Spatial Distributions of Yield Gaps and Production Increase Potentials of Spring Wheat and Highland Barley in the Qinghai-Tibet Plateau
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Data Sources and Preprocessing
2.3. Simulation of Potential Crop Yields
2.4. Calculation of Crop Yield Gap and Increase Potential
3. Results
3.1. Potential Yields of Spring Wheat and Highland Barley
3.2. Sown Area, Actual Yield, and Total Productions of Spring Wheat and Highland Barley
3.3. Yield Gaps of Spring Wheat and Highland Barley
3.4. Production Increase Potentials of Spring Wheat and Highland Barley
4. Discussion
4.1. Crop Potential Yields
4.2. Crop Actual Yields, Yield Gaps, and Increase Potentials
4.3. Implications
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Zhang, Y.; Liu, L.; Wang, Z.; Bai, W.; Ding, M.; Wang, X.; Yan, J.; Xu, E.; Wu, X.; Zhang, B.; et al. Spatial and temporal characteristics of land use and cover changes in the Tibetan Plateau. China Sci. Bull. 2019, 64, 2865–2875. [Google Scholar]
- Liu, J.; Li, X.; Zhong, X. Consumption Structure of Food and the Countermeasure of Grain in Tibet. J. Mt. Sci. Engl. 2004, 22, 286–291. [Google Scholar]
- Gao, L.; Xu, Z.; Cheng, S.; Xu, S.; Zhang, X.; Yu, C.; Sun, W.; Wu, J.; Qu, Y.; Ma, J. Food Security Situation and Major Grain Supply and Demand in Tibetan Region. J. Nat. Resour. 2017, 32, 951–960. [Google Scholar]
- Shi, W.; Lu, C.; Shi, X.; Cui, J. Patterns and trends in grain self-sufficiency on the Tibetan Plateau during 1985–2016. J. Geogr. Sci. 2020, 30, 1590–1602. [Google Scholar] [CrossRef]
- Duan, J.; Xu, Y.; Sun, X. Spatial patterns and their changes of grain production, grain consumption and grain security in The Tibetan Plateau. J. Nat. Resour. 2019, 34, 673–688. [Google Scholar] [CrossRef]
- Qiang, X.; Chi, D.; Feng, J. Development status of highland barley production in the Qinghai-Tibet Plateau. Tibet Sci. Technol. 2008, 3, 11–17. [Google Scholar]
- Zhang, Z.; Lu, C. Photo-temperature potential yield of spring wheat at different accumulated temperature ranges and its response to climate change in Qinghai-Tibet Plateau. Sci. Agric. Sin. 2022, 55, 2135–2149. [Google Scholar]
- Neumann, K.; Verburg, P.H.; Stehfest, E.; Müller, C. The yield gap of global grain production: A spatial analysis. Agric. Syst. 2010, 103, 316–326. [Google Scholar] [CrossRef]
- Hochman, Z.; Gobbett, D.; Horan, H.; Garcia, J.N. Data rich yield gap analysis of wheat in Australia. Field Crops Res. 2016, 197, 97–106. [Google Scholar] [CrossRef]
- Wang, H.; Ren, H.; Zhang, L.; Zhao, Y.; Liu, Y.; He, Q.; Li, G.; Han, K.; Zhang, J.; Zhao, B.; et al. A sustainable approach to narrowing the summer maize yield gap experienced by smallholders in the North China Plain. Agric. Syst. 2023, 204, 103541. [Google Scholar] [CrossRef]
- Lobell, D.B.; Cassman, K.G.; Field, C.B. Crop Yield Gaps: Their Importance, Magnitudes, and Causes. Annu. Rev. Env. Resour. 2009, 34, 179–204. [Google Scholar] [CrossRef] [Green Version]
- Barker, R.K.; Gomez, A.; Herdt, R.W. Farm-Level Constraints to High Rice Yields in Asia: 1974–77; IRRI: Los Banos, Philippines, 1979. [Google Scholar]
- de Datta, S.K. Principles and Practices of Rice Production; Wiley-Interscience Productions: Hoboken, NJ, USA, 1981. [Google Scholar]
- Aramburu Merlos, F.; Pablo Monzon, J.; Mercau, J.L.; Taboada, M.; Andrade, F.H.; Hall, A.J.; Jobbagy, E.; Cassman, K.G.; Grassini, P. Potential for crop production increase in Argentina through closure of existing yield gaps. Field Crops Res. 2015, 184, 145–154. [Google Scholar] [CrossRef]
- Henderson, B.; Godde, C.; Medina-Hidalgo, D.; van Wijk, M.; Silvestri, S.; Douxchamps, S.; Stephenson, E.; Power, B.; Rigolot, C.; Cacho, O.; et al. Closing system-wide yield gaps to increase food production and mitigate GHGs among mixed crop-livestock smallholders in Sub-Saharan Africa. Agric. Syst. 2016, 143, 106–113. [Google Scholar] [CrossRef]
- Xu, X.; He, P.; Pampolino, M.F.; Li, Y.; Liu, S.; Xie, J.; Hou, Y.; Zhou, W. Narrowing yield gaps and increasing nutrient use efficiencies using the Nutrient Expert system for maize in Northeast China. Field Crops Res. 2016, 194, 75–82. [Google Scholar] [CrossRef]
- Hengsdijk, H.; Langeveld, J. Yield Trends and Yield Gap Analysis of Major Crops in the World; WOt-werkdocument 170 2009; Wettelijke Onderzoekstaken Natuur & Milieu: Wageningen, The Netherlands, 2009. [Google Scholar]
- Liu, B.; Chen, X.; Cui, Z.; Meng, Q.; Zhao, M. Research advance in yield potential and yield gap of three major cereal crops. Chin. J. Eco-Agric. 2015, 23, 720–733. [Google Scholar]
- Cui, Z.; Yue, S.; Wang, G.; Meng, Q.; Wu, L.; Yang, Z.; Zhang, Q.; Li, S.; Zhang, F.; Chen, X. Closing the yield gap could reduce projected greenhouse gas emissions: A case study of maize production in China. Glob. Chang. Biol. 2013, 19, 2467–2477. [Google Scholar] [CrossRef]
- Gou, F.; Yin, W.; Hong, Y.; van der Werf, W.; Chai, Q.; Heerink, N.; van Ittersum, M.K. On yield gaps and yield gains in intercropping: Opportunities for increasing grain production in northwest China. Agric. Syst. 2017, 151, 96–105. [Google Scholar] [CrossRef]
- Lv, S.; Yang, X.; Lin, X.; Liu, Z.; Zhao, J.; Li, K.; Mu, C.; Chen, X.; Chen, F.; Mi, G. Yield gap simulations using ten maize cultivars commonly planted in Northeast China during the past five decades. Agric. Forest Meteorol. 2015, 205, 1–10. [Google Scholar] [CrossRef]
- Gong, K.; He, L.; Wu, D.; Lu, C.; Li, J.; Zhou, W.; Du, J.; Yu, Q. Spatial-Temporal Variations of Photo-Temperature Potential Productivity and Yield Gap of Highland Barley and Its Response to Climate Change in the Cold Regions of the Tibetan Plateau. Sci. Agric. Sin. 2020, 53, 720–733. [Google Scholar]
- Zhang, Z.; Lu, C. Assessing changes in potential yields and yield gaps of summer maize in the North China Plain. Food Energy Secur. 2023, e489. [Google Scholar] [CrossRef]
- Salo, T.J.; Palosuo, T.; Kersebaum, K.C.; Nendel, C.; Angulo, C.; Ewert, F.; Bindi, M.; Calanca, P.; Klein, T.; Moriondo, M.; et al. Comparing the performance of 11 crop simulation models in predicting yield response to nitrogen fertilization. J. Agric. Sci. 2016, 154, 1218–1240. [Google Scholar] [CrossRef] [Green Version]
- Wu, D.; Yu, Q.; Lu, C.; Hengsdijk, H. Quantifying production potentials of winter wheat in the North China Plain. Eur. J. Agron. 2006, 24, 226–235. [Google Scholar] [CrossRef]
- Boogaard, H.; Wolf, J.; Supit, I.; Niemeyer, S.; van Ittersum, M. A regional implementation of WOFOST for calculating yield gaps of autumn-sown wheat across the European Union. Field Crops Res. 2013, 143, 130–142. [Google Scholar] [CrossRef]
- de Wit, A.; Boogaard, H.; Fumagalli, D.; Janssen, S.; Knapen, R.; van Kraalingen, D.; Supit, I.; van der Wijngaart, R.; van Diepen, K. 25 years of the WOFOST cropping systems model. Agric. Syst. 2019, 168, 154–167. [Google Scholar] [CrossRef]
- Tang, Y.; Wan, S.; He, J.; Zhao, X. Foreword to the special issue: Looking into the impacts of global warming from the roof of the world. J. Plant Ecol 2009, 2, 169–171. [Google Scholar] [CrossRef] [Green Version]
- Li, L.; Zhang, Y.; Wu, J.; Li, S.; Zhang, B.; Zu, J.; Zhang, H.; Ding, M.; Paudel, B. Increasing sensitivity of alpine grasslands to climate variability along an elevational gradient on the Qinghai-Tibet Plateau. Sci. Total Environ. 2019, 678, 21–29. [Google Scholar] [CrossRef]
- Zhang, Z.; Lu, C. Assessing Influences of Climate Change on Highland Barley Productivity in the Qinghai-Tibet Plateau during 1978–2017. Sci. Rep. 2022, 12, 7625. [Google Scholar] [CrossRef]
- Wei, H.; Lu, C. Farmland change and its implications in the Three River Region of Tibet during recent 20 years. PLoS ONE 2022, 17, e265939. [Google Scholar] [CrossRef]
- Boogaard, H.L.; Diepen, C.A.V.; Rotter, R.P.; Cabrera, J.M.C.A.; Laar, H.H.V. User’s Guide for the WOFOST 7.1 Crop Growth Simulation Model and WOFOST Control Center 1.5; Technical document 52; SC-DLO: Wageningen, The Netherlands, 1998; p. 127. [Google Scholar]
- Kalra, N.; Chakraborty, D.; Kumar, P.R.; Jolly, M.; Sharma, P.K. An approach to bridging yield gaps, combining response to water and other resource inputs for wheat in northern India, using research trials and farmers’ fields data. Agric. Water Manag. 2007, 93, 54–64. [Google Scholar] [CrossRef]
- Chapagain, T.; Good, A. Yield and Production Gaps in Rainfed Wheat, Barley, and Canola in Alberta. Front. Plant Sci. 2015, 6, 990. [Google Scholar] [CrossRef] [Green Version]
- Liu, Z.; Yang, X.; Lin, X.; Hubbard, K.G.; Lv, S.; Wang, J. Maize yield gaps caused by non-controllable, agronomic, and socioeconomic factors in a changing climate of Northeast China. Sci. Total Environ. 2016, 541, 756–764. [Google Scholar] [CrossRef]
- Quzhen, G.; Ciren, P.; Hu, X. Effect of climate change on yield potential of crops in Tibet. Agric. Resour. Arid. Areas 2015, 33, 266–271. [Google Scholar]
- Wu, R.; Zhou, B. Study on the influence of plateau climate change on the potential of grain production in Qinghai province. Qinghai Sci. Technol. 2011, 18, 34–38. [Google Scholar]
- Zhao, X.; Wang, W.; Wan, W.; Li, H. Influence of climate change on potential productivity of naked barley in the Tibetan Plateau in the past 50 years. Chin. J. Eco-Agric. 2015, 23, 1329–1338. [Google Scholar]
- Mu, Q.; Li, J.; He, L.; Wu, D.; Zhu, T.; Lu, C.; Yu, Q. Potential yield of winter wheat in Oinghai—Tibet Plateau and its response toclimate change. J. Arid. Land Resour. Environ. 2021, 35, 92–99. [Google Scholar]
- Zhu, Q. Discussion on statistical methods of farmland area. Tibet. Sci. Technol. 2007, 9, 10–12. [Google Scholar]
- Zhang, Z.; Lu, C. Spatiotemporal Changes in Frost-Free Season and Its Influence on Spring Wheat Potential Yield on the Qinghai–Tibet Plateau from 1978 to 2017. Int. J. Environ. Res. Public Health 2023, 20, 4198. [Google Scholar] [CrossRef] [PubMed]
- Dan, Z.; Wenhui, X.; Jiayun, L.; Zhe, C.; Di, A. Frost-free season lengthening and its potential cause in the Tibetan Plateau from 1960 to 2010. Theor. Appl. Climatol. 2014, 115, 441–450. [Google Scholar]
- Song, Y.; Wang, C.; Linderholm, H.W.; Tian, J.; Shi, Y.; Xu, J.; Liu, Y. Agricultural Adaptation to Global Warming in the Tibetan Plateau. Int. J. Environ. Res. Public Health 2019, 16, 3686. [Google Scholar] [CrossRef] [Green Version]
- Zhang, G.; Dong, J.; Zhou, C.; Xu, X.; Wang, M.; Ouyang, H.; Xiao, X. Increasing cropping intensity in response to climate warming in Tibetan Plateau, China. Field Crops Res. 2013, 142, 36–46. [Google Scholar] [CrossRef]
- Li, W.; Huang, X.; Xi, Y.; Li, F.; Hu, J.; Pu, Q.; Zhao, G. Current situation of fertilizer and pesticide use in highland barley crops in Tibet and suggestions on countermeasures. Tibet. Sci. Technol. 2019, 3–5. [Google Scholar]
- Ma, R.; Nima, Z.; Gao, X.; Dai, X.; Bianba, Z. Effects of Organic Fertilizers Combined with Chemical Fertilizers on the Growth and Yield of Tibetan Hulless Barley. Barley Cereal Sci. 2018, 35, 17–23. [Google Scholar]
- Wei, W.; Zhaxi, L.; Gan, Y.; Liu, R.; Dawa; Deqing, Z. Effects of Different Planting Density and Fertilizer Treatment on Barley Yield and Agronomic Characters. Tibet. J. Agric. Sci. 2022, 18–20. [Google Scholar]
- Liu, Y.; Lyu, S.; Chen, J.; Zhang, J.; Qiu, S.; Hu, Y.; Ge, Q. Spatio-temporal differentiation of agricultural modernization and its driving mechanism on the Qinghai-Tibet Plateau. Acta Geogr. Sin. 2022, 77, 214–227. [Google Scholar]
County | Ya-1 (kg ha−1) | Ya-2 (kg ha−1) | Ya-3 (kg ha−1) |
---|---|---|---|
Pulan | 5060 | 4087 | 3750 |
Ritu | 2412 | 2366 | 2400 |
Zhada | 2249 | 2166 | 2250 |
Dingjie | 4537 | 3563 | 3600 |
Dingri | 6103 | 3828 | 3600 |
Gangba | 3458 | 2825 | 2900 |
Jilong | 5646 | 2589 | 2750 |
Yadong | 3108 | 1909 | 2100 |
Cuomei | 4817 | 3810 | 3600 |
Cuona | 4515 | 3584 | 3200 |
Luozha | 5691 | 3568 | 3600 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, Z.; Lu, C.; Guan, X. Spatial Distributions of Yield Gaps and Production Increase Potentials of Spring Wheat and Highland Barley in the Qinghai-Tibet Plateau. Land 2023, 12, 1555. https://doi.org/10.3390/land12081555
Zhang Z, Lu C, Guan X. Spatial Distributions of Yield Gaps and Production Increase Potentials of Spring Wheat and Highland Barley in the Qinghai-Tibet Plateau. Land. 2023; 12(8):1555. https://doi.org/10.3390/land12081555
Chicago/Turabian StyleZhang, Zemin, Changhe Lu, and Xiao Guan. 2023. "Spatial Distributions of Yield Gaps and Production Increase Potentials of Spring Wheat and Highland Barley in the Qinghai-Tibet Plateau" Land 12, no. 8: 1555. https://doi.org/10.3390/land12081555
APA StyleZhang, Z., Lu, C., & Guan, X. (2023). Spatial Distributions of Yield Gaps and Production Increase Potentials of Spring Wheat and Highland Barley in the Qinghai-Tibet Plateau. Land, 12(8), 1555. https://doi.org/10.3390/land12081555