Impact of Land Use Change on Carbon Storage Based on FLUS-InVEST Model: A Case Study of Chengdu–Chongqing Urban Agglomeration, China
Abstract
:1. Introduction
2. Data Source and Research Methods
2.1. Study Area
2.2. Data Source and Preprocessing
2.3. Research Methods
2.3.1. Method Framework
2.3.2. FLUS Model and Multi-Scenario Setting
2.3.3. InVEST Model and Carbon Density
3. Results and Analysis
3.1. Analysis of Land Use Change
3.2. Land Use Prediction under Different Scenarios in the Future
3.3. Spatial Distribution Characteristics and Changes in Carbon Storage
3.4. Effects of Land Use Types on Carbon Storage
4. Discussion
4.1. Response Relationship between Carbon Storage and Land Use Change
4.2. Advantages and Limitations of the Model
4.3. Suggestions for Future Land Use Planning
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Bing, X.U.; Guo, Z.D.; Amp, S.L. Biomass carbon stocks in China’s forests between 2000 and 2050: A prediction based on forest biomass-age relationships. Sci. China Life Sci. 2010, 53, 776–783. [Google Scholar] [CrossRef]
- Houghton, R.A. Terrestrial sources and sinks of carbon inferred from terrestrial data. Tellus B 1996, 48, 420–432. [Google Scholar] [CrossRef] [Green Version]
- Houghton, R.A. The annual net flux of carbon to the atmosphere from changes in land use 1850–1990. Tellus B 1999, 2, 298–313. [Google Scholar] [CrossRef] [Green Version]
- Yue, C.; Ciais, P.; Houghton, R.A.; Nassikas, A.A. Contribution of land use to the interannual variability of the land carbon cycle. Nat. Commun. 2020, 11, 3170. [Google Scholar] [CrossRef]
- Piao, S.; Fang, J.; Ciais, P.; Peylin, P.; Huang, Y.; Sitch, S.; Wang, T. The carbon balance of terrestrial ecosystems in China. Nature 2009, 458, 1009–1013. [Google Scholar] [CrossRef]
- Piao, S.; He, Y.; Wang, X.; Chen, F. Carbon sink estimation of terrestrial ecosystems in China: Methods, progress and prospects. Sci. Sin. 2022, 52, 1010–1020. (In Chinese) [Google Scholar]
- Yang, F.; He, F.; Li, S.; Li, M.; Wu, P. A new estimation of carbon emissions from land use and land cover change in China over the past 300 years. Sci. Total Environ. 2023, 863, 160963. [Google Scholar] [CrossRef]
- Letourneau, A.; Verburg, P.H.; Stehfest, E. A land-use systems approach to represent land-use dynamics at continental and global scales. Environ. Modell. Softw. 2012, 33, 61–79. [Google Scholar] [CrossRef]
- Toro, G.; Otero, M.P.; Clerici, N.; Szantoi, Z.; González-González, A.; Escobedo, F.J. Interacting municipal-level anthropogenic and ecological disturbances drive changes in neotropical forest carbon storage. Front. Environ. Sci. 2022, 10. [Google Scholar] [CrossRef]
- Ewane, E.B.; Deh, N.A.; Mfonkwet, N.Y.; Nkembi, L. Agricultural expansion and land use land cover changes in the Mount Bamboutos landscape, Western Cameroon: Implications for local land use planning and sustainable development. Int. J. Environ. Stud. 2023, 80, 186–206. [Google Scholar] [CrossRef]
- Zhu, E.; Deng, J.; Zhou, M.; Gan, M.; Jiang, R.; Wang, K.; Shahtahmassebi, A. Carbon emissions induced by land-use and land-cover change from 1970 to 2010 in Zhejiang, China. Sci. Total Environ. 2019, 646, 930–939. [Google Scholar] [CrossRef] [PubMed]
- Pan, Y.; Birdsey, R.A.; Fang, J.; Houghton, R.A.; Kauppi, P.E.; Kurz, W.A.; Phillips, O.L.; Shvidenko, A.; Lewis, S.L.; Canadell, J.G.; et al. A large and persistent carbon sink in the world’s forests. Science 2011, 333, 988–993. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Li, M.; Luo, H.; Qin, Z.; Tong, Y. Spatial-temporal simulation of carbon storage based on land use in Yangtze River delta under SSP-RCP scenarios. Land 2023, 12, 399. [Google Scholar] [CrossRef]
- Liang, Y.; Liu, L.; Huang, J. Integrating the SD-CLUE-S and InVEST models into assessment of oasis carbon storage in northwestern China. PLoS ONE 2017, 12, e172494. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, R.; Zhao, J.; Chen, G.; Lin, Y.; Yang, A.; Cheng, J. Coupling PLUS-InVEST model for ecosystem service research in Yunnan province, China. Sustainability 2022, 15, 271. [Google Scholar] [CrossRef]
- Solomon, H.; Woldeamlak, B.; Jan, N.; James, L. Analysing past land use land cover change and CA-Markov-based future modelling in the middle Suluh Valley, northern Ethiopia. Geocarto Int. 2020, 35, 225–255. [Google Scholar] [CrossRef]
- Liu, X.; Xun, L.; Xia, L.; Xu, X.; Wang, S. A future land use simulation model (FLUS) for simulating multiple land use scenarios by coupling human and natural effects. Landsc. Urban Plan. 2017, 168, 94–116. [Google Scholar] [CrossRef]
- Li, Y.; Liu, Z.; Li, S.; Li, X. Multi-scenario simulation analysis of land use and carbon storage changes in Changchun city based on FLUS and InVEST model. Land 2022, 11, 647. [Google Scholar] [CrossRef]
- Wang, J.; Lv, J.; Zhang, W.; Chen, T.; Yang, Y.; Wu, J. Land-use pattern evaluation using GOESOS-FLUS in national territory spatial planning: A case study of Changzhi city, Shanxi province. Sustainability 2022, 14, 13752. [Google Scholar] [CrossRef]
- Cooper, R. Carbon dynamics of pristine and hydrologically modified fens in the southern Rocky Mountains. Can. J. Bot. 2003, 81, 477–491. [Google Scholar]
- Ni, Y.; Eskeland, G.S.; Giske, J.; Hansen, J.P. The global potential for carbon capture and storage from forestry. Carbon Balanc. Manag. 2016, 11, 1172. [Google Scholar] [CrossRef] [Green Version]
- Mauya, E.W.; Mugasha, W.A.; Njana, M.A.; Zahabu, E.; Malimbwi, R. Carbon stocks for different land cover types in Mainland Tanzania. Carbon Balanc. Manag. 2019, 14, 4. [Google Scholar] [CrossRef] [PubMed]
- Cai, B.; Li, W.; Dhakal, S.; Wang, J. Source data supported high resolution carbon emissions inventory for urban areas of the Beijing-Tianjin-Hebei region: Spatial patterns, decomposition and policy implications. J. Environ. Manag. 2018, 206, 786–799. [Google Scholar] [CrossRef] [PubMed]
- Pei, J.; Niu, Z.; Wang, L.; Song, X.P.; Huang, N.; Geng, J.; Wu, Y.B.; Jiang, H.H. Spatial-temporal dynamics of carbon emissions and carbon sinks in economically developed areas of China: A case study of Guangdong province. Sci. Rep. 2018, 8, 13383. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhang, Y.; Wu, Q.; Zhao, X.; Hao, Y.; Liu, R.; Yang, Z.; Lu, Z. Study of carbon metabolic processes and their spatial distribution in the Beijing-Tianjin-Hebei urban agglomeration. Sci. Total Environ. 2018, 645, 1630–1642. [Google Scholar] [CrossRef]
- Congmou, Z.; Xiaoling, Z.; Ke, W.; Shaofeng, Y.; Lixia, Y.; Martin, S. Urban-rural construction land transition and its coupling relationship with population flow in China’s urban agglomeration region. Cities 2020, 101, 102701. [Google Scholar]
- Liu, B.; Qian, J.; Zhao, R.; Yang, Q.; Wu, K.; Zhao, H.; Feng, Z.; Dong, J. Spatio-temporal variation and its driving forces of soil organic carbon along an urban-rural gradient: A case study of Beijing. Int. J. Environ. Res. Public Health 2022, 19, 15201. [Google Scholar] [CrossRef]
- Chen, A.; Wang, M.; Lin, Z.; Wang, Y.; Li, X. Temporal variation of soil organic carbon pools along a chronosequence of reforested land in southwest China. Catena 2020, 194, 104650. [Google Scholar] [CrossRef]
- Li, X.; Hui, N.; Yang, Y.; Ma, J.; Luo, Z.; Chen, F. Short-term effects of land consolidation of dryland-to-paddy conversion on soil CO2 flux. J. Environ. Manag. 2021, 292, 112691. [Google Scholar] [CrossRef]
- Yue, W.; Zhang, X.; Zhen, Y.; Wu, T.; Wang, T. Consideration on the high-quality optimization of agricultural space in eastern developed region of China. Trans. Chin. Soc. Agric. Eng. 2021, 37, 236–242. (In Chinese) [Google Scholar] [CrossRef]
- Wan, J.; Li, Y.; Ma, C.; Jiang, T.; Su, Y.; Zhang, L.; Song, X.; Sun, H.; Wang, Z.; Zhao, Y.; et al. Measurement of coupling coordination degree and spatio-temporal characteristics of the social economy and ecological environment in the Chengdu-Chongqing urban agglomeration under high-quality development. Int. J. Environ. Res. Public Health 2021, 18, 11629. [Google Scholar] [CrossRef] [PubMed]
- Diego, B.P.; Kirsten, H.; Michel, L. Agricultural land use and the sustainability of social-ecological systems. Ecol. Model. 2020, 437, 109312. [Google Scholar]
- Wu, R.; Lan, H.; Cao, Y.; Li, P. Optimization of low-carbon land use in Chengdu based on multi-objective linear programming and the future land use simulation model. Front. Environ. Sci. 2022, 10, 989747. [Google Scholar] [CrossRef]
- Chen, T.; Peng, L.; Wang, Q. Response and multiscenario simulation of trade-offs/synergies among ecosystem services to the grain to green program: A case study of the Chengdu-Chongqing urban agglomeration, China. Environ. Sci. Pollut. Res. 2022, 29, 33572–33586. [Google Scholar] [CrossRef]
- Xu, L.; He, N.; Yu, G. A dataset of carbon density in Chinese terrestrial ecosystems (2010s). Sci. Data Bank 2018, 4, 90–96. [Google Scholar]
- Tariq, A.; Mumtaz, F. A series of spatio-temporal analyses and predicting modeling of land use and land cover changes using an integrated Markov chain and cellular automata models. Environ. Sci. Pollut. Res. 2023, 30, 47470–47484. [Google Scholar] [CrossRef]
- Xun, L.; Xiaoping, L.; Xia, L.; Yimin, C.; He, T.; Yao, Y. Delineating multi-scenario urban growth boundaries with a CA-based FLUS model and morphological method. Landsc. Urban Plan. 2018, 177, 47–63. [Google Scholar]
- Feng, D.; Bao, W.; Fu, M.; Zhang, M.; Sun, Y. Current and future land use characters of a national central city in eco-fragile region—A case study in Xi’an city based on FLUS model. Land 2021, 10, 286. [Google Scholar] [CrossRef]
- Liu, P.; Hu, Y.; Jia, W. Land use optimization research based on flus model and ecosystem services–setting Jinan city as an example. Urban Clim. 2021, 40, 100984. [Google Scholar] [CrossRef]
- Sun, Y.; Li, J.; Ren, Z.; Yang, F. Ecosystem service trade-offs and spatial pattern optimisation under different land use scenarios: A case study in Guanzhong region, China. Land 2023, 12, 236. [Google Scholar]
- Ding, Q.; Chen, Y.; Bu, L.; Ye, Y. Multi-scenario analysis of habitat quality in the Yellow River delta by coupling flus with InVEST model. Int. J. Environ. Res. Public Health 2021, 18, 2389. [Google Scholar] [CrossRef]
- Wu, Y.; Han, Z.; Faisal, K.A.; Zhang, S.; Ding, N.; Luo, J. Analyzing the spatio-temporal dynamics of urban land use expansion and its influencing factors in Zhejiang province, China. Int. J. Environ. Res. Public Health 2022, 19, 16580. [Google Scholar] [CrossRef] [PubMed]
- Li, W.; Chen, Z.; Li, M.; Zhang, H.; Li, M.; Qiu, X.; Zhou, C. Carbon emission and economic development trade-offs for optimizing land-use allocation in the Yangtze River delta, China. Ecol. Indic. 2023, 147, 109950. [Google Scholar] [CrossRef]
- Zhu, G.; Qiu, D.; Zhang, Z.; Sang, L.; Liu, Y.; Wang, L.; Zhao, K.; Ma, H.; Xu, Y.; Wan, Q. Land-use changes lead to a decrease in carbon storage in arid region, China. Ecol. Indic. 2021, 127, 107770. [Google Scholar] [CrossRef]
- Huang, J.; Lin, X.; Qi, X. A literature review on optimization of spatial development pattern based on ecological-production-living space. Prog. Geogr. 2017, 36, 378–391. (In Chinese) [Google Scholar] [CrossRef] [Green Version]
Data Attribute | Resolution | Data Source |
---|---|---|
LUCC (2010, 2015, 2018, 2020) | 1 km | RESDC |
Natural reserve | — | RESDC |
Carbon density | — | National Ecological Science Data Center (http://www.cnern.org.cn, accessed on 10 December 2022) |
Elevation | 30 m | Geospatial Data Cloud (http://www.gscloud.cn, accessed on 10 December 2022) |
Soil type | 1 km | RESDC |
Slope | 1 km | — |
Temperature | 1 km | National Meteorological Science Data Center (http://data.cma.cn, accessed on 10 December 2022) |
Precipitation | 1 km | National Meteorological Science Data Center |
Normalized Difference Vegetation Index (NDVI) | 1 km | RESDC |
Night-time satellite data | 1 km | RESDC |
Gross domestic product (GDP) | 1 km | RESDC |
Population | 1 km | RESDC |
Distance to road | 1 km | OSM (https://www.openstreetmap.org/, accessed on 12 December 2022) |
Distance to rail transport | 1 km | OSM |
Distance to river | 1 km | OSM |
Sub-Categories | |
---|---|
1 Farmland | Paddy field Dry farmland |
2 Forest land | Wood land Shrub land Sparsely forested land Other forested land |
3 Grassland | High coverage grassland Middle coverage grassland Low coverage grassland |
4 Wetland | River and canal Lake Reservoir and waterhole Tidal marsh Shoal and reed land |
5 Built-up land | Cities and towns Rural settlements Industry and traffic land |
6 Other land | Sandy land Gobi Saline-alkali land Swampland Bare land Rock and gravel Other unused land |
Land Use Type | Farmland | Forest Land | Grassland | Wetland | Built-Up Land | Other Land |
---|---|---|---|---|---|---|
Neighborhood weight | 0.0073 | 0.0245 | 0.2006 | 0.04455 | 0.5973 | 0.1248 |
Scenario | LUCC Type | Farmland | Forest Land | Grassland | Wetland | Built-Up Land | Other Land |
---|---|---|---|---|---|---|---|
Natural development | Farmland | 1 | 1 | 1 | 1 | 1 | 1 |
Forest land | 1 | 1 | 0 | 0 | 0 | 0 | |
Grassland | 1 | 1 | 1 | 1 | 1 | 1 | |
Wetland | 0 | 0 | 1 | 1 | 1 | 1 | |
Built-up land | 1 | 0 | 1 | 1 | 1 | 1 | |
Other land | 1 | 1 | 1 | 0 | 1 | 1 | |
Ecological protection | Farmland | 1 | 1 | 1 | 1 | 0 | 1 |
Forest land | 0 | 1 | 0 | 0 | 0 | 0 | |
Grassland | 0 | 1 | 1 | 1 | 0 | 0 | |
Wetland | 0 | 0 | 0 | 1 | 0 | 0 | |
Built-up land | 0 | 0 | 0 | 0 | 1 | 0 | |
Other land | 1 | 1 | 1 | 1 | 1 | 1 | |
Urban development | Farmland | 1 | 0 | 0 | 0 | 0 | 1 |
Forest land | 1 | 1 | 1 | 0 | 0 | 0 | |
Grassland | 1 | 1 | 1 | 1 | 1 | 1 | |
Wetland | 1 | 0 | 1 | 1 | 0 | 1 | |
Built-up land | 0 | 0 | 0 | 0 | 1 | 0 | |
Other land | 1 | 1 | 1 | 0 | 1 | 1 |
Lucode | Land Use Type | Cabove | Cbelow | Csoil | Ctotal |
---|---|---|---|---|---|
1 | Farmland | 21.83 | 13.64 | 68.24 | 103.71 |
2 | Forest land | 44.38 | 9.35 | 51.9 | 105.63 |
3 | Grassland | 18.37 | 21.43 | 76.56 | 116.36 |
4 | Wetland | 0 | 0 | 0 | 0 |
5 | Built-up land | 0.71 | 1.34 | 33.99 | 36.04 |
6 | Other land | 9.13 | 1.82 | 34.08 | 45.03 |
Farmland | Forest Land | Grassland | Wetland | Built-Up Land | Other Land | 2010 | |
---|---|---|---|---|---|---|---|
Farmland | 92,179.39 | 15,128.02 | 2976.81 | 1710.68 | 4496.97 | 20.16 | 116,512.03 |
Forest land | 15,358.86 | 30,935.47 | 2208.67 | 275.20 | 446.57 | 81.65 | 49,306.42 |
Grassland | 3909.27 | 3640.12 | 4400.20 | 72.58 | 111.90 | 18.15 | 12,152.22 |
Wetland | 1365.93 | 237.90 | 52.42 | 977.82 | 246.98 | 12.10 | 2893.15 |
Built-up land | 1501.01 | 210.69 | 42.34 | 183.47 | 2154.23 | 2.02 | 4093.76 |
Other land | 33.27 | 52.42 | 16.13 | 14.11 | 3.02 | 60.48 | 179.43 |
2020 | 114,347.73 | 50,204.62 | 9696.57 | 3233.86 | 7459.67 | 194.56 | 185,137.01 |
Land Use Type | Attribute | 2010 | 2020 | Natural Development | Ecological Protection | Urban Development |
---|---|---|---|---|---|---|
Farmland | Area (km2) | 116,488.39 | 114,282.92 | 114,046.27 | 114,192.29 | 114,046.27 |
Rate (%) | 62.92 | 61.73 | 61.60 | 61.68 | 61.60 | |
Forest land | Area (km2) | 49,336.91 | 50,255.44 | 50,263.50 | 50,360.17 | 50,002.68 |
Rate (%) | 26.65 | 27.15 | 27.15 | 27.20 | 27.01 | |
Grassland | Area (km2) | 12,149.23 | 9718.77 | 9185.05 | 9794.30 | 9458.96 |
Rate (%) | 6.56 | 5.25 | 4.96 | 5.29 | 5.11 | |
Wetland | Area (km2) | 2892.58 | 3233.55 | 3348.35 | 3228.51 | 3233.55 |
Rate (%) | 1.56 | 1.75 | 1.81 | 1.74 | 1.75 | |
Built-up land | Area (km2) | 4090.69 | 7451.96 | 8103.51 | 7370.40 | 8203.20 |
Rate (%) | 2.21 | 4.03 | 4.38 | 3.98 | 4.43 | |
Other land | Area (km2) | 179.21 | 194.36 | 190.33 | 191.33 | 192.34 |
Rate (%) | 0.10 | 0.10 | 0.10 | 0.10 | 0.10 |
Scenario Setting | 2010 | 2015 | 2020 | Natural Development | Ecological Protection | Urban Development | ||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Carbon Storage (106 Mg) | Rate(%) | Carbon Storage (106 Mg) | Rate(%) | Carbon Storage (106 Mg) | Rate (%) | Carbon Storage (106 Mg) | Rate (%) | Carbon Storage (106 Mg) | Rate (%) | Carbon Storage (106 Mg) | Rate (%) | |
Farmland | 1199.92 | 64.05 | 1186.53 | 63.63 | 1176.96 | 63.83 | 1174.53 | 63.91 | 1176.03 | 63.75 | 1174.53 | 63.88 |
Forest land | 517.62 | 27.63 | 517.37 | 27.74 | 527.15 | 28.59 | 527.23 | 28.69 | 528.25 | 28.64 | 524.5 | 28.53 |
Grassland | 140.41 | 7.49 | 140.38 | 7.53 | 112.3 | 6.09 | 106.13 | 5.78 | 113.17 | 6.13 | 109.3 | 5.94 |
Wetland | 0 | 0.00 | 0 | 0.00 | 0 | 0.00 | 0 | 0.00 | 0 | 0.00 | 0 | 0.00 |
Built-up land | 14.64 | 0.78 | 19.68 | 1.06 | 26.67 | 1.45 | 29 | 1.58 | 26.38 | 1.43 | 29.36 | 1.60 |
Other land | 0.8 | 0.04 | 0.81 | 0.04 | 0.87 | 0.05 | 0.85 | 0.05 | 0.86 | 0.05 | 0.86 | 0.05 |
Total | 1873.4 | 100.00 | 1864.76 | 100.00 | 1843.95 | 100.00 | 1837.74 | 100.00 | 1844.68 | 100.00 | 1838.54 | 100.00 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Shao, Z.; Chen, C.; Liu, Y.; Cao, J.; Liao, G.; Lin, Z. Impact of Land Use Change on Carbon Storage Based on FLUS-InVEST Model: A Case Study of Chengdu–Chongqing Urban Agglomeration, China. Land 2023, 12, 1531. https://doi.org/10.3390/land12081531
Shao Z, Chen C, Liu Y, Cao J, Liao G, Lin Z. Impact of Land Use Change on Carbon Storage Based on FLUS-InVEST Model: A Case Study of Chengdu–Chongqing Urban Agglomeration, China. Land. 2023; 12(8):1531. https://doi.org/10.3390/land12081531
Chicago/Turabian StyleShao, Zhouling, Chunyan Chen, Yuanli Liu, Jie Cao, Guitang Liao, and Zhengyu Lin. 2023. "Impact of Land Use Change on Carbon Storage Based on FLUS-InVEST Model: A Case Study of Chengdu–Chongqing Urban Agglomeration, China" Land 12, no. 8: 1531. https://doi.org/10.3390/land12081531
APA StyleShao, Z., Chen, C., Liu, Y., Cao, J., Liao, G., & Lin, Z. (2023). Impact of Land Use Change on Carbon Storage Based on FLUS-InVEST Model: A Case Study of Chengdu–Chongqing Urban Agglomeration, China. Land, 12(8), 1531. https://doi.org/10.3390/land12081531