Characteristics and Projection of Rainfall Erosivity Distribution in the Hengduan Mountains
Abstract
:1. Introduction
2. Materials and Methods
2.1. Overview of the Study Area
2.2. Data and Sources
2.3. Research Methods
2.3.1. Calculation of Rainfall Erosivity (RE)
2.3.2. Calculation of Rainfall Erosivity Density (RED)
2.3.3. The Linear Regression Model
2.3.4. Theil–Sen Median Trend Analysis and Mann–Kendall Test
2.3.5. Extreme Rainfall Erosivity Index
3. Results
3.1. Temporal Variation Characteristics of Rainfall Erosivity in the Hengduan Mountains
3.1.1. Annual Distribution of Rainfall Erosivity
3.1.2. Interannual Variation of Rainfall Erosivity
3.2. Spatial Distribution Patterns of Rainfall Erosivity in the Hengduan Mountains
3.2.1. Spatial Distribution Characteristics of Rainfall Erosivity in Different Seasons
3.2.2. Spatial Distribution of Annual Average Rainfall Erosivity
3.2.3. Spatial Distribution Characteristics of the Trend in Rainfall Erosivity from 1990 to 2020
3.3. Prediction of Rainfall Erosivity in the Hengduan Mountains
3.3.1. Prediction of Rainfall Erosivity Index
3.3.2. Comparison of Variation in Rainfall Erosivity between Reference and Forecast Period
4. Discussion and Conclusions
4.1. Discussion
4.2. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Fenta, A.A.; Yasuda, H.; Shimizu, K.; Haregeweyn, N.; Kawai, T.; Sultan, D.; Ebabu, K.; Belay, A.S. Spatial distribution and temporal trends of rainfall and erosivity in the Eastern Africa region. Hydrol. Process. 2017, 31, 4555–4567. [Google Scholar] [CrossRef]
- Jia, L.; Yu, K.; Li, Z.; Li, P.; Zhang, J.; Wang, A.; Ma, L.; Xu, G.; Zhang, X. Temporal and spatial variation of rainfall erosivity in the Loess Plateau of China and its impact on sediment load. CATENA 2022, 210, 105931. [Google Scholar] [CrossRef]
- Tsitsagi, M.; Berdzenishvili, A.; Gugeshashvili, M. Spatial and temporal variations of rainfall-runoff erosivity (R) factor in Kakheti, Georgia. Ann. Agrar. Sci. 2018, 16, 226–235. [Google Scholar] [CrossRef]
- Wischmeier, W.H.; Smith, D.D. Rainfall energy and its relationship to soil loss. Eos Trans. Am. Geo-Phys. Union 1958, 39, 285–291. [Google Scholar] [CrossRef]
- Xu, X.; Yan, Y.; Dai, Q.; Yi, X.; Hu, Z.; Cen, L. Spatial and temporal dynamics of rainfall erosivity in the karst region of southwest China: Interannual and seasonal changes. CATENA 2023, 1, 106763. [Google Scholar] [CrossRef]
- Shin, J.; Kim, T.; Heo, J.; Lee, J. Spatial and temporal variations in rainfall erosivity and erosivity density in South Korea. CATENA 2019, 176, 125–144. [Google Scholar] [CrossRef]
- Mondal, A.; Khare, D.; Kundu, S. Change in rainfall erosivity in the past and future due to climate change in the central part of India. Int. Soil Water Conserv. Res. 2016, 4, 186–194. [Google Scholar] [CrossRef] [Green Version]
- Amanambu, A.C.; Li, L.; Egbinola, C.N.; Obarein, O.A.; Christophe, M.; Chen, D. Spatio-temporal variation in rainfall-runoff erosivity due to climate change in the Lower Niger Basin, West Africa. CATENA 2019, 172, 324–334. [Google Scholar] [CrossRef]
- Correa, S.W.; Mello, C.R.; Chou, S.C.; Curi, N.; Norton, L.D. Soil erosion risk associated with climate change at Mantaro River basin, Peruvian Andes. CATENA 2016, 147, 110–124. [Google Scholar] [CrossRef]
- Grillakis, M.G.; Polykretis, C.; Alexakis, D.D. Past and projected climate change impacts on rainfall erosivity: Ad-vancing our knowledge for the eastern Mediterranean island of Crete. CATENA 2020, 193, 104625. [Google Scholar] [CrossRef]
- Riquetti, N.B.; Mello, C.R.; Beskow, S.; Viola, M.R. Rainfall erosivity in South America: Current patterns and future perspectives. Sci. Total Environ. 2020, 724, 138315. [Google Scholar] [CrossRef]
- Panagos, P.; Borrelli, P. Global rainfall erosivity assessment based on high-temporal resolution rainfall records. Sci. Rep. 2017, 7, 4175. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bezak, N.; Ballabio, C.; Mikoš, M.; Petan, S.; Borrelli, P.; Panagos, P. Reconstruction of past rainfall erosivity and trend detection based on the REDES database and rea-nalysis rainfall. J. Hydrol. 2020, 590, 125372. [Google Scholar] [CrossRef]
- Bezak, N.; Borrelli, P.; Panagos, P. Exploring the possible role of satellite-based rainfall data in estimating inter- and intra-annual global rainfall erosivity. Hydrol. Earth Syst. Sci. 2022, 26, 1907–1924. [Google Scholar] [CrossRef]
- Panagos, P.; Borrelli, P.; Matthews, F.; Liakos, L.; Bezak, N. Global rainfall erosivity projections for 2050 and 2070. J. Hydrol. 2022, 610, 127865. [Google Scholar] [CrossRef]
- Richardson, C.W.; Foster, G.R.; Wright, D.A. Estimation of Erosion Index from Daily Rainfall Amount. Trans. ASABE 1983, 26, 0153–0156. [Google Scholar] [CrossRef]
- Yu, B.; Rosewell, C. An assessment of a daily rainfall erosivity model for New South Wales. Aust. J. Soil Res. 1996, 34, 139–152. [Google Scholar] [CrossRef]
- Renard, K.G.; Freimund, J.R. Using monthly precipitation data to estimate the R-factor in the revised USLE. J. Hydrol. 1994, 157, 287–306. [Google Scholar] [CrossRef]
- Zhang, W.B.; Fu, J.S. Rainfall Erosivity Estimation under Different Rainfall Amount. Resour. Sci. 2003, 25, 35–41. [Google Scholar] [CrossRef]
- Fang, J.-r.; Yang, C.; Dong, Y.; Guo, F.-f. Characteristics of rainfall erosivity based on tropical rainfall measuring mission data in Tibet, China. J. Mt. Sci. 2013, 10, 1008–1017. [Google Scholar] [CrossRef]
- Li, X.; Ye, X.; Xu, C. Assessment of Satellite-Based Precipitation Products for Estimating and Mapping Rainfall Erosivity in a Subtropical Basin, China. Remote Sens. 2022, 14, 4292. [Google Scholar] [CrossRef]
- Kinnell, P.I.A. Event soil loss, runoff and the Universal Soil Loss Equation family of models: A review. J. Hydrol. 2010, 385, 384–397. [Google Scholar] [CrossRef]
- Dayun, Z.; Kangning, X.; Hua, X. Multi-time scale variability of rainfall erosivity and erosivity density in the karst region of southern China, 1960–2017. CATENA 2021, 197, 104977. [Google Scholar] [CrossRef]
- Singh, J.; Singh, O. Assessing rainfall erosivity and erosivity density over a western Himalayan catchment, India. J. Earth Syst. Sci. 2020, 129, 97. [Google Scholar] [CrossRef]
- Vallebona, C.; Pellegrino, E.; Frumento, P.; Bonari, E. Temporal trends in extreme rainfall intensity and erosivity in the Mediterranean region: A case study in southern Tuscany, Italy. Clim. Chang. 2015, 128, 139–151. [Google Scholar] [CrossRef]
- Wang, W.; Yin, S.; Gao, G.; Papalexiou, S.M.; Wang, Z. Increasing trends in rainfall erosivity in the Yellow River basin from 1971 to 2020. J. Hydrol. 2022, 610, 127851. [Google Scholar] [CrossRef]
- Vallebona, C.; Pellegrino, E.; Frumento, P.; Bonari, E. Spatiotemporal Variation in Rainfall Erosivity and Correlation with the ENSO on the Tibetan Plateau since 1971. Int. J. Environ. Res. Public Health 2021, 18, 11054. [Google Scholar] [CrossRef]
- Rendana, M.; Idris, W.; Rahim, S.; Rahman, Z.; Lihan, T. Predicting soil erosion potential under CMIP6 climate change scenarios in the Chini Lake Basin, Malaysia. Geosci. Lett. 2023, 10, 1. [Google Scholar]
- Xu, X.; Yun, X.; Tang, Q.; Cui, H.; Wang, J. Projected seasonal changes in future rainfall erosivity over the Lancang-Mekong River basin under the CMIP6 scenarios. J. Hydrol. 2023, 620, 129444. [Google Scholar] [CrossRef]
- Meehl, G.; Moss, R.; Taylor, K.; Eyring, V. Climate Model Intercomparisons: Preparing for the Next Phase. Eos Trans. Am. Geophys. Union 2014, 95, 77–78. [Google Scholar] [CrossRef] [Green Version]
- Eyring, V.; Bony, S.; Meehl, G.A.; Senior, C. Overview of the Coupled Model Intercomparison Project Phase 6 (CMIP6) experimental design and organization. Geosci. Model Dev. 2016, 9, 1937–1958. [Google Scholar] [CrossRef] [Green Version]
- Zhu, H.; Jiang, Z.; Li, L. Projection of climate extremes in China, an incremental exercise from CMIP5 to CMIP6. Sci. Bull. 2021, 66, 2528–2537. [Google Scholar]
- Wang, Y.; Dai, E.; Ge, Q.; Zhang, X.; Yu, C. Spatial heterogeneity of ecosystem services and their trade-offs in the Hengduan Mountain region, Southwest China. CATENA 2021, 207, 105632. [Google Scholar] [CrossRef]
- Yu, H.; Miao, S.; Xie, G.; Guo, X.; Favre, A. Contrasting Floristic Diversity of the Hengduan Mountains, the Himalayas and the Qinghai-Tibet Plateau Sensu Stricto in China. Front. Ecol. Evol. 2020, 8, 136. [Google Scholar] [CrossRef]
- Fan, J.; Liu, F.; Gong, K.; Guo, F. Spatial characteristics of soil erosion in Hengduan Mountain region, eastern Tibet based on GIS. J. Arid Land Resour. Environ. 2012, 26, 144–149. [Google Scholar]
- Teng, H.; Hu, J.; Zhou, Y.; Zhou, L.; Shi, Z. Modelling, and mapping soil erosion potential in China. J. Integr. Agric. 2019, 18, 251–264. [Google Scholar] [CrossRef] [Green Version]
- Li, B.Y. Exploration of the Range of the Hengduan Mountains. Mt. Res. 1987, 5, 74–82. [Google Scholar]
- Zhang, T.; Li, B.L.; He, Y.Q.; Du, J.K.; Niu, H.W.; Xin, H.J. Spatial and Temporal Distribution of Precipitation Based on Corrected TRMM Data in Hengduan Mountains. J. Nat. Resour. 2015, 30, 260–270. [Google Scholar] [CrossRef]
- Zhu, Y.; Yang, S. Evaluation of CMIP6 for historical temperature and precipitation over the Tibetan Plateau and its comparison with CMIP5. Adv. Clim. Chang. Res. 2020, 11, 239–251. [Google Scholar] [CrossRef]
- Panagos, P.; Ballabio, C.; Borrelli, P.; Meusburger, K. Spatio-temporal analysis of rainfall erosivity and erosivity density in Greece. CATENA 2016, 137, 161–172. [Google Scholar] [CrossRef]
- Li, X.; Ye, X. Variability of Rainfall Erosivity and Erosivity Density in the Ganjiang River Catchment, China: Characteristics and Influences of Climate Change. Atmosphere 2018, 9, 48. [Google Scholar] [CrossRef] [Green Version]
- Su, Z.-x. The Causes of 98 Catastrophic Flood of the Yangtze River and Corresponding Countermeasure. J. Sichuan Teach. Coll. Nat. Sci. Ed. 2000, 21, 69–80. [Google Scholar] [CrossRef]
- Pan, J.H.; Liu, X.Q. Analysis of the unusual high temperature & drought during midsummer in Sichuan in 2006. J. Sichuan Meteorol. 2006, 1003–7187, 12–14. [Google Scholar] [CrossRef]
- Wang, L.; Chen, L.; Zhang, X.; Zhang, Z. Comparison Analysis of Three Torrential Rain Events in Summer, 2013 in Sichuan Basin. Plateau Mt. Meteorol. Res. 2015, 35, 86–91. [Google Scholar] [CrossRef]
- He, J.; Wan, Y.-R.; Chen, H.-T.; Wang, S.-L. Effects of Land Use Change on Rainfall Erosion in Luojiang River Basin, China. Sustainability 2022, 14, 8441. [Google Scholar] [CrossRef]
- Das, S.; Jain, M.K.; Gupta, V. A step towards mapping rainfall erosivity for India using high-resolution GPM satellite rainfall products. CATENA 2022, 212, 106067. [Google Scholar] [CrossRef]
- Xu, F.; Jia, Y.; Niu, C.; Liu, J.; Zhang, W. Variation Character of Annual, Seasonal and Monthly Temperature and Precipitation. Mt. Res. 2018, 36, 171–183. [Google Scholar] [CrossRef]
- Zhou, C.; Jiang, X.; Li, Y. Features of Climate Change of Water Vapor Resource over Eastern Region of the Tibetan Plateau and Its Surroundings. Plateau Meteorol. 2009, 28, 55–63. [Google Scholar]
- Liang, Y.; Shen, R.; Shi, C.; Xing, Y.; Sun, S. Rainfall erosivity in China based on CLDAS fusion precipitation. Arid Land Geogr. 2022, 45, 1333–1346. [Google Scholar] [CrossRef]
- Li, Z.; He, Y.; Xin, H.; Wang, C. Spatio-temporal Variations of Temperature and Precipitation in Mts. Hengduan Region during 1960-2008. Acta Geogr. Sin. 2010, 65, 563–579. [Google Scholar] [CrossRef]
- Sun, X.; Zhang, G.; Wang, J.; Li, C.; Wu, S. Spatiotemporal variation of flash floods in the Hengduan Mountains region affected by rainfall properties and land use. Nat. Hazards 2022, 111, 465–488. [Google Scholar] [CrossRef]
- Kaiheng, H.; Wei, L.; Shuang, L.; Xiuzhen, L. Spatial pattern of debris flow catchments and the rainfall amount of triggering debris flows in the Hengduan Mountains region. Acta Geogr. Sin. 2019, 74, 2303–2313. [Google Scholar] [CrossRef]
- Teng, H.; Liang, Z.; Chen, S.; Liu, Y. Current and future assessments of soil erosion by water on the Tibetan Plateau based on RUSLE and CMIP5 climate models. Sci. Total Environ. 2018, 635, 673–686. [Google Scholar] [CrossRef] [PubMed]
- Lun, Y.; Liu, L.; Cheng, L.; Li, X.; Li, H.; Xu, Z. Assessment of GCMs simulation performance for precipitation and temperature from CMIP5 to CMIP6 over the Tibetan Plateau. Int. J. Climatol. 2021, 41, 3994–4018. [Google Scholar] [CrossRef]
- Chuenchum, P.; Xu, M.; Tang, W. Predicted trends of soil erosion and sediment yield from future land use and climate change scenarios in the Lancang–Mekong River by using the modified RUSLE model. Int. Soil Water Conserv. Res. 2020, 8, 213–227. [Google Scholar] [CrossRef]
Model Name | Institution | Resolution (Latitude × Longitude) |
---|---|---|
EC-Earth3-Veg | EC-Earth-Cons (Europe) | 0.7° × 0.7° |
MPI-ESM1.2-HR | MPI-M (Germany) | 0.93° × 0.94° |
MRI-ESM2-0 | MRI (Japan) | 1.12° × 1.12° |
NorESM2-LM | NCC (Norway) | 1.89° × 2.5° |
Season | Type | Min | Max | Mean | Cv |
---|---|---|---|---|---|
Spring | Precipitation | 100.76 | 206.45 | 152.08 | 0.17 |
Rainfall Erosivity | 67.15 | 903.7 | 270.96 | 0.70 | |
Rainfall Erosivity Density | 0.65 | 5.08 | 1.66 | 0.56 | |
Summer | Precipitation | 295.97 | 667.02 | 405.40 | 0.19 |
Rainfall Erosivity | 437.79 | 3600.28 | 1045.67 | 0.52 | |
Rainfall Erosivity Density | 1.38 | 6.42 | 2.46 | 0.35 | |
Autumn | Precipitation | 106.87 | 311.18 | 170.84 | 0.24 |
Rainfall Erosivity | 82.51 | 1368.38 | 326.46 | 0.76 | |
Rainfall Erosivity Density | 0.77 | 4.41 | 1.74 | 0.48 | |
Winter | Precipitation | 9.64 | 56.82 | 26.78 | 0.55 |
Rainfall Erosivity | 1.12 | 116.23 | 39.53 | 1.11 | |
Rainfall Erosivity Density | 0.07 | 2.27 | 1.02 | 0.90 |
Type | Min | Max | Mean | Cv |
---|---|---|---|---|
Precipitation | 545.73 | 1218.18 | 758.41 | 0.19 |
Rainfall Erosivity | 644.1 | 4850.11 | 1699.93 | 0.56 |
Rainfall Erosivity Density | 1.09 | 4.43 | 2.09 | 0.36 |
Type | S | Z | Trend | Area Percentage |
---|---|---|---|---|
Precipitation | >1 | >|1.96| | Significantly increase | 0.18 |
>1 | −1.96~1.96 | Slightly increase | 29.50 | |
−1~1 | −1.96~1.96 | Stable | 26.65 | |
<−1 | >|1.96| | Significantly decrease | 16.52 | |
<−1 | −1.96~1.96 | Slightly decrease | 27.15 | |
Rainfall erosivity | >5 | >|1.96| | Significantly increase | 7.69 |
>5 | −1.96~1.96 | Slightly increase | 24.99 | |
−5~5 | −1.96~1.96 | Stable | 44.31 | |
<−5 | −1.96~1.96 | Slightly decrease | 23.01 | |
Rainfall erosivity density | >0.005 | >|1.96| | Significantly increase | 3.41 |
>0.005 | −1.96~1.96 | Slightly increase | 43.28 | |
−0.005~0.005 | −1.96~1.96 | Stable | 41.60 | |
<−0.005 | −1.96~1.96 | Slightly decrease | 11.7 |
Rain Gauge | Reference Period (2005–2010) | Forecast Period (2025–2040) | ||||||
---|---|---|---|---|---|---|---|---|
EEP | EED | LCED | TEP | EEP | EED | LCED | TEP | |
Shiqu | 25.8 | 1 | 3 | 179.9 | 21.4 | 1 | 6 | 276.5 |
Dingqing | 30.3 | 1 | 4 | 245.1 | 23.7 | 1 | 7 | 290.3 |
Luolong | 27.2 | 1 | 2 | 129.0 | 26.7 | 1 | 8 | 384.0 |
Bomi | 37.5 | 1 | 6 | 397.9 | 34.4 | 3 | 11 | 882.6 |
Chayu | 39.9 | 1 | 4 | 362.4 | 42.3 | 3 | 14 | 1335.8 |
Gongshan | 50.5 | 2 | 7 | 1065.6 | 39.3 | 3 | 13 | 957.8 |
Nujiang | 50.2 | 1 | 4 | 577.2 | 37.0 | 3 | 16 | 834.4 |
Tengchong | 49.4 | 2 | 5 | 1001.0 | 35.8 | 3 | 16 | 797.5 |
Baoshan | 53.3 | 1 | 5 | 589.4 | 34.8 | 2 | 11 | 697.1 |
Yanyuan | 41.5 | 1 | 3 | 467.0 | 34.2 | 2 | 11 | 661.0 |
Jiulong | 30.8 | 1 | 4 | 481.3 | 31.5 | 2 | 11 | 702.2 |
Kangding | 32.5 | 1 | 4 | 422.9 | 33.5 | 2 | 8 | 795.7 |
Dujiangyan | 90.8 | 1 | 6 | 790.3 | 41.9 | 2 | 8 | 707.7 |
Songpan | 29.5 | 1 | 4 | 307.4 | 37.0 | 2 | 8 | 651.1 |
Ruoergai | 33.2 | 1 | 3 | 308.5 | 30.1 | 2 | 6 | 538.1 |
Hongyuan | 29.3 | 1 | 3 | 342.1 | 30.7 | 2 | 7 | 623.1 |
Seda | 27.6 | 1 | 4 | 289.3 | 24.0 | 1 | 7 | 405.3 |
Dege | 28.9 | 1 | 4 | 278.9 | 23.1 | 1 | 7 | 369.0 |
Ganzi | 26.1 | 1 | 3 | 282.5 | 24.5 | 2 | 9 | 467.9 |
Changdu | 34.4 | 1 | 3 | 164.0 | 24.8 | 1 | 8 | 309.7 |
Xinlong | 29.1 | 1 | 5 | 266.4 | 26.3 | 2 | 9 | 568.9 |
Daofu | 30.7 | 1 | 9 | 288.1 | 28.2 | 2 | 7 | 670.8 |
Zuogong | 27.7 | 1 | 3 | 178.4 | 29.8 | 1 | 7 | 453.7 |
Batang | 30.4 | 1 | 4 | 178.3 | 26.2 | 1 | 10 | 378.7 |
Litang | 32.9 | 1 | 4 | 344.0 | 27.1 | 2 | 9 | 604.2 |
Daocheng | 31.7 | 1 | 5 | 309.1 | 28.5 | 2 | 11 | 630.8 |
Deqin | 37.5 | 1 | 5 | 281.2 | 32.0 | 2 | 11 | 747.1 |
Shangri-La | 37.1 | 1 | 3 | 287.5 | 31.3 | 2 | 11 | 693.1 |
Muli | 42.3 | 1 | 4 | 474.0 | 33.8 | 2 | 13 | 697.6 |
Weixi | 40.0 | 1 | 5 | 517.0 | 34.7 | 3 | 13 | 756.3 |
Maerkang | 32.1 | 1 | 5 | 408.8 | 31.1 | 2 | 7 | 736.7 |
Xiaojin | 29.3 | 1 | 4 | 249.4 | 35.9 | 3 | 12 | 1589.3 |
Dali | 57.2 | 1 | 4 | 708.5 | 33.0 | 2 | 10 | 1076.7 |
Lijiang | 50.0 | 1 | 4 | 580.1 | 31.5 | 2 | 10 | 1156.7 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liang, X.; Zhang, L.; He, S.; Song, K.; Zheng, Z. Characteristics and Projection of Rainfall Erosivity Distribution in the Hengduan Mountains. Land 2023, 12, 1435. https://doi.org/10.3390/land12071435
Liang X, Zhang L, He S, Song K, Zheng Z. Characteristics and Projection of Rainfall Erosivity Distribution in the Hengduan Mountains. Land. 2023; 12(7):1435. https://doi.org/10.3390/land12071435
Chicago/Turabian StyleLiang, Xinlan, Lei Zhang, Shuqin He, Ke Song, and Zicheng Zheng. 2023. "Characteristics and Projection of Rainfall Erosivity Distribution in the Hengduan Mountains" Land 12, no. 7: 1435. https://doi.org/10.3390/land12071435
APA StyleLiang, X., Zhang, L., He, S., Song, K., & Zheng, Z. (2023). Characteristics and Projection of Rainfall Erosivity Distribution in the Hengduan Mountains. Land, 12(7), 1435. https://doi.org/10.3390/land12071435