Characteristics and Driving Mechanism of Urban Construction Land Expansion along with Rapid Urbanization and Carbon Neutrality in Beijing, China
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Data Preparation
2.3. Exploration of Urban Construction Land Expansion Characteristics
2.4. Exploration of the Driving Mechanism of Urban Construction Expansion
3. Results
3.1. Quantitative Characteristics of Urban Construction Land Expansion in Beijing
3.2. Driving Mechanisms of Expansion of Urban Construction Land in Beijing
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Lai, L.; Huang, X.; Yang, H.; Chuai, X.; Zhang, M.; Zhong, T.; Thompson, J.R. Carbon emissions from land-use change and management in China between 1990 and 2010. Sci. Adv. 2016, 2, e1601063. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yang, B.; Chen, X.; Wang, Z.; Li, W.; Zhang, C.; Yao, X. Analyzing land use structure efficiency with carbon emissions: A case study in the middle reaches of the Yangtze River, China. J. Clean. Prod. 2020, 274, 123076. [Google Scholar] [CrossRef]
- Huang, S.; Xi, F.; Chen, Y.; Gao, M.; Pan, X.; Ren, C. Land Use Optimization and simulation of low-carbon-oriented—A case study of Jinhua, China. Land 2021, 10, 1020. [Google Scholar] [CrossRef]
- Yang, H.; Huang, J.; Liu, D. Linking climate change and socioeconomic development to urban land use simulation: Analysis of their concurrent effects on carbon storage. Appl. Geogr. 2020, 115, 102135. [Google Scholar] [CrossRef]
- Peng, J.; Zheng, Y.; Liu, C. The Impact of urban construction land use change on carbon emissions: Evidence from the China land market in 2000–2019. Land 2022, 11, 1440. [Google Scholar] [CrossRef]
- Wang, S.; Shi, C.; Fang, C.; Feng, K. Examining the spatial variations of determinants of energy-related CO2 emissions in China at the city level using Geographically Weighted Regression Model. Appl. Energy 2018, 235, 95–105. [Google Scholar] [CrossRef]
- Wang, Q.; Xiao, Y. Has Urban Construction Land achieved low-carbon sustainable development? A case study of North China Plain, China. Sustainability 2022, 14, 9434. [Google Scholar] [CrossRef]
- Zhou, Z.; Cao, L.; Zhao, K.; Li, D.; Ding, C. Spatio-temporal effects of multi-dimensional urbanization on carbon emission efficiency: Analysis based on panel data of 283 cities in China. Int. J. Environ. Res. Public Health 2021, 18, 12712. [Google Scholar] [CrossRef]
- Alqahtany, A. GIS-based assessment of land use for predicting increase in settlements in Al Ahsa Metropolitan Area, Saudi Arabia for the year 2032. Alex. Eng. J. 2023, 62, 269–277. [Google Scholar] [CrossRef]
- Yang, Y.; Liu, Y.; Li, Y.; Du, G. Quantifying spatio-temporal patterns of urban expansion in Beijing during 1985–2013 with rural-urban development transformation. Land Use Policy 2018, 74, 220–230. [Google Scholar] [CrossRef]
- Lin, M.; Shi, Y.; Chen, Y.; Yu, D.Q.; He, Q.; Wang, L. A study on spatial-temporal features of construction land expansion in Changsha urban area. Geogr. Res. 2007, 26, 265–274. [Google Scholar]
- Alqurashi, A.F.; Kumar, L. Spatiotemporal patterns of urban change and associated environmental impacts in five Saudi Arabian cities: A case study using remote sensing data. Habitat Int. 2016, 58, 75–88. [Google Scholar] [CrossRef]
- Al-Bilbisi, H. Spatial monitoring of urban expansion using satellite remote sensing images: A case study of Amman City, Jordan. Sustainability 2019, 11, 2260. [Google Scholar] [CrossRef] [Green Version]
- Abass, K.; Adanu, S.K.; Agyemang, S. Peri-urbanisation and loss of arable land in Kumasi Metropolis in three decades: Evidence from remote sensing image analysis. Land Use Policy 2018, 72, 470–479. [Google Scholar] [CrossRef]
- Zhang, H.; Liang, C.; Pan, Y. Spatial expansion of built-up areas in the beijing–tianjin–hebei urban agglomeration based on nighttime light data: 1992–2020. Int. J. Environ. Res. Public Health 2022, 19, 3760. [Google Scholar] [CrossRef]
- Dutta, D.; Rahman, A.; Paul, S.K.; Kundu, A. Impervious surface growth and its inter-relationship with vegetation cover and land surface temperature in peri-urban areas of Delhi. Urban Clim. 2021, 37, 100799. [Google Scholar] [CrossRef]
- Xia, C.; Zhang, A.; Yeh, A.G. Shape-weighted landscape evolution index: An improved approach for simultaneously analyzing urban land expansion and redevelopment. J. Clean. Prod. 2020, 244, 118836. [Google Scholar] [CrossRef]
- Wu, R.; Li, Y.C.; Wang, S.J. Will the construction of high-speed rail accelerate urban land expansion? Evidences from Chinese cities. Land Use Policy 2022, 114, 105920. [Google Scholar] [CrossRef]
- Ma, Y.L.; Xu, R.S. Remote sensing monitoring and driving force analysis of urban expansion in Guangzhou City, China. Habitat Int. 2010, 34, 228–235. [Google Scholar] [CrossRef]
- Fei, W.; Zhao, S. Urban land expansion in China’s six megacities from 1978 to 2015. Sci. Total Environ. 2019, 664, 60–71. [Google Scholar] [CrossRef]
- Chen, L.Y.; Huang, F.; Qi, H.; Zhai, H. Analysis of urban expansion and the driving forces in eastern coastal region of China. In Proceedings of the Conference on Remote Sensing Technologies and Applications in Urban Environments 2018, Berlin, Germany, 9 October 2018. [Google Scholar] [CrossRef]
- Zhang, L.Q.; Chen, S.P.; Chen, B.P. The contribution of land to the economic growth and inflection point of its logistic curve in Anhui Province in recent 15 years. Sci. Geogr. Sin. 2014, 1, 40–46. [Google Scholar]
- Liu, Y.S.; Zhang, Z.W.; Zhou, Y. Efficiency of construction land allocation in China: An econometric analysis of panel data. Land Use Policy 2018, 74, 261–272. [Google Scholar] [CrossRef]
- Shu, B.; Zhang, H.; Li, Y.; Qu, Y.; Chen, L. Spatiotemporal variation analysis of driving forces of urban land spatial expansion using logistic regression: A case study of port towns in Taicang City, China. Habitat Int. 2014, 43, 181–190. [Google Scholar] [CrossRef]
- Sarkar, A.; Chouhan, P. Modeling spatial determinants of urban expansion of Siliguri a metropolitan city of India using logistic regression. Model. Earth Syst. Environ. 2020, 6, 2317–2331. [Google Scholar] [CrossRef]
- Peng, W.; Wang, G.; Zhou, J.; Zhao, J.; Yang, C. Studies on the temporal and spatial variations of urban expansion in Chengdu, western China, from 1978 to 2010. Sustain. Cities Soc. 2015, 17, 141–150. [Google Scholar] [CrossRef] [Green Version]
- El-Hamid, H.T.A.; Caiyong, W.; Yongting, Z. Geospatial analysis of land use driving force in coal mining area: Case study in Ningdong, China. GeoJournal 2021, 86, 605–620. [Google Scholar] [CrossRef]
- Brunsdon, C.; Fotheringham, A.S.; Charlton, M.E. Geographically weighted regression: A method for exploring spatial nonstationarity. Geogr. Anal. 1996, 28, 281–298. [Google Scholar] [CrossRef]
- Huang, B.; Wu, B.; Barry, M. Geographically and temporally weighted regression for modeling spatio-temporal variation in house prices. Int. J. Geogr. Inf. Sci. 2010, 24, 383–401. [Google Scholar] [CrossRef]
- Wang, D.G.; Kwan, M.P. Selected studies on urban development issues in China: Introduction. Urban Geogr. 2017, 38, 360–362. [Google Scholar] [CrossRef]
- Zhou, Y.; Chen, M.; Tang, Z.; Mei, Z. Urbanization, land use change, and carbon emissions: Quantitative assessments for city-level carbon emissions in Beijing-Tianjin-Hebei region. Sustain. Cities Soc. 2021, 66, 102701. [Google Scholar] [CrossRef]
- Luo, G.; Chen, X.; Zhou, K.; Ye, M. Temporal and spatial variation and stability of the oasis in the Sangong River Watershed, Xinjiang, China. Sci. China Ser. D 2003, 46, 62–73. [Google Scholar] [CrossRef]
- Cheng, L.X.; Feng, R.Y.; Wang, L.Z. Fractal characteristic analysis of urban land-cover spatial patterns with spatiotemporal remote sensing images in Shenzhen city (1988–2015). Remote Sens. 2021, 13, 4640. [Google Scholar] [CrossRef]
- Zhang, Y.; Chen, X. Spatial and nonlinear effects of new-type urbanization and technological innovation on industrial carbon dioxide emission in the Yangtze River Delta. Environ. Sci. Pollut. Res. 2023, 30, 29243–29257. [Google Scholar] [CrossRef] [PubMed]
- Hu, P.P.; Li, F.; Hu, D.; Sun, X. Spatial and temporal characteristics of urban expansion in pearl River Delta urban agglomeration from 1980 to 2015. Acta Ecol. Sin. 2021, 41, 7063–7072. [Google Scholar]
- Xie, H.; Zhu, Z.; Wang, B.; Liu, G.; Zhai, Q. Does the expansion of urban construction land promote regional economic growth in China? Evidence from 108 cities in the Yangtze River Economic Belt. Sustainability 2018, 10, 4073. [Google Scholar] [CrossRef] [Green Version]
- Jin, G.; Deng, X.; Zhao, X.; Guo, B.; Yang, J. Spatiotemporal patterns in urbanization efficiency within the Yangtze River Economic Belt between 2005 and 2014. J. Geogr. Sci. 2018, 28, 1113–1126. [Google Scholar] [CrossRef] [Green Version]
- Xu, G.; Yin, X.; Wu, G.; Gao, N. Rethinking the contribution of land element to urban economic growth: Evidence from 30 provinces in China. Land 2022, 11, 801. [Google Scholar] [CrossRef]
- Zhu, X.; Zhang, P.; Wei, Y.; Li, Y.; Zhao, H. Measuring the efficiency and driving factors of urban land use based on the DEA method and the PLS-SEM model—A case study of 35 large and medium-sized cities in China. Sustain. Cities Soc. 2019, 50, 101646. [Google Scholar] [CrossRef]
- Liu, S.; Xiao, W.; Li, L.; Ye, Y.; Song, X. Urban land use efficiency and improvement potential in China: A stochastic frontier analysis. Land Use Policy 2020, 99, 105046. [Google Scholar] [CrossRef]
Date | Satellite | Sensor | Strip Number/Row Number |
---|---|---|---|
2005 | Landsat 5 | TM | 123/32, 123/33 |
2010 | Landsat 5 | TM | 123/32, 123/33 |
2015 | Landsat 8 | OLI | 123/32, 123/33, 124/32 |
2020 | Landsat 8 | OLI | 123/32, 123/33, 124/32 |
Index Layer | Variable | Index Factor | Index Explanation |
---|---|---|---|
Capital input | X1 | Per capita general public budget expenditure | Government support level |
X2 | Per capita fixed asset investment | Overall investment intensity | |
Labor input | X3 | Permanent population | Human resource foundation |
Economic output | X4 | Per capita GDP | Level of economic development |
X5 | Per capita industrial output value | Level of industrial capacity | |
X6 | Per capita general public budget revenue | Government revenue and expenditure capacity | |
Social output | X7 | Per capita disposable income of urban residents | Standard of living for residents |
X8 | Per capita consumption level of urban residents | Consumer demand for residents | |
X9 | Per capita social consumer goods retail sales | Level of social consumption | |
Terrain constraints | X10, X11 | Relief degree of land surface, slope | Geological and geomorphic foundation |
2005–2010 | 2010–2015 | 2015–2020 | 2005–2020 | |
---|---|---|---|---|
Central urban area | 8.85 | 6.45 | 3.64 | 6.31 |
Changping District | 3.56 | 1.89 | 1.41 | 2.29 |
Shunyi District | 3.68 | 3.99 | 1.33 | 3.00 |
Tongzhou District | 2.76 | 1.77 | 1.02 | 1.85 |
Daxing District | 4.84 | 3.06 | 1.82 | 3.24 |
Fangshan District | 2.55 | 1.86 | 0.90 | 1.77 |
Mentougou District | 0.48 | 0.68 | 0.58 | 0.58 |
Miyun District | 1.37 | 2.58 | 1.31 | 1.75 |
Pinggu District | 1.63 | 0.94 | 0.81 | 1.13 |
Huairou District | 2.70 | 2.07 | 1.42 | 2.06 |
Yanqing District | 1.09 | 0.70 | 0.94 | 0.91 |
Economic-Technological Development Area | 3.66 | 5.16 | 1.03 | 3.28 |
Overall | 37.17 | 31.15 | 16.21 | 28.17 |
2005–2010 | 2010–2015 | 2015–2020 | 2005–2020 | |
---|---|---|---|---|
Central urban area | 0.98% | 0.68% | 0.37% | 0.70% |
Changping District | 4.30% | 1.88% | 1.28% | 2.76% |
Shunyi District | 2.48% | 2.39% | 0.71% | 2.02% |
Tongzhou District | 3.09% | 1.71% | 0.91% | 2.07% |
Daxing District | 3.59% | 1.92% | 1.05% | 2.40% |
Fangshan District | 3.38% | 2.11% | 0.92% | 2.35% |
Mentougou District | 1.78% | 2.32% | 1.77% | 2.15% |
Miyun District | 3.19% | 5.17% | 2.08% | 4.07% |
Pinggu District | 5.62% | 2.53% | 1.93% | 3.89% |
Huairou District | 5.26% | 3.19% | 1.89% | 4.02% |
Yanqing District | 6.34% | 3.10% | 3.60% | 5.30% |
Economic-Technological Development Area | 5.02% | 5.65% | 0.88% | 4.50% |
Overall | 2.22% | 1.67% | 0.80% | 1.68% |
2005 | 2010 | 2015 | 2020 | |
---|---|---|---|---|
Central urban area | 1.3391 | 1.3568 | 1.3644 | 1.3562 |
Changping District | 1.2498 | 1.2886 | 1.2961 | 1.3095 |
Shunyi District | 1.2606 | 1.2866 | 1.3126 | 1.3247 |
Tongzhou District | 1.2679 | 1.3115 | 1.3120 | 1.3111 |
Daxing District | 1.3160 | 1.3174 | 1.3000 | 1.3012 |
Fangshan District | 1.2534 | 1.2610 | 1.2858 | 1.2766 |
Mentougou District | 1.2602 | 1.2743 | 1.2818 | 1.2646 |
Miyun District | 1.2355 | 1.2306 | 1.2264 | 1.2481 |
Pinggu District | 1.2225 | 1.2115 | 1.1812 | 1.1888 |
Huairou District | 1.2164 | 1.2298 | 1.2540 | 1.2765 |
Yanqing District | 1.2367 | 1.2447 | 1.2513 | 1.2627 |
Economic-Technological Development Area | 1.2484 | 1.2849 | 1.2602 | 1.2949 |
2005 | 2010 | 2015 | 2020 | |
---|---|---|---|---|
Central urban area | 36.1726 | 43.2899 | 46.0059 | 42.0748 |
Changping District | 12.3140 | 17.9924 | 17.9322 | 20.3908 |
Shunyi District | 7.8907 | 17.1350 | 23.2845 | 25.2900 |
Tongzhou District | 12.4957 | 19.6589 | 19.3462 | 19.0957 |
Daxing District | 21.0822 | 21.5559 | 17.8593 | 18.0682 |
Fangshan District | 9.9947 | 10.2127 | 12.9806 | 12.0844 |
Mentougou District | 9.5604 | 10.9012 | 12.1469 | 10.5061 |
Miyun District | 9.5639 | 10.0908 | 9.8479 | 11.8292 |
Pinggu District | 7.8907 | 7.5955 | 5.4031 | 6.0641 |
Huairou District | 8.3947 | 8.9400 | 12.7306 | 15.0203 |
Yanqing District | 7.9808 | 8.8992 | 9.4502 | 10.6989 |
Economic-Technological Development Area | 11.0033 | 15.7663 | 13.6771 | 17.9802 |
Per Capita General Public Budget Expenditure | Per Capita Fixed Asset Investment | Permanent Population | Per Capita GDP | Per Capita Industrial Output Value | Per Capita Consumption Level of Urban Residents | Per Capita Social Consumer Goods Retail Sales |
---|---|---|---|---|---|---|
2.45 | 1.53 | 2.11 | 3.20 | 1.57 | 1.60 | 3.46 |
Model Parameters | Bandwidth | Sigma | AICc | R2 | R2 Adjusted | Spatiotemporal Distance Ratio |
---|---|---|---|---|---|---|
Expansion intensity | 0.8186 | 0.2738 | 73.0300 | 0.7887 | 0.6619 | 0.2731 |
Expansion speed | 0.2992 | 0.0453 | 16.6150 | 0.9505 | 0.9366 | 0.3731 |
X1 | X2 | X3 | X4 | X5 | X8 | X9 | ||
---|---|---|---|---|---|---|---|---|
2005– 2010 | Central urban area | −0.2627 | 0.0911 | 0.4581 | 0.4111 | −0.0470 | −0.1188 | 0.3784 |
Changping District | −0.1810 | 0.0507 | 0.5285 | 0.5618 | 0.0027 | −0.1306 | 0.2340 | |
Shunyi District | −0.1465 | −0.0304 | 0.4790 | 0.3418 | −0.0110 | −0.0529 | 0.2786 | |
Tongzhou District | −0.2678 | 0.0707 | 0.4427 | 0.2524 | −0.0707 | −0.1494 | 0.4573 | |
Daxing District | −0.3894 | 0.1460 | 0.3834 | 0.1706 | −0.0725 | −0.1438 | 0.5815 | |
Fangshan District | −0.4414 | 0.1048 | 0.4116 | 0.2665 | 0.0604 | −0.0576 | 0.5264 | |
Mentougou District | −0.2962 | 0.0869 | 0.5388 | 0.5802 | 0.0730 | −0.1157 | 0.2878 | |
Miyun District | 0.0335 | −0.2138 | 0.7636 | 0.3551 | 0.0966 | −0.0751 | 0.0270 | |
Pinggu District | 0.0052 | −0.1401 | 0.7294 | 0.3455 | 0.0710 | −0.0636 | 0.0638 | |
Huairou District | −0.0442 | −0.1048 | 0.5869 | 0.3213 | 0.0822 | −0.0906 | 0.1099 | |
Yanqing District | −0.1250 | 0.0272 | 0.5800 | 0.4986 | 0.0770 | −0.1538 | 0.1586 | |
2010– 2015 | Central urban area | −0.2283 | 0.0666 | 0.4654 | 0.4465 | −0.0428 | −0.1272 | 0.3669 |
Changping District | −0.1692 | 0.0523 | 0.5383 | 0.6209 | −0.0036 | −0.1363 | 0.2164 | |
Shunyi District | −0.1257 | −0.0409 | 0.4740 | 0.4419 | −0.0143 | −0.0271 | 0.2359 | |
Tongzhou District | −0.2255 | 0.0371 | 0.4568 | 0.3372 | −0.0667 | −0.1443 | 0.4183 | |
Daxing District | −0.3287 | 0.0990 | 0.4029 | 0.2239 | −0.0575 | −0.1612 | 0.5518 | |
Fangshan District | −0.3702 | 0.0624 | 0.4105 | 0.2417 | 0.0707 | −0.0927 | 0.5476 | |
Mentougou District | −0.2322 | 0.0500 | 0.5361 | 0.5529 | 0.0662 | −0.1533 | 0.3234 | |
Miyun District | 0.0362 | −0.2434 | 0.7369 | 0.4078 | 0.0936 | −0.0436 | 0.0152 | |
Pinggu District | 0.0110 | −0.1818 | 0.6773 | 0.4275 | 0.0707 | −0.0028 | 0.0406 | |
Huairou District | −0.0496 | −0.0982 | 0.5679 | 0.3992 | 0.0704 | −0.0937 | 0.0895 | |
Yanqing District | −0.1320 | 0.0432 | 0.5872 | 0.5974 | 0.0594 | −0.1669 | 0.1379 | |
2015– 2020 | Central urban area | −0.1967 | 0.0888 | 0.4788 | 0.5098 | −0.0592 | −0.1296 | 0.3274 |
Changping District | −0.1555 | 0.0826 | 0.5434 | 0.6752 | −0.0279 | −0.1392 | 0.1928 | |
Shunyi District | −0.0886 | −0.0007 | 0.4608 | 0.5114 | −0.0417 | −0.0200 | 0.2261 | |
Tongzhou District | −0.1856 | 0.0712 | 0.4645 | 0.4295 | −0.0819 | −0.1383 | 0.3717 | |
Daxing District | −0.2691 | 0.1164 | 0.4326 | 0.3273 | −0.0788 | −0.1825 | 0.4813 | |
Fangshan District | −0.3072 | 0.0862 | 0.4731 | 0.4229 | 0.0194 | −0.1196 | 0.4222 | |
Mentougou District | −0.2102 | 0.0844 | 0.5839 | 0.6991 | 0.0223 | −0.1657 | 0.2267 | |
Miyun District | 0.0508 | −0.1741 | 0.6566 | 0.4424 | 0.0603 | 0.0013 | 0.0276 | |
Pinggu District | 0.0346 | −0.1124 | 0.5767 | 0.4982 | 0.0220 | 0.0072 | 0.0556 | |
Huairou District | −0.0358 | −0.0510 | 0.5169 | 0.4572 | 0.0372 | −0.0949 | 0.0899 | |
Yanqing District | −0.1330 | 0.0764 | 0.5725 | 0.6647 | 0.0261 | −0.1805 | 0.1306 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yang, H.; Ma, J.; Jiao, X.; Shang, G.; Yan, H. Characteristics and Driving Mechanism of Urban Construction Land Expansion along with Rapid Urbanization and Carbon Neutrality in Beijing, China. Land 2023, 12, 1388. https://doi.org/10.3390/land12071388
Yang H, Ma J, Jiao X, Shang G, Yan H. Characteristics and Driving Mechanism of Urban Construction Land Expansion along with Rapid Urbanization and Carbon Neutrality in Beijing, China. Land. 2023; 12(7):1388. https://doi.org/10.3390/land12071388
Chicago/Turabian StyleYang, Huicai, Jingtao Ma, Xinying Jiao, Guofei Shang, and Haiming Yan. 2023. "Characteristics and Driving Mechanism of Urban Construction Land Expansion along with Rapid Urbanization and Carbon Neutrality in Beijing, China" Land 12, no. 7: 1388. https://doi.org/10.3390/land12071388
APA StyleYang, H., Ma, J., Jiao, X., Shang, G., & Yan, H. (2023). Characteristics and Driving Mechanism of Urban Construction Land Expansion along with Rapid Urbanization and Carbon Neutrality in Beijing, China. Land, 12(7), 1388. https://doi.org/10.3390/land12071388