Spatiotemporal Analysis and Prediction of Urban Land Use/Land Cover Changes Using a Cellular Automata and Novel Patch-Generating Land Use Simulation Model: A Study of Zhejiang Province, China
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area, i.e., Zhejiang Province
2.2. Data Sources
2.3. Methods
2.3.1. Classification of Land Use/Land Cover
2.3.2. Spatiotemporal Analysis of LULC
2.3.3. Driving Variables of LULC Changes
2.3.4. Modeling and Prediction of Future LULC
- Land Use Expansion Analysis Strategy (LEAS)
- ii.
- CA Model’s Multiclass/Type Random Patch Seed (CARS)
2.3.5. Validation of the Simulation Model
3. Results
3.1. Spatial and Quantitative Distribution of LULC
3.2. Spatiotemporal Changes in Land Uses
3.3. Underlying Drivers of LULC Changes Using LEAS
3.4. Future Prediction of LULC, i.e., 2040
Multiscenario Prediction Using a PLUS Model
3.5. Result of the Validated PLUS Model
4. Discussion
4.1. Trends of Urban LULC Changes
4.2. Driving Factors of Urban LULC Changes
4.3. Multiscenario Dynamics of Future Land Uses
5. Policy Recommendations
- Baseline scenario (BLS)
- Smart Growth and Compact Development: Encourage the development of compact and efficient growth patterns in urban areas, prioritizing the infill development and redevelopment of barren land areas. This approach will help minimize the conversion of agricultural land and natural habitats to other land uses;
- Agricultural Land Protection: Implement policies and regulations to protect agricultural land from urban encroachment. Such strategies can promote sustainable farming practices, support farmers’ livelihoods, and ensure food security;
- Green Infrastructure Development: Incorporate green infrastructure, such as ecological corridors, parks, and green belts, into the planning of urban areas to enhance urban resilience and improve the overall quality of the urban environment.
- ii.
- Cultivated Land Protection Scenario (CLPS)
- Strict Land Use Control: Enforce stricter measures and land use regulations to prevent the conversion of cultivated land for nonagricultural purposes. Such a strategy will include enhanced monitoring and enforcement through regulatory bodies to curb illegal land use alteration;
- Agricultural Innovation and Support: Invest adequately in modern agricultural research and development by encouraging contemporary farming techniques and assisting farmers in embracing sustainable agricultural practices. This will improve productivity and reduce the pressure to convert further land for cultivation;
- Land Use Consolidation: Encourage land consolidation programs to optimize fragmented agricultural land and improve productivity. This can be achieved through voluntary land exchange programs, agricultural cooperatives, or other mechanisms that facilitate more efficient land use.
- iii.
- Ecological Protection Scenario (EPS)
- Ecological Conservation and Restoration: Strengthen the protection of key ecological areas, such as forests and wetland areas, classified as water bodies. Implement various measures for ecological restoration, such as reforestation, wetland preservation, and habitat conservation;
- Sustainable Tourism Development: Promote sustainable tourism practices that minimize negative impacts on ecological systems and support local communities. Encourage nature-based tourism, ecotourism, and the development of protected areas for tourism purposes;
- Environmental Education and Awareness: Provide educational programs to raise environmental awareness among urban inhabitants about the importance of ecological conservation. In addition, encourage community participation in various conservation efforts.
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Phan, T.N.; Kuch, V.; Lehnert, L.W. Land Cover Classification using Google Earth Engine and Random Forest Classifier—The Role of Image Composition. Remote Sens. 2020, 12, 2411. [Google Scholar] [CrossRef]
- Long, H. Theorizing land Use Transitions: A Human Geography Perspective. Habitat Int. 2022, 128, 102669. [Google Scholar] [CrossRef]
- Besser, H.; Hamed, Y. Environmental Impacts of Land Management on the Sustainability of Natural resources in Oriental Erg Tunisia, North Africa. Environ. Dev. Sustain. 2021, 23, 11677–11705. [Google Scholar] [CrossRef]
- Tali, J.A.; Ganaie, T.A.; Naikoo, M.W. Assessing the Link between Land Use/Land Cover Changes and Land Surface Temperature in Himalayan Urban Center, Srinagar. Environ. Sci. Pollut. Res. 2023, 30, 51191–51205. [Google Scholar] [CrossRef] [PubMed]
- Seyam, M.M.H.; Haque, M.R.; Rahman, M.M. Identifying the Land Use Land Cover (LULC) Changes using Remote Sensing and GIS Approach: A Case Study at Bhaluka in Mymensingh, Bangladesh. Case Stud. Chem. Environ. Eng. 2023, 7, 100293. [Google Scholar] [CrossRef]
- United Nations Department of Economic and Social Affairs. World Urbanization Prospects 2018: Highlights; Division, P., Ed.; United Nations Department of Economic and Social Affairs: New York, NY, USA, 2019. [Google Scholar]
- Xu, D.; Zhang, K.; Cao, L.; Guan, X.; Zhang, H. Driving Forces and Prediction of Urban Land Use Change Based on the Geodetector and CA-Markov Model: A Case Study of Zhengzhou, China. Int. J. Digit. Earth 2022, 15, 2246–2267. [Google Scholar] [CrossRef]
- Munthali, M.G.; Mustak, S.; Adeola, A.; Botai, J.; Singh, S.K.; Davis, N. Modelling Land Use and Land Cover Dynamics of Dedza District of Malawi using Hybrid Cellular Automata and Markov Model. Remote Sens. Appl. Soc. Environ. 2020, 17, 100276. [Google Scholar] [CrossRef]
- Zhang, J.; Hou, Y.; Dong, Y.; Wang, C.; Chen, W. Land Use Change Simulation in Rapid Urbanizing Regions: A Case Study of Wuhan Urban Areas. Int. J. Environ. Res. Public Health 2022, 19, 8785. [Google Scholar] [CrossRef]
- Koko, A.F.; Yue, W.; Abubakar, G.A.; Hamed, R.; Noman Alabsi, A.A. Analyzing urban growth and land cover change scenario in Lagos, Nigeria using multi-temporal remote sensing data and GIS to mitigate flooding. Geomat. Nat. Hazards Risk 2021, 12, 631–652. [Google Scholar] [CrossRef]
- Wang, F.; Wu, J.; Wu, M.; Zheng, W.; Huang, D. Has the Economic Structure Optimization in China & Supply-Side Structural Reform Improved the Inclusive Green Total Factor Productivity? Sustainability 2021, 13, 12911. [Google Scholar] [CrossRef]
- Wu, Y.; Han, Z.; Koko, A.F.; Zhang, S.; Ding, N.; Luo, J. Analyzing the Spatio-Temporal Dynamics of Urban Land Use Expansion and Its Influencing Factors in Zhejiang Province, China. Int. J. Environ. Res. Public Health 2022, 19, 16580. [Google Scholar] [CrossRef] [PubMed]
- Xiaomin, G.; Chuanglin, F. How Does Urbanization Affect Energy Carbon Emissions Under the Background of Carbon Neutrality? J. Environ. Manag. 2023, 327, 116878. [Google Scholar] [CrossRef]
- Liang, L.; Chen, M.; Lu, D. Revisiting the Relationship Between Urbanization and Economic Development in China Since the Reform and Opening-up. Chin. Geogr. Sci. 2022, 32, 1–15. [Google Scholar] [CrossRef]
- Deng, Z.; Zhao, Q.; Bao, H.X.H. The Impact of Urbanization on Farmland Productivity: Implications for China’s Requisition–Compensation Balance of Farmland Policy. Land 2020, 9, 311. [Google Scholar] [CrossRef]
- Zhu, C.; Lin, Y.; Zhang, J.; Gan, M.; Xu, H.; Li, W.; Yuan, S.; Wang, K. Exploring the Relationship Between Rural Transition and Agricultural Eco-Environment using a Coupling Analysis: A Case Study of Zhejiang Province, China. Ecol. Indic. 2021, 127, 107733. [Google Scholar] [CrossRef]
- Song, X.; Liu, Y.; Zhu, X.; Cao, G.; Chen, Y.; Zhang, Z.; Wu, D. The Impacts of Urban Land Expansion on Ecosystem Services in Wuhan, China. Environ. Sci. Pollut. Res. 2022, 29, 10635–10648. [Google Scholar] [CrossRef] [PubMed]
- Sun, X.; Li, G.; Wang, J.; Wang, M. Quantifying the Land Use and Land Cover Changes in the Yellow River Basin while Accounting for Data Errors Based on GlobeLand30 Maps. Land 2021, 10, 31. [Google Scholar] [CrossRef]
- Khan, F.; Das, B.; Mohammad, P. Urban Growth Modeling and Prediction of Land Use Land Cover Change Over Nagpur City, India Using Cellular Automata Approach. In Geospatial Technology for Landscape and Environmental Management: Sustainable Assessment and Planning; Rai, P.K., Mishra, V.N., Singh, P., Eds.; Springer Nature: Singapore, 2022; pp. 261–282. [Google Scholar] [CrossRef]
- Nuissl, H.; Siedentop, S. Urbanisation and Land Use Change. In Sustainable Land Management in a European Context: A Co-Design Approach; Weith, T., Barkmann, T., Gaasch, N., Rogga, S., Strauß, C., Zscheischler, J., Eds.; Springer International Publishing: Cham, Switzerland, 2021; pp. 75–99. [Google Scholar] [CrossRef]
- Trinder, J.; Liu, Q. Assessing Environmental Impacts of Urban Growth using Remote Sensing. Geo-Spat. Inf. Sci. 2020, 23, 20–39. [Google Scholar] [CrossRef] [Green Version]
- Mohamed, A.; Worku, H. Simulating Urban Land Use and Cover Dynamics using Cellular Automata and Markov Chain Approach in Addis Ababa and the Surrounding. Urban Clim. 2020, 31, 100545. [Google Scholar] [CrossRef]
- Al-Bilbisi, H. Spatial Monitoring of Urban Expansion Using Satellite Remote Sensing Images: A Case Study of Amman City, Jordan. Sustainability 2019, 11, 2260. [Google Scholar] [CrossRef] [Green Version]
- Liu, X.; Ning, X.; Wang, H.; Wang, C.; Zhang, H.; Meng, J. A Rapid and Automated Urban Boundary Extraction Method Based on Nighttime Light Data in China. Remote Sens. 2019, 11, 1126. [Google Scholar] [CrossRef] [Green Version]
- Abebe, G.; Getachew, D.; Ewunetu, A. Analysing Land Use/Land Cover Changes and its Dynamics using Remote Sensing and GIS in Gubalafito district, Northeastern Ethiopia. SN Appl. Sci. 2021, 4, 30. [Google Scholar] [CrossRef]
- Mayani-Parás, F.; Botello, F.; Castañeda, S.; Munguía-Carrara, M.; Sánchez-Cordero, V. Cumulative habitat loss increases conservation threats on endemic species of terrestrial vertebrates in Mexico. Biol. Conserv. 2021, 253, 108864. [Google Scholar] [CrossRef]
- Li, D.; Wang, S.; He, Q.; Yang, Y. Cost-Effective Land Cover Classification for Remote Sensing Images. J. Cloud Comput. 2022, 11, 62. [Google Scholar] [CrossRef]
- Viana, C.M.; Girão, I.; Rocha, J. Long-Term Satellite Image Time-Series for Land Use/Land Cover Change Detection Using Refined Open Source Data in a Rural Region. Remote Sens. 2019, 11, 1104. [Google Scholar] [CrossRef] [Green Version]
- Ali, S.; Henchiri, M.; Sha, Z.; Wilson, K.; Yun, B.; Yao, F.; Zhang, J. A Time Series of Land Cover Maps of South Asia from 2001 to 2015 Generated using AVHRR GIMMS NDVI3G Data. Environ. Sci. Pollut. Res. Int. 2020, 27, 20309–20320. [Google Scholar] [CrossRef]
- Koko, A.F.; Han, Z.; Wu, Y.; Abubakar, G.A.; Bello, M. Spatiotemporal Land Use/Land Cover Mapping and Prediction Based on Hybrid Modeling Approach: A Case Study of Kano Metropolis, Nigeria (2020–2050). Remote Sens. 2022, 14, 6083. [Google Scholar] [CrossRef]
- Caglıyan, A.; Daglı, D. Monitoring Land Use Land Cover Changes and Modelling of Urban Growth Using a Future Land Use Simulation Model (FLUS) in Diyarbakır, Turkey. Sustainability 2022, 14, 9180. [Google Scholar] [CrossRef]
- Wang, J.; Bretz, M.; Dewan, M.A.A.; Delavar, M.A. Machine Learning in Modelling Land-Use and Land Cover-Change (LULCC): Current status, Challenges and Prospects. Sci. Total Environ. 2022, 822, 153559. [Google Scholar] [CrossRef]
- Yatoo, S.A.; Sahu, P.; Kalubarme, M.H.; Kansara, B.B. Monitoring Land Use Changes and its Future Prospects using Cellular Automata Simulation and Artificial Neural Network for Ahmedabad city, India. GeoJournal 2022, 87, 765–786. [Google Scholar] [CrossRef]
- Dinagarapandi, P.; Saravanan, K.; Mohan, K. Catchment Scale Modeling of Land Use and Land Cover Dynamics. In Impacts of Urbanization on Hydrological Systems in India; Thambidurai, P., Dikshit, A.K., Eds.; Springer International Publishing: Cham, Switzerland, 2023; pp. 43–55. [Google Scholar] [CrossRef]
- Yang, J.; Tang, W.; Gong, J.; Shi, R.; Zheng, M.; Dai, Y. Simulating Urban Expansion using Cellular Automata Model with Spatiotemporally Explicit Representation of Urban Demand. Landsc. Urban Plan. 2023, 231, 104640. [Google Scholar] [CrossRef]
- Yeh, A.G.O.; Li, X.; Xia, C. Cellular Automata Modeling for Urban and Regional Planning. In Urban Informatics; Shi, W., Goodchild, M.F., Batty, M., Kwan, M.-P., Zhang, A., Eds.; Springer: Singapore, 2021; pp. 865–883. [Google Scholar] [CrossRef]
- Singh, K.T.; Singh, N.M.; Devi, T.T. A Remote Sensing, GIS Based Study on LULC Change Detection by Different Methods of Classifiers on Landsat Data; Springer Nature: Singapore, 2022; Volume 234, pp. 107–117. [Google Scholar]
- Alshari, E.A.; Gawali, B.W. Development of Classification System for LULC using Remote Sensing and GIS. Glob. Transit. Proc. 2021, 2, 8–17. [Google Scholar] [CrossRef]
- Anand, V.; Oinam, B. Future Land Use Land Cover Prediction with Special Emphasis on Urbanization and Wetlands. Remote Sens. Lett. 2020, 11, 225–234. [Google Scholar] [CrossRef]
- Das, S.; Sarkar, R. Predicting the Land Use and Land Cover Change using Markov Model: A Catchment Level Analysis of the Bhagirathi-Hugli River. Spat. Inf. Res. 2019, 27, 439–452. [Google Scholar] [CrossRef]
- Yutong, X. Applications of Markov Chain in Forecast. J. Phys. Conf. Ser. 2021, 1848, 012061. [Google Scholar] [CrossRef]
- Jafarpour Ghalehteimouri, K.; Shamsoddini, A.; Mousavi, M.N.; Binti Che Ros, F.; Khedmatzadeh, A. Predicting Spatial and Decadal of Land Use and Land Cover Change using Integrated Cellular Automata Markov Chain Model Based Ccenarios (2019–2049) Zarriné-Rūd River Basin in Iran. Environ. Chall. 2022, 6, 100399. [Google Scholar] [CrossRef]
- Gemitzi, A. Predicting Land Cover Changes using a CA Markov Model under Different Shared Socioeconomic Pathways in Greece. GISci. Remote Sens. 2021, 58, 425–441. [Google Scholar] [CrossRef]
- Onilude, O.O.; Vaz, E. Urban Sprawl and Growth Prediction for Lagos Using GlobeLand30 Data and Cellular Automata Model. Sci 2021, 3, 23. [Google Scholar] [CrossRef]
- Khwarahm, N.R. Spatial Modeling of Land Use and Land Cover change in Sulaimani, Iraq, using Multitemporal Satellite Data. Environ. Monit. Assess. 2021, 193, 148. [Google Scholar] [CrossRef]
- Weslati, O.; Bouaziz, S.; Sarbeji, M.M. Modelling and Assessing the Spatiotemporal Changes to Future Land Use Change Scenarios Using Remote Sensing and CA-Markov Model in the Mellegue Catchment. J. Indian Soc. Remote Sens. 2023, 51, 9–29. [Google Scholar] [CrossRef]
- Wang, J.; Zhang, J.; Xiong, N.; Liang, B.; Wang, Z.; Cressey, E.L. Spatial and Temporal Variation, Simulation and Prediction of Land Use in Ecological Conservation Area of Western Beijing. Remote Sens. 2022, 14, 1452. [Google Scholar] [CrossRef]
- Yang, J.; Huang, X. The 30m Annual Land Cover Dataset and its Dynamics in China from 1990 to 2019. Earth Syst. Sci. Data 2021, 13, 3907–3925. [Google Scholar] [CrossRef]
- Xu, L.; Liu, X.; Tong, D.; Liu, Z.; Yin, L.; Zheng, W. Forecasting Urban Land Use Change Based on Cellular Automata and the PLUS Model. Land 2022, 11, 652. [Google Scholar] [CrossRef]
- Ding, Q.; Chen, Y.; Bu, L.; Ye, Y. Multi-Scenario Analysis of Habitat Quality in the Yellow River Delta by Coupling FLUS with InVEST Model. Int. J. Environ. Res. Public Health 2021, 18, 2389. [Google Scholar] [CrossRef] [PubMed]
- Liang, X.; Guan, Q.; Clarke, K.C.; Liu, S.; Wang, B.; Yao, Y. Understanding the Drivers of Sustainable Land Expansion using a Patch-Generating Land Use Simulation (PLUS) Model: A Case Study in Wuhan, China. Comput. Environ. Urban Syst. 2021, 85, 101569. [Google Scholar] [CrossRef]
- Gao, L.; Tao, F.; Liu, R.; Wang, Z.; Leng, H.; Zhou, T. Multi-Scenario Simulation and Ecological Risk Analysis of Land Use Based on the PLUS Model: A Case Study of Nanjing. Sustain. Cities Soc. 2022, 85, 104055. [Google Scholar] [CrossRef]
- Zhu, Z.; Duan, J.; Li, R.; Feng, Y. Spatial Evolution, Driving Mechanism, and Patch Prediction of Grain-Producing Cultivated Land in China. Agriculture 2022, 12, 860. [Google Scholar] [CrossRef]
- Ma, G.; Li, Q.; Zhang, J.; Zhang, L.; Cheng, H.; Ju, Z.; Sun, G. Simulation and Analysis of Land-Use Change Based on the PLUS Model in the Fuxian Lake Basin (Yunnan-Guizhou Plateau, China). Land 2023, 12, 120. [Google Scholar] [CrossRef]
- Liang, X.; Liu, X.; Li, D.; Zhao, H.; Chen, G. Urban Growth Simulation by Incorporating Planning Policies into a CA-Based Future Land-Use Simulation Model. Int. J. Geogr. Inf. Sci. 2018, 32, 2294–2316. [Google Scholar] [CrossRef]
- Zhou, M.; Ma, Y.; Tu, J.; Wang, M. SDG-Oriented Multi-Scenario Sustainable Land-Use Simulation Under the Background of Urban Expansion. Environ. Sci. Pollut. Res. 2022, 29, 72797–72818. [Google Scholar] [CrossRef]
- Congalton, R.G. A Review of Assessing the Accuracy of Classifications of Remotely Sensed Data. Remote Sens. Environ. 1991, 37, 35–46. [Google Scholar] [CrossRef]
- Yang, X.; Bai, Y.; Che, L.; Qiao, F.; Xie, L. Incorporating Ecological Constraints into Urban Growth Boundaries: A Case Study of Ecologically Fragile Areas in the Upper Yellow River. Ecol. Indic. 2021, 124, 107436. [Google Scholar] [CrossRef]
- Norizah, K.; Jamhuri, J.; Balqis, M.; Mohd Hasmadi, I.; Nor Akmar, A.A. Land Use and Land Cover Change Prediction Using ANN-CA Model. In Tropical Forest Ecosystem Services in Improving Livelihoods For Local Communities; Samdin, Z., Kamaruddin, N., Razali, S.M., Eds.; Springer Nature: Singapore, 2023; pp. 107–125. [Google Scholar] [CrossRef]
- Girma, R.; Fürst, C.; Moges, A. Land Use Land Cover Change Modeling by Integrating Artificial Neural Network with Cellular Automata-Markov Chain Model in Gidabo River Basin, Main Ethiopian Rift. Environ. Chall. 2022, 6, 100419. [Google Scholar] [CrossRef]
- Chen, L.; CAI, H.; Zhang, T.; Zhang, X.; Zeng, H. Land Use Multi-Scenario Simulation Analysis of Rao River Basin Based on Markov-FLUS Model. Acta Ecol. Sin. 2022, 42, 3947–3958. [Google Scholar] [CrossRef]
- Niu, T.; Xiong, L.; Chen, J.; Zhou, Y.; Yin, J.; Liu, D. Land Use Simulation and Multi-Scenario Prediction of the Yangtze River Basin Based on PLUS model. Eng. J. Wuhan Univ. 2023, 1–16. [Google Scholar]
- Zhou, D.; Li, Z.; Wang, S.; Tian, Y.; Zhang, Y.; Jiang, G. How does the newly urban residential built-up density differ across Chinese cities under rapid urban expansion? Evidence from residential FAR and statistical data from 2007 to 2016. Land Use Policy 2021, 104, 105365. [Google Scholar] [CrossRef]
- Zhang, Z.; Wen, Q.; Liu, F.; Zhao, X.; Liu, B.; Xu, J.; Yi, L.; Hu, S.; Wang, X.; Zuo, L.; et al. Urban Expansion in China and its effect on Cultivated Land Before and After Initiating “Reform and Open Policy”. Sci. China Earth Sci. 2016, 59, 1930–1945. [Google Scholar] [CrossRef]
- Huang, X.; Xia, J.; Xiao, R.; He, T. Urban Expansion Patterns of 291 Chinese Cities, 1990–2015. Int. J. Digit. Earth 2019, 12, 62–77. [Google Scholar] [CrossRef]
- Shen, Y.; Shen, H.; Cheng, Q.; Huang, L.; Zhang, L. Urban Expansion Trajectories in China’s 36 Major Cities. In Proceedings of the 2019 Joint Urban Remote Sensing Event (JURSE), Vannes, France, 22–24 May 2019; pp. 1–4. [Google Scholar]
- Zhejiang Statistical Yearbook. Zhejiang Provincial National Economic and Social Development Statistical Bulletin; Zhejiang Provincial Bureau of Statistics: Hangzhou, China, 2020.
- Liu, Y.; Yue, W.; Fan, P. Spatial Determinants of Urban Land Conversion in Large Chinese Cities: A Case of Hangzhou. Environ. Plan. B Plan. Des. 2011, 38, 706–725. [Google Scholar] [CrossRef]
- Feng, R.; Wang, F.; Wang, K.; Xu, S. Quantifying Influences of Anthropogenic-Natural Factors on Ecological Land Evolution in Mega-Urban Agglomeration: A Case Study of Guangdong-Hong Kong-Macao Greater Bay Area. J. Clean. Prod. 2021, 283, 125304. [Google Scholar] [CrossRef]
- Wang, Z.; Lu, C. Urban Land Expansion and its Driving Factors of Mountain Cities in China during 1990–2015. J. Geogr. Sci. 2018, 28, 1152–1166. [Google Scholar] [CrossRef] [Green Version]
- Lei, C.; Wagner, P.D.; Fohrer, N. Identifying the Most Important Spatially Distributed Variables for Explaining Land Use Patterns in a Rural Lowland Catchment in Germany. J. Geogr. Sci. 2019, 29, 1788–1806. [Google Scholar] [CrossRef] [Green Version]
- Chen, C.; He, X.; Liu, Z.; Sun, W.; Dong, H.; Chu, Y. Analysis of Regional Economic Development Based on Land Use and Land Cover Change Information Derived from Landsat Imagery. Sci. Rep. 2020, 10, 12721. [Google Scholar] [CrossRef] [PubMed]
- Liu, X.; Liang, X.; Li, X.; Xu, X.; Pei, F.; Ou, J.; Chen, Y.; Li, S. A Future Land Use Simulation Model (FLUS) for Simulating Multiple Land Use Scenarios by Coupling Human and Natural Effects. Landsc. Urban Plan. 2017, 168, 94–116. [Google Scholar] [CrossRef]
- Guan, D.; Zhao, Z.; Tan, J. Dynamic Simulation of Land Use Change Based on Logistic-CA-Markov and WLC-CA-Markov Models: A Case Study in Three Gorges Reservoir Area of Chongqing, China. Environ. Sci. Pollut. Res. Int. 2019, 26, 20669–20688. [Google Scholar] [CrossRef]
- Zeng, J.; Bian, J.; Chen, W. Impact of Slope Farmland Use Change on Ecosystem Services Value in China, 2000–2020. J. Mt. Sci. 2023, 20, 821–833. [Google Scholar] [CrossRef]
- Zhou, L.; Dang, X.; Sun, Q.; Wang, S. Multi-Scenario Simulation of Urban Land Change in Shanghai by Random Forest and CA-Markov Model. Sustain. Cities Soc. 2020, 55, 102045. [Google Scholar] [CrossRef]
- Mamitimin, Y.; Simayi, Z.; Mamat, A.; Maimaiti, B.; Ma, Y. FLUS Based Modeling of the Urban LULC in Arid and Semi-Arid Region of Northwest China: A Case Study of Urumqi City. Sustainability 2023, 15, 4912. [Google Scholar] [CrossRef]
S/ No. | Data | Subdata | Year | Spatial Resolution | Source | Format |
---|---|---|---|---|---|---|
1. | Land use dataset | Classified LULC | 1995–2020 | 30 m | https://zenodo.org/ | Geo TIFF |
2. | Natural/physical data | DEM Slope Precipitation Temperature | 2015 | 30 m 30 m 1000 m 1000 m | https://www.resdc.cn | Geo TIFF |
3. | Socioeconomic data | GDP Population | 2015 | 1000 m | https://www.geodoi.ac.cn/ | Geo TIFF |
Distance to motorway Distance to railway Distance to primary road Distance to secondary road Distance to tertiary road Distance to government | 2020 | https://www.openstreetmap.org/ | .Shp |
S/No. | LULC Category | Description of LULC Categories |
---|---|---|
1. | Agricultural Land | Comprises all croplands, farmlands, plantations, and agricultural areas |
2. | Forest Areas | Consist of all land with different types of forestland |
3. | Grassland | Areas with open pasture and green land |
4. | Water Bodies | Areas with rivers, lakes, ponds, streams, and reservoirs |
5. | Built-up Areas | Include residential, institutional, and commercial areas with urban facilities and impervious surfaces |
6. | Barren Land | Covers areas having no vegetation cover, crops, or grasses. |
S/ No. | LULC Categories | Area (km2) | |||||
---|---|---|---|---|---|---|---|
1995 | 2000 | 2005 | 2010 | 2015 | 2020 | ||
1. | Agric. Land | 27,225.00 | 26,509.14 | 24,821.68 | 23,507.11 | 24,229.75 | 24,339.87 |
2. | Forest Areas | 70,133.460 | 69,746.59 | 69,637.56 | 69,512.71 | 67,544.28 | 66,880.99 |
3. | Grassland | 24.440 | 16.68 | 24.09 | 28.86 | 15.46 | 9.44 |
4. | Water Bodies | 3005.18 | 3121.60 | 3432.85 | 3502.54 | 3350.68 | 3029.38 |
5. | Built-up Areas | 2728.56 | 3722.72 | 5200.44 | 6564.59 | 7975.50 | 8855.49 |
6. | Barren Land | 0.30 | 0.21 | 0.32 | 1.13 | 1.27 | 1.77 |
103,116.90 | 103,116.90 | 103,116.90 | 103,116.90 | 103,116.90 | 103,116.90 |
S/ No. | LULC Categories | Δ Changes in LULC (km2) | |||||
---|---|---|---|---|---|---|---|
1995–2000 | 2000–2005 | 2005–2010 | 2010–2015 | 2015–2020 | 1995–2020 | ||
1. | Agric. Land | −715.86 | −1687.46 | −1314.57 | 722.64 | 110.12 | −2885.13 |
2. | Forest Areas | −386.87 | −109.03 | −124.85 | −1968.43 | −663.29 | −3252.47 |
3. | Grassland | −7.76 | 7.41 | 4.77 | −13.40 | −6.02 | −15.00 |
4. | Water Bodies | 116.42 | 311.25 | 69.69 | −151.86 | −321.30 | 24.20 |
5. | Built-up Areas | 994.16 | 1477.72 | 1364.15 | 1410.91 | 879.99 | 6126.93 |
6. | Barren Land | −0.09 | 0.11 | 0.81 | 0.14 | 0.50 | 1.47 |
Scenario Setting | Baseline Scenario (BLS) | Cultivated Land Protection Scenario (CLPS) | Ecological Protection Scenario (EPS) | |||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
AL | FO | GR | WB | BA | BL | AL | FO | GR | WB | BA | BL | AL | FO | GR | WB | BA | BL | |
AL | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 0 | 0 | 0 | 0 | 0 | 1 | 1 | 1 | 1 | 1 | 1 |
FO | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 0 | 1 | 1 | 0 | 1 | 1 | 1 | 0 | 0 |
GR | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 0 | 1 | 1 | 1 | 0 | 0 |
WB | 0 | 0 | 0 | 1 | 1 | 0 | 0 | 0 | 0 | 1 | 1 | 0 | 0 | 0 | 0 | 1 | 0 | 0 |
BA | 0 | 0 | 0 | 0 | 1 | 0 | 1 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 1 | 0 |
BL | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 |
S/ No. | LULC Categories | Real and Simulated LULC (km2) | Changes in LULC (2020–2040) | |||||
---|---|---|---|---|---|---|---|---|
2020 | BLS 2040 | CLPS 2040 | EPS 2040 | BLS | CLPS | EPS | ||
1. | Agric. Land | 24,274.40 | 22,494.90 | 27,389.10 | 22,494.90 | –1779.47 | 3114.70 | –1779.47 |
2. | Forest Areas | 66,765.30 | 64,328.60 | 63,979.40 | 66,766.50 | –2436.72 | –2785.90 | 1.13 |
3. | Grassland | 9.40 | 7.10 | 7.10 | 8.20 | –2.24 | –2.24 | –1.13 |
4. | Water Bodies | 2876.10 | 2592.70 | 2011.30 | 2879.60 | –283.38 | –864.79 | 3.48 |
5. | Built-up Areas | 8788.90 | 13,290.60 | 9327.60 | 10,565.10 | 4501.62 | 538.64 | 1776.16 |
6. | Barren Land | 1.50 | 1.70 | 1.10 | 1.30 | 0.19 | –0.41 | –0.17 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Koko, A.F.; Han, Z.; Wu, Y.; Zhang, S.; Ding, N.; Luo, J. Spatiotemporal Analysis and Prediction of Urban Land Use/Land Cover Changes Using a Cellular Automata and Novel Patch-Generating Land Use Simulation Model: A Study of Zhejiang Province, China. Land 2023, 12, 1525. https://doi.org/10.3390/land12081525
Koko AF, Han Z, Wu Y, Zhang S, Ding N, Luo J. Spatiotemporal Analysis and Prediction of Urban Land Use/Land Cover Changes Using a Cellular Automata and Novel Patch-Generating Land Use Simulation Model: A Study of Zhejiang Province, China. Land. 2023; 12(8):1525. https://doi.org/10.3390/land12081525
Chicago/Turabian StyleKoko, Auwalu Faisal, Zexu Han, Yue Wu, Siyuan Zhang, Nan Ding, and Jiayang Luo. 2023. "Spatiotemporal Analysis and Prediction of Urban Land Use/Land Cover Changes Using a Cellular Automata and Novel Patch-Generating Land Use Simulation Model: A Study of Zhejiang Province, China" Land 12, no. 8: 1525. https://doi.org/10.3390/land12081525
APA StyleKoko, A. F., Han, Z., Wu, Y., Zhang, S., Ding, N., & Luo, J. (2023). Spatiotemporal Analysis and Prediction of Urban Land Use/Land Cover Changes Using a Cellular Automata and Novel Patch-Generating Land Use Simulation Model: A Study of Zhejiang Province, China. Land, 12(8), 1525. https://doi.org/10.3390/land12081525