China’s National Park Construction Contributes to Carbon Peaking and Neutrality Goals
Abstract
:1. Introduction
2. Materials and Methods
2.1. The Study Area
2.2. Data and Processing
2.3. Methods
2.3.1. Land Use Change Analysis
2.3.2. Land Use Change Drivers and Scenario Simulation Analysis
2.3.3. The Ecosystem Carbon Stocks Change Analysis
2.3.4. The Spatial Hotspots Detection Method
3. Results
3.1. Analysis of Change in Land Use Type
3.2. Analysis of Land Use Expansion Drivers
3.3. Analysis of Annual Changes in Carbon Stocks
3.4. Analysis of Hotspot Areas of Carbon Stock Change
4. Discussion
4.1. Factors Influencing Land Use Expansion and Carbon Stock Change
4.2. The Improvement of the National Park System Will Promote the “Double Carbon” Goal
4.3. Key Regional Control Measures and Effectiveness Estimates
4.4. Innovations and Limitations
5. Conclusions
- (1)
- Land use in the national parks has changed over the past 30 years, mainly due to the combined effects of natural conditions and human activities, and the expansion of arable and construction lands has led to different degrees of degradation of the ecosystem services in the national parks.
- (2)
- In the past 10 years, the carbon stocks within the planning areas of the national parks have been decreasing, especially in Sanjiangyuan National Park. The study identified the hot and cold spots of carbon stock changes in each national park at the scale of a 1 km grid and formulated different scheme frameworks for core protected areas and generally controlled areas, based on the zoning planning of the national parks.
- (3)
- Based on the envisioned restoration framework, a 2030 ecosystem restoration scenario was conducted for Northeast Tiger and Leopard National Park. The optimal scenario showed that the park’s ecosystem carbon stocks will recover to their highest level within the last 30 years, increasing by 7,468,250 t compared to the recorded level in 2020.
- (4)
- The results show that the establishment of national parks has laid a good foundation for the improvement of regional ecological quality, and the construction of national parks can further contribute to the achievement of China’s carbon peaking and neutrality goals.
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Rayner, N.A.; Parker, D.E.; Horton, E.B.; Folland, C.K.; Alexander, L.V.; Rowell, D.P.; Kent, E.C.; Kaplan, A. Global analyses of sea surface temperature, sea ice, and night marine air temperature since the late nineteenth century. J. Geophys. Res. 2003, 108, 4407. [Google Scholar] [CrossRef] [Green Version]
- Li, L.S.; Hui, J.C.; Quan, S.G. Will China achieve its 2060 carbon neutral commitment from the provincial perspective? Adv. Clim. Chang. Res. 2022, 13, 169–178. [Google Scholar]
- Zhong, R.; He, Q.; Qi, Y. Digital Economy, Agricultural Technological Progress, and Agricultural Carbon Intensity: Evidence from China. Int. J. Environ. Res. Public Health 2022, 19, 6488. [Google Scholar] [CrossRef] [PubMed]
- Yang, R. Evolution and experience of the National Park System of the United States. Chin. Landsc. Arch. 2001, 1, 62–64. (In Chinese) [Google Scholar]
- Yang, R. Discussion on the trend of worldwide national park Movement. Chin. Landsc. Arch. 2003, 7, 10–15. (In Chinese) [Google Scholar]
- Peng, Y.; Fan, J.; Xing, S.; Cui, G. Overview and classification outlook of natural protected areas in mainland China. Biodivers. Sci. 2018, 26, 315–325. [Google Scholar] [CrossRef]
- Tang, X.P.; Luan, X.F. Developing a Nature Protected Area System Composed Mainly of National Parks. For. Resour. Manag. 2017, 6, 1–8. (In Chinese) [Google Scholar]
- Tonghui, M.; Cai, L.; Guangchun, L. The spatial overlapping analysis for China’s natural protected area and countermeasures for the optimization and integration of protected area system. Biodivers. Sci. 2019, 27, 758–771. [Google Scholar] [CrossRef]
- Wang, J.H.Z. National parks in China: Parks for people or for the nation? Land Use Policy 2019, 81, 825–833. [Google Scholar] [CrossRef]
- Zhao, W.J. Beginning: China’s national park system. Natl. Sci. Rev. 2022, 9, 150. [Google Scholar] [CrossRef]
- Pringle, R.M. Upgrading protected areas to conserve wild biodiversity. Nature 2017, 546, 91–99. [Google Scholar] [CrossRef] [PubMed]
- Hoffmann, S.; Irl, S.D.H.; Beierkuhnlein, C. Predicted climate shifts within terrestrial protected areas worldwide. Nat. Commun. 2019, 10, 4787. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Burkhard, B.; Kroll, F.; Nedkov, S.; Müller, F. Mapping ecosystem service supply, demand and budgets. Ecol. Indic. 2012, 21, 17–29. [Google Scholar] [CrossRef]
- Chen, J.; Liao, A.; Cao, X.; Chen, L.; Chen, X.; He, C.; Han, G.; Peng, S.; Lu, M.; Zhang, W.; et al. Global land cover mapping at 30m resolution: A POK-based operational approach. ISPRS J. Photogramm. Remote Sens. 2015, 103, 7–27. [Google Scholar] [CrossRef] [Green Version]
- Posner, S.; Verutes, G.; Koh, I.; Denu, D.; Ricketts, T. Global use of ecosystem service models. Ecosyst. Serv. 2016, 17, 131–141. [Google Scholar] [CrossRef]
- Gou, M.; Li, L.; Ouyang, S.; Wang, N.; La, L.; Liu, C.; Xiao, W. Identifying and analyzing ecosystem service bundles and their socioecological drivers in the Three Gorges Reservoir Area. J. Clean. Prod. 2021, 307, 127208. [Google Scholar] [CrossRef]
- Tang, L.; Ke, X.; Zhou, T.; Zheng, W.; Wang, L. Impacts of cropland expansion on carbon storage: A case study in Hubei, China. J. Environ. Manag. 2020, 265, 110515. [Google Scholar] [CrossRef]
- Zhu, L.; Song, R.; Sun, S.; Li, Y.; Hu, K. Land use/land cover change and its impact on ecosystem carbon storage in coastal areas of China from 1980 to 2050. Ecol. Indic. 2022, 142, 109178. [Google Scholar] [CrossRef]
- Palomo, I.; Martín-López, B.; Zorrilla-Miras, P.; García Del Amo, D.; Montes, C. Deliberative mapping of ecosystem services within and around Doñana National Park (SW Spain) in relation to land use change. Reg. Environ. Chang. 2013, 14, 237–251. [Google Scholar] [CrossRef]
- Muhammed, A.; Elias, E. Class and landscape level habitat fragmentation analysis in the Bale mountains national park, southeastern Ethiopia. Heliyon 2021, 7, e07642. [Google Scholar] [CrossRef]
- Chen, X.; Yu, L.; Cao, Y.; Xu, Y.; Zhao, Z.; Zhuang, Y.; Liu, X.; Du, Z.; Liu, T.; Yang, B.; et al. Habitat quality dynamics in China’s first group of national parks in recent four decades: Evidence from land use and land cover changes. J. Environ. Manag. 2023, 325, 116505. [Google Scholar] [CrossRef] [PubMed]
- Pu, L.; Lu, C.; Yang, X.; Chen, X. Spatio-Temporal Variation of the Ecosystem Service Value in Qilian Mountain National Park (Gansu Area) Based on Land Use. Land 2023, 12, 201. [Google Scholar] [CrossRef]
- Lutz, J.A.; Matchett, J.R.; Tarnay, L.W.; Smith, D.F.; Becker, K.M.L.; Furniss, T.J.; Brooks, M.L. Fire and the Distribution and Uncertainty of Carbon Sequestered as Aboveground Tree Biomass in Yosemite and Sequoia & Kings Canyon National Parks. Land 2017, 6, 10. [Google Scholar]
- Dimobe, K.; Kuyah, S.; Dabré, Z.; Ouédraogo, A.; Thiombiano, A. Diversity-carbon stock relationship across vegetation types in W National park in Burkina Faso. For. Ecol. Manag. 2019, 438, 243–254. [Google Scholar] [CrossRef]
- Chimner Rodney, A.; Resh Sigrid, C.; Hribljan John, A.; Battaglia, M.; Bourgeau-Chavez, L.; Bowser, G.; Lilleskov Erik, A. Mountain wetland soil carbon stocks of Huascarán National Park, Peru. Front. Plant Sci. 2023, 14, 1048609. [Google Scholar] [CrossRef]
- Pache, R.-G.; Abrudan, I.V.; Niță, M.-D. Economic Valuation of Carbon Storage and Sequestration in Retezat National Park, Romania. Forests 2021, 12, 43. [Google Scholar] [CrossRef]
- Yessoufou, K. Potential carbon stock in the Kruger National Park, South Africa. Bot. Lett. 2017, 164, 425–432. [Google Scholar] [CrossRef]
- Marchetti, M.; Sallustio, L.; Ottaviano, M.; Barbati, A.; Corona, P.; Tognetti, R.; Zavattero, L. Carbon sequestration by forests in the National Parks of Italy. Plant Biosyst. 2012, 146, 1001–1011. [Google Scholar] [CrossRef]
- Zou, W.T.; He, Y.J.; Ye, B.; Zhao, X.D.; Xu, D.Y.; Xiao, R.G.; Duan, Y.X. Study on carbon storage of ecosystem in Qianjiangyuan national park based on InVEST model. J. Central South Univ. For. Technol. 2021, 41, 120–128. (In Chinese) [Google Scholar]
- Deng, Z.; Ding, W.G.; Pu, X.T.; Lyu, Y.J.; Wang, Y.l. Spatial-temporal Distribution of Carbon Storage in Qilian Mountain National Park Based on InVEST Model. Bull. Soil Water Conserv. 2022, 42, 324–334,396. [Google Scholar]
- Xu, W.; Xiao, Y.; Zhang, J.; Yang, W.; Zhang, L.; Hull, V.; Wang, Z.; Zheng, H.; Liu, J.; Polasky, S.; et al. Strengthening protected areas for biodiversity and ecosystem services in China. Proc. Natl. Acad. Sci. USA 2017, 114, 1601–1606. [Google Scholar] [CrossRef] [PubMed]
- Peng, Q.; Yang, R.; Cao, Y.; Wang, F.; Hou, S.; Tseng, T.H.; Wang, X.; Wang, P.; Zhao, Z.; Yu, L.; et al. One-third of lands face high conflict risk between biodiversity conservation and human activities in China. J. Environ. Manag. 2021, 299, 113449. [Google Scholar] [CrossRef] [PubMed]
- Ma, T.; Swallow, B.; Zhong, L.; Xu, K.; Sang, W.; Jia, L. Local perspectives on social-ecological transformation: China’s Sanjiangyuan National Park. Environ. Dev. Sustain. 2022, 1–21. [Google Scholar] [CrossRef]
- Xu, Y.; Liu, R.; Xue, C.; Xia, Z. Ecological Sensitivity Evaluation and Explanatory Power Analysis of the Giant Panda National Park in China. Ecol. Indic. 2023, 146, 109792. [Google Scholar] [CrossRef]
- Li, L.; Tang, H.; Lei, J.; Song, X. Spatial autocorrelation in land use type and ecosystem service value in Hainan Tropical Rain Forest National Park. Ecol. Indic. 2022, 137, 108727. [Google Scholar] [CrossRef]
- He, S.; Su, Y.; Cheng, H. Coordinating community resource use and conservation: An institutional diagnostic practice in the Wuyishan National Park. J. Environ. Manag. 2022, 317, 115508. [Google Scholar] [CrossRef]
- Zhu, H.; Zhang, Y.; Chen, Y.; Zhao, M.; Bo, C. Constructing a Model of Government Purchasing of Ecological Services: Evidence from China’s Northeast Tiger and Leopard National Park. Land 2022, 11, 1737. [Google Scholar] [CrossRef]
- Yang, J.; Huang, X. The 30 m annual land cover dataset and its dynamics in China from 1990 to 2019. Earth Syst. Sci. Data 2021, 13, 3907–3925. [Google Scholar] [CrossRef]
- Li, C.; Yang, M.; Li, Z.; Wang, B. How Will Rwandan Land Use/Land Cover Change under High Population Pressure and Changing Climate? Appl. Sci. 2021, 11, 5376. [Google Scholar] [CrossRef]
- Yang, H.; Zhong, X.; Deng, S.; Nie, S. Impact of LUCC on landscape pattern in the Yangtze River Basin during 2001–2019. Ecol. Inform. 2022, 69, 101631. [Google Scholar] [CrossRef]
- Amundson, R.; Berhe, A.A.; Hopmans, J.W.; Olson, C.; Sztein, A.E.; Sparks, D.L. Soil science. Soil and human security in the 21st century. Science 2015, 348, 1261071. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Deng, L.; Liu, G.B.; Shangguan, Z.P. Land-use conversion and changing soil carbon stocks in China’s ‘Grain-for-Green’ Program: A synthesis. Glob. Chang. Biol. 2014, 20, 3544–3556. [Google Scholar] [CrossRef] [PubMed]
- Liang, X.; Guan, Q.; Clarke, K.C.; Liu, S.; Wang, B.; Yao, Y. Understanding the drivers of sustainable land expansion using a patch-generating land use simulation (PLUS) model: A case study in Wuhan, China. Comp. Environ. Urban Syst. 2021, 85, 101569. [Google Scholar] [CrossRef]
- Han, P.; Xiang, J.; Zhao, Q. Spatial differentiation and scenario simulation of cultivated land in mountainous areas of Western Hubei, China: A PLUS model. Environ. Sci. Pollut. Res. Int. 2023, 30, 52804–52817. [Google Scholar] [CrossRef]
- Nelson, E.; Mendoza, G.; Regetz, J.; Polasky, S.; Tallis, H.; Cameron, D.; Chan, K.M.A.; Daily, G.C.; Goldstein, J.; Kareiva, P.M.; et al. Modeling multiple ecosystem services, biodiversity conservation, commodity production, and tradeoffs at landscape scales. Front. Ecol. Environ. 2009, 7, 4–11. [Google Scholar] [CrossRef]
- Zhao, M.; He, Z.; Du, J.; Chen, L.; Lin, P.; Fang, S. Assessing the effects of ecological engineering on carbon storage by linking the CA-Markov and InVEST models. Ecol. Indic. 2019, 98, 29–38. [Google Scholar] [CrossRef]
- Jiang, W.; Deng, Y.; Tang, Z.; Lei, X.; Chen, Z. Modelling the potential impacts of urban ecosystem changes on carbon storage under different scenarios by linking the CLUE-S and the InVEST models. Ecol. Modell. 2017, 345, 30–40. [Google Scholar] [CrossRef]
- Zhang, F.W.; Li, H.Q.; Li, W.Q.; Wang, J.; Yi, L.; Luo, F.; Zhang, G.; Wang, C.; Yang, Y.; Li, Y.; et al. The spatial pattern and regional classifications of topsoil organic carbon and total nitrogen density based on boosted regression trees in the Sanjiangyuan National Park. Acta Ecol. Sin. 2022, 42, 5593–5602. (In Chinese) [Google Scholar]
- Ma, S. Analysis of the Spatial Pattern of Ecosystem Services Based on the In VEST Model: A Case Study of the Giant Panda National Park. Master’s Thesis, Shanghai Normal University Master of Philosophy, Shanghai, China, 2020. (In Chinese). [Google Scholar]
- Yang, H.; Li, Y.D.; Ren, H.; Luo, T.S.; Chen, R.L.; Liu, W.J.; Chen, D.X.; Xu, H.; Zhou, Z.; Lin, M.X.; et al. Soil organic carbon density and influencing factors in tropical virgin forests of Hainan Island, China. Chin. J. Plant Ecol. 2016, 40, 292–303. (In Chinese) [Google Scholar]
- Wang, W.J. Reserve Estimation. Spatio temporal Distribution and Its Influencing Factors of Soil Organic Carbon in Fujian Province. China. Geoscience 2019, 33, 1295. (In Chinese) [Google Scholar]
- Wu, W.B.; Huang, C.F.; Zheng, D.X.; Chen, X.W.; Zhang, S.J.; Kang, H.J.; Miao, S.H. Analysis of Characteristic of Forest Carbon Storage and Destinyin Fujian Province. J. Sichuan Agricult. Univ. 2016, 34, 298–303. (In Chinese) [Google Scholar]
- Guo, S.P. Analysis on carbon stock and potential carbon sequestration in Heilongjiang Province. For. Eng. 2011, 27, 9–11+16. (In Chinese) [Google Scholar]
- Wang, X.C.; Qi, G.; Yu, D.P.; Zhou, L.; Dai, L.M. Carbon storage density and distribution in forest ecosystems in Jilin Province of Northeast China. Chin. J. Appl. Ecol. 2011, 22, 2013–2020. (In Chinese) [Google Scholar]
- Ord, J.K.; Getis, A. Local spatial autocorrelation statistics: Distributional issues and an application. Geogr. Anal. 1995, 27, 286–306. [Google Scholar] [CrossRef]
- Xu, H.; Croot, P.; Zhang, C. Discovering hidden spatial patterns and their associations with controlling factors for potentially toxic elements in topsoil using hot spot analysis and K-means clustering analysis. Environ. Int. 2021, 151, 106456. [Google Scholar] [CrossRef] [PubMed]
- Xu, H.; Demetriades, A.; Reimann, C.; Jimenez, J.J.; Filser, J.; Zhang, C.; Team, G.P. Identification of the co-existence of low total organic carbon contents and low pH values in agricultural soil in north-central Europe using hot spot analysis based on GEMAS project data. Sci. Total Environ. 2019, 678, 94–104. [Google Scholar] [CrossRef] [PubMed]
- Tran, D.X.; Pla, F.; Latorre-Carmona, P.; Myint, S.W.; Caetano, M.; Kieu, H.V. Characterizing the relationship between land use land cover change and land surface temperature. ISPRS J. Photogram. Remote Sens. 2017, 124, 119–132. [Google Scholar] [CrossRef] [Green Version]
- Wu, W.; Zeng, H.; Guo, C.; You, W.; Xu, H.; Hu, Y.; Wang, M.; Liu, X. Spatial heterogeneity and management challenges of ecosystem service trade-offs: A case study in Guangdong Province, China. Environ. Manag. 2023, 26, 1–17. [Google Scholar] [CrossRef]
- Xu, W.J.; Song, J.X.; Long, Y.Q.; Mao, R.C.; Tang, B.; Li, B.J. Analysis and simulation of the driving mechanism and ecological effects of land cover change in the Weihe River basin, China. J. Environ. Manag. 2023, 344, 118320. [Google Scholar] [CrossRef]
- Chen, C.; Park, T.; Wang, X.; Piao, S.; Xu, B.; Chaturvedi, R.K.; Fuchs, R.; Brovkin, V.; Ciais, P.; Fensholt, R.; et al. China and India lead in greening of the world through land-use management. Nat. Sustain. 2019, 2, 122–129. [Google Scholar] [CrossRef]
Data Types | Data Sources |
---|---|
90 m DEM | Resource and Environmental Science and Data Center (https://www.resdc.cn/) “https://www.resdc.cn/data.aspx?DATAID=284” (accessed on 1 March 2023) |
Slope, | Based on DEM data |
roads, railroads, county government sites | OpenStreetMap “https://www.openstreetmap.org” (accessed on 2 January 2023) |
Water system | Resource and Environmental Science and Data Center “https://www.resdc.cn/DOI/DOI.aspx?DOIID=44” (accessed on 1 March 2023) |
1 km Tem 2020 | Resource and Environmental Science and Data Center “https://www.resdc.cn/DOI/DOI.aspx?DOIID=96” (accessed on 1 March 2023) |
1 km Pre 2020 | Resource and Environmental Science and Data Center “https://www.resdc.cn/DOI/DOI.aspx?DOIID=96” (accessed on 1 March 2023) |
1 km POP 2019 | Resource and Environmental Science and Data Center “https://www.resdc.cn/DOI/DOI.aspx?DOIID=32” (accessed on 1 March 2023) |
1 km GDP 2019 | Resource and Environmental Science and Data Center “https://www.resdc.cn/DOI/DOI.aspx?DOIID=33” (accessed on 1 March 2023) |
1 km Soil Types | Resource and Environmental Science and Data Center “https://www.resdc.cn/data.aspx?DATAID=260” (accessed on 1 March 2023) |
National Park Name | Data Source |
---|---|
Sanjiangyuan NP | [48] |
Giant Panda NP | [49] |
Hainan Tropical Rainforest NP | [50] |
Wuyi Mountain NP | [51,52] |
Northeast Tiger and Leopard NP | [53,54] |
Year | Three-River-Source NP | Giant Panda NP | Hainan Tropical Rainforest NP | Wuyi Mountain NP | Northeast China Tiger and Leopard NP |
---|---|---|---|---|---|
1990 | 129,456.910 | 57,539.915 | 14,532.995 | 2701.158 | 30,043.057 |
2000 | 130,291.401 | 57,887.591 | 14,508.074 | 2699.834 | 30,008.889 |
2010 | 128,803.051 | 57,718.026 | 14,543.523 | 2700.078 | 30,072.602 |
2020 | 126,865.093 | 57,848.348 | 14,415.848 | 2699.754 | 30,028.260 |
National Park Zones | Scenario 1 | Scenario 2 |
---|---|---|
Core Protected Area | 16,307.184 | 16,674.188 |
Generally Controlled Area (population gathering area) | 1179.369 | 1207.684 |
Generally controlled area (potential habitats) | 12,563.090 | 12,893.214 |
Total | 30,049.643 | 30,775.085 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, S.; Song, S.; Shi, M.; Hu, S.; Xing, S.; Bai, H.; Xu, D. China’s National Park Construction Contributes to Carbon Peaking and Neutrality Goals. Land 2023, 12, 1402. https://doi.org/10.3390/land12071402
Wang S, Song S, Shi M, Hu S, Xing S, Bai H, Xu D. China’s National Park Construction Contributes to Carbon Peaking and Neutrality Goals. Land. 2023; 12(7):1402. https://doi.org/10.3390/land12071402
Chicago/Turabian StyleWang, Shaohan, Shuang Song, Mengxi Shi, Shanshan Hu, Shuhan Xing, He Bai, and Dawei Xu. 2023. "China’s National Park Construction Contributes to Carbon Peaking and Neutrality Goals" Land 12, no. 7: 1402. https://doi.org/10.3390/land12071402
APA StyleWang, S., Song, S., Shi, M., Hu, S., Xing, S., Bai, H., & Xu, D. (2023). China’s National Park Construction Contributes to Carbon Peaking and Neutrality Goals. Land, 12(7), 1402. https://doi.org/10.3390/land12071402