 2.224 | 0.025 | 1.335 | |
Transportation | −0.1882 | 0.145 | 0.244 | 0.019 | 1.026 | |
People | −0.0765 | 0.055 | 1.627 | 0.017 | 1.225 | |
Food | −0.2187 | 0.339 | 0.012 | 0.052 | 1.026 | |
Interior | 0.0533 | 0.043 | 0.021 | 0.022 | 1.367 | |
R2 = 0.205 | ||||||
Multi-sensory description | Vision | 0.0229 | 0.006 | 3.817 | 0 | 1.172 |
Hearing | 0.0707 | 0.007 | 10.1 | 0 | 1.066 | |
Gustation | 0.006 | 0.004 | 1.5 | 0.122 | 1.172 | |
Feeling | 0.0824 | 0.007 | 11.771 | 0 | 1.134 | |
Olfactory | −0.067 | 0.038 | −1.763 | 0.08 | 1.038 | |
R2 = 0.281 | ||||||
Text-Natural elements | Greening | 0.0195 | 0.003 | 6.5 | 0 | 1.296 |
Flower | 0.0503 | 0.003 | 16.767 | 0 | 1.215 | |
Mountain | 0.0236 | 0.009 | 2.622 | 0.006 | 1.083 | |
Stone Sand | 0.0707 | 0.007 | 10.1 | 0 | 1.066 | |
Water | 0.0124 | 0.003 | 4.133 | 0 | 1.263 | |
Season | 0.0378 | 0.005 | 7.56 | 0 | 1.193 | |
Nature phenomenon | −0.0004 | 0.005 | −0.08 | 0.028 | 1.152 | |
Weather | 0.0198 | 0.011 | 1.8 | 0.063 | 1.059 | |
Animal | 0.0118 | 0.004 | 2.95 | 0.001 | 1.192 | |
R2 = 0.226 | ||||||
Text-Artificial elements | Architecture | 0.013 | 0.004 | 3.25 | 0.004 | 1.226 |
Structure | 0.0042 | 0.006 | 0.7 | 0.055 | 1.354 | |
Place | 0.0354 | 0.006 | 5.9 | 0 | 1.221 | |
Road | −0.0134 | 0.007 | −1.914 | 0.06 | 1.126 | |
Service | −0.0319 | 0.006 | −5.317 | 0 | 1.201 | |
Transportation | 0.0175 | 0.005 | 3.5 | 0.001 | 1.219 | |
People | 0.0205 | 0.003 | 6.833 | 0 | 1.508 | |
Festival | 0.0042 | 0.011 | 0.382 | 0.003 | 1.12 | |
Art–Culture | 0.0895 | 0.014 | 6.393 | 0 | 1.037 | |
Activity | 0.0619 | 0.016 | 3.869 | 0 | 1.04 | |
Expenses | 0.0286 | 0.01 | 2.86 | 0.004 | 1.083 | |
Function | 0.0645 | 0.003 | 21.5 | 0 | 1.625 | |
Sports | 0.0009 | 0.008 | 0.112 | 0.009 | 1.125 | |
R2 = 0.235 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, J.; Li, D.; Ning, S.; Furuya, K. Sustainable Urban Green Blue Space (UGBS) and Public Participation: Integrating Multisensory Landscape Perception from Online Reviews. Land 2023, 12, 1360. https://doi.org/10.3390/land12071360
Zhang J, Li D, Ning S, Furuya K. Sustainable Urban Green Blue Space (UGBS) and Public Participation: Integrating Multisensory Landscape Perception from Online Reviews. Land. 2023; 12(7):1360. https://doi.org/10.3390/land12071360
Chicago/Turabian StyleZhang, Jiao, Danqing Li, Shuguang Ning, and Katsunori Furuya. 2023. "Sustainable Urban Green Blue Space (UGBS) and Public Participation: Integrating Multisensory Landscape Perception from Online Reviews" Land 12, no. 7: 1360. https://doi.org/10.3390/land12071360
APA StyleZhang, J., Li, D., Ning, S., & Furuya, K. (2023). Sustainable Urban Green Blue Space (UGBS) and Public Participation: Integrating Multisensory Landscape Perception from Online Reviews. Land, 12(7), 1360. https://doi.org/10.3390/land12071360