Quantification and Flow Simulation of Ecosystem Service Supply and Demand in the Yellow River Delta High-Efficiency Eco-Economic Zone
Abstract
:1. Introduction
2. Study Area and Data Source
2.1. Study Area
2.2. Data Source
3. Methods
3.1. ESs Quantification
3.1.1. Assessment of Supply and Demand Capacity for HQ
HQ
HQ Demand
3.1.2. Quantification of Supply and Demand Capacity for CS
CS Supply
CS Demand
- Demand of CS
- 2.
- Quantification of carbon emission accounting
3.2. Assessment of ES Supply and Demand
3.2.1. Supply–Demand Ratio Model of ES
3.2.2. Quantile Regression Analysis
3.2.3. Hotspot Analysis
3.3. Quantification of ES Flow
3.3.1. Habitat Quality Service
3.3.2. Carbon Sequestration Service
4. Results
4.1. Spatiotemporal Change
4.1.1. Spatiotemporal Change of ESs
4.1.2. Spatiotemporal Changes of ES Demand
4.2. Supply–Demand Ratio of ES
4.3. Analysis of Influencing Factors
4.4. Hot Spot Analysis
4.5. Simulation of ES Flow
4.5.1. HQ Flow
- (1)
- Supply and demand area identification
- (2)
- Ecological resistance surface construction
- (3)
- Supply and demand area connection path extraction
- (4)
- Ecological pinch point
- (5)
- Ecological barrier point
- (6)
- Habitat quality service flow patterns
4.5.2. CS Flow
- (1)
- Supply and demand area identification
- (2)
- Pattern of CS flow
- (3)
- Radius and scope of CS circulation
- (4)
- Intensity of CS flow
5. Discussion
5.1. Selection of ESs
5.2. Supply and Demand Patterns
5.3. Exploring Land Use-Ecosystem Service Balance
5.4. Policy Implications
5.5. Limitations
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
References
- Feurer, M.; Rueff, H.; Celio, E.; Heinimann, A.; Blaser, J.; Htun, A.M.; Zaehringer, J.G. Regional scale mapping of ecosystem services supply, demand, flow and mismatches in Southern Myanmar. Ecosyst. Serv. 2021, 52, 101363. [Google Scholar] [CrossRef]
- Zhai, T.; Wang, J.; Jin, Z.; Qi, Y.; Fang, Y.; Liu, J. Did improvements of ecosystem services supply-demand imbalance change environmental spatial injustices? Ecol. Indic. 2020, 111, 106068. [Google Scholar] [CrossRef]
- Meng, Q.; Zhang, L.; Wei, H.; Cai, E.; Xue, D.; Liu, M. Linking Ecosystem Service Supply–Demand Risks and Regional Spatial Management in the Yihe River Basin, Central China. Land 2021, 10, 843. [Google Scholar] [CrossRef]
- Hou, P.; Wang, Q.; Shen, W.M.; Zhai, J.; Liu, H.M.; Yang, M. Progress of integrated ecosystem assessment: Concept, framework and challenges. Geogr. Res. 2015, 34, 1809–1823. [Google Scholar]
- Shi, Y.; Shi, D.; Zhou, L.; Fang, R. Identification of ecosystem services supply and demand areas and simulation of ecosystem service flows in Shanghai. Ecol. Indic. 2020, 115, 106418. [Google Scholar] [CrossRef]
- Serna-Chavez, H.M.; Schulp, C.J.E.; Van Bodegom, P.M.; Bouten, W.; Verburg, P.H.; Davidson, M.D. A quantitative framework for assessing spatial flows of ecosystem services. Ecol. Indic. 2014, 39, 24–33. [Google Scholar] [CrossRef]
- Stürck, J.; Poortinga, A.; Verburg, P.H. Mapping ecosystem services: The supply and demand of flood regulation services in Europe. Ecol. Indic. 2014, 38, 198–211. [Google Scholar] [CrossRef]
- Wu, W.; Tang, H.; Yang, P.; You, L.; Zhou, Q.; Chen, Z.; Shibasaki, R. Scenario-based assessment of future food security. J. Geogr. Sci. 2011, 21, 3–17. [Google Scholar] [CrossRef]
- Boithias, L.; Acuña, V.; Vergoñós, L.; Ziv, G.; Marcé, R.; Sabater, S. Assessment of the water supply: Demand ratios in a Mediterranean basin under different global change scenarios and mitigation alternatives. Sci. Total Environ. 2014, 470, 567–577. [Google Scholar] [CrossRef]
- Villa, F.; Bagstad, K.J.; Voigt, B.; Johnson, G.W.; Portela, R.; Honzák, M.; Batker, D. A methodology for adaptable and robust ecosystem services assessment. PLoS ONE 2014, 9, e91001. [Google Scholar] [CrossRef]
- Ma, L.; Liu, H.; Peng, J.; Wu, J. A review of ecosystem services supply and demand. Acta Geogr. Sin. 2017, 72, 1277–1289. [Google Scholar]
- Wu, J.; Fan, X.; Li, K.; Wu, Y. Assessment of ecosystem service flow and optimization of spatial pattern of supply and demand matching in Pearl River Delta, China. Ecol. Indic. 2023, 153, 110452. [Google Scholar] [CrossRef]
- Xia, P.; Peng, J.; Xu, Z.; Gu, T.; Wang, J. Conceptual connotation and quantification methods of ecosystem service flows. Acta Geogr. Sin. 2024, 79, 584–599. [Google Scholar]
- Wang, L.; Zheng, H.; Chen, Y.; Ouyang, Z.; Hu, X. Systematic review of ecosystem services flow measurement: Main concepts, methods, applications and future directions. Ecosyst. Serv. 2022, 58, 101479. [Google Scholar] [CrossRef]
- Zhang, J.; He, C.; Huang, Q.; Li, L. Understanding ecosystem service flows through the metacoupling framework. Ecol. Indic. 2023, 151, 110303. [Google Scholar] [CrossRef]
- Wang, L.; Wu, T.; Zheng, H.; Li, R.; Hu, X.; Ouyang, Z. A comprehensive framework for quantifying ecosystem service flow focusing on social-ecological processes. Trans. Earth Environ. Sustain. 2023, 1, 20–34. [Google Scholar] [CrossRef]
- Du, H.; Zhao, L.; Zhang, P.; Li, J.; Yu, S. Ecological compensation in the Beijing-Tianjin-Hebei region based on ecosystem services flow. J. Environ. Manag. 2023, 331, 117230. [Google Scholar] [CrossRef]
- Jiang, C.; Yang, Z.; Wen, M.; Huang, L.; Liu, H.; Wang, J.; Chen, W.; Zhuang, C. Identifying the spatial disparities and determinants of ecosystem service balance and their implications on land use optimization. Sci. Total Environ. 2021, 793, 148472. [Google Scholar] [CrossRef]
- Koellner, T.; Bonn, A.; Arnhold, S.; Bagstad, K.J.; Fridman, D.; Guerra, C.A.; Kastner, T.; Kissinger, M.; Kleemann, J.; Kuhlicke, C.; et al. Guidance for assessing interregional ecosystem service flows. Ecol. Indic. 2019, 105, 92–106. [Google Scholar] [CrossRef]
- Xiong, X.Y.; Meng, M. Regionalization and optimization strategy of ecological management in Xinjiang, China based on supply-demand relationship and spatial flow of ecosystem services. J. Appl. Ecol. 2023, 34, 2237–2248. [Google Scholar]
- Wu, C.; Lu, R.; Zhang, P.; Dai, E. Multilevel ecological compensation policy design based on ecosystem service flow: A case study of carbon sequestration services in the Qinghai-Tibet Plateau. Sci. Total Environ. 2024, 921, 171093. [Google Scholar] [CrossRef]
- Lin, J.; Huang, J.; Prell, C.; Bryan, B.A. Changes in supply and demand mediate the effects of land-use change on freshwater ecosystem services flows. Sci. Total Environ. 2021, 763, 143012. [Google Scholar] [CrossRef]
- Su, R.; Duan, C.; Chen, B. The shift in the spatiotemporal relationship between supply and demand of ecosystem services and its drivers in China. J. Environ. Manag. 2024, 365, 121698. [Google Scholar] [CrossRef]
- Wang, Q.; Yang, C.H.; Wang, M.L.; Zhao, L.; Zhao, Y.C.; Zhang, Q.P.; Zhang, C.Y. Decoupling analysis to assess the impact of land use patterns on carbon emissions: A case study in the Yellow River Delta efficient eco-economic zone, China. J. Clean. Prod. 2023, 412, 137415. [Google Scholar] [CrossRef]
- Wang, C.; Wang, Y.; Wang, R.; Zheng, P. Modeling and evaluating land-use/land-cover change for urban planning and sustainability: A case study of Dongying city, China. J. Clean. Prod. 2018, 172, 1529–1534. [Google Scholar] [CrossRef]
- Sui, Y.; Sun, D.; Li, S.; Xu, Y.; Wu, J. Study of coastal zone ecosystem restoration in the context of carbon storage change: A case of Dongying City. Acta Ecol. Sin. 2021, 41, 8112–8123. [Google Scholar]
- Jun, Z.; Diandian, J.; Yan, C.; Xin, L.I.U.; Xu, Y.A.N.G.; Peng, H.O.U.; Yanda, X.U. Ecological changes, problems and countermeasures in the High Efficiency Eco-economic Zone of the Yellow River Delta. Resour. Sci. 2020, 42, 517–526. [Google Scholar]
- Jia, Y.; Wang, S.; LIU, F. Land use change and its correlation with habitat quality in high efficiency eco-economic zone of Yellow River Delta. Bull. Soil Water Conserv. 2020, 40, 213–220. [Google Scholar]
- Liu, Y.; Han, M.; Wang, M.; Fan, C.; Zhao, H. Habitat Quality Assessment in the Yellow River Delta Based on Remote Sensing and Scenario Analysis for Land Use/Land Cover. Sustainability 2022, 14, 15904. [Google Scholar] [CrossRef]
- Lu, C.; Cai, X.Q.; Hao, C.S.; Liu, Y.Z.; Wang, Z.Y.; Ma, Y.N. Ecosystem service tradeoff and synergistic relationship in the Yellow River Delta High-Efficiency Eco-Economic Zone. J. Appl. Ecol. 2024, 35, 457–468. [Google Scholar]
- Ya, X.J.; Ren, H.Z.; Dong, X.B.; Zhou, X. Spatio-temporal migration characteristics of wild Chinese Asian elephants based on land use change and ecosystem service supply and demand. Acta Ecol. Sin. 2023, 43, 1426–1436. [Google Scholar]
- Liang, H.Q.; Shen, M.H.; Shao, M.; Yao, P. Construction of carbon sequestration ecological network in Linyi City based on supply and demand of ecosystem service. J. Appl. Ecol. 2024, 35, 759–768. [Google Scholar]
- Hu, Y.; Ming, T.; Chai, C. Research and Analysis on Spatial and Temporal Evolution Pattern of Carbon Emissions Caused by Land Use Change in Shandong Province. China Transp. Rev. 2024, 46, 167–174. [Google Scholar]
- Li, J. Identification of ecosystem services supply and demand and driving factors in Taihu Lake Basin. Environ. Sci. Pollut. Res. 2022, 29, 29735–29745. [Google Scholar] [CrossRef] [PubMed]
- Liu, J.; Wang, J.; Dai, J.; Zhai, T.; Li, Z. The relationship between supply and demand of ecosystem services and its spatio-temporal variation in the Yellow River Basin. J. Nat. Resour. 2021, 36, 148–161. [Google Scholar] [CrossRef]
- Zhao, C.; Xiao, P.; Qian, P.; Xu, J.; Yang, L.; Wu, Y. Spatiotemporal differentiation and balance pattern of ecosystem service supply and demand in the Yangtze River Economic Belt. Int. J. Environ. Res. Public Health 2022, 19, 7223. [Google Scholar] [CrossRef]
- Gao, H.; Fu, T.; Liang, H.; Liu, J. Cold/hot spots identification and tradeoff/synergy analysis of ecosystem services in Taihang Mountain area. Chin. J. Eco-Agric. 2022, 30, 1045–1053. [Google Scholar]
- Yao, C.Y.; An, R.; Dou, C.; Liu, Y.L. Research on construction and evaluation of forest land ecological network in three gorges reservoir area based on MSPA and MCR Model. Resour. Environ. Yangtze Basin 2022, 31, 1953–1962. [Google Scholar]
- Wang, X.; Zhao, P.; Long, Y.X.; Song, W.; Liu, X. Identification of key areas of land space ecological protection and restoration based on the pattern of ecological security in Guangdong, Hong Kong and Macau. Acta Ecol. Sin. 2022, 42, 450–461. [Google Scholar]
- Dong, Z.; Zheng, S.; Zhao, H.; Dong, R. Comparative analysis of methods of wind field simulation based on spatial interpolation. J. Geo-Inf. Sci 2015, 17, 37–44. [Google Scholar]
- Su, D.; Yu, C.A.O.; Dong, X.; Wu, Q.; Fang, X.; Cao, Y. Evaluation of ecosystem services budget based on ecosystem services flow: A case study of Hangzhou Bay area. Appl. Geogr. 2024, 162, 103150. [Google Scholar] [CrossRef]
- Yuan, W.H.; Fan, W.J.; Li, J.C.; Liu, L.M. Research on the Spatiotemporal Differentiation Characteristics and Influencing Factors of Ecological Quality in Typical Counties in the Yellow River Basin. J. Ecol. Rural Environ. 2024, 40, 622–633. [Google Scholar]
- Hasan, S.S.; Zhen, L.; Miah, M.G.; Ahamed, T.; Samie, A. Impact of land use change on ecosystem services: A review. Environ. Dev. 2020, 34, 100527. [Google Scholar] [CrossRef]
- Wang, X.Q.; Zhao, X.Y. Impacts of human activities on ecosystem services in national parks: A case study of Qilian Mountain National Park. J. Nat. Resour. 2023, 38, 966–982. [Google Scholar] [CrossRef]
- Wang, C.; Luo, J.; Tang, H. Analysis on the Driving Force of Spatial and Temporal Differentiation of Carbon Storage in the Taihang Mountains Based on InVEST Model. Ecol. Environ. 2023, 32, 215. [Google Scholar] [CrossRef]
- Lin, Z.Y.; Xiao, Y.; Ouyang, Z.Y. Assessment of ecological importance of the Qinghai-Tibet Plateau based on ecosystem service flows. J. Mt. Sci. 2021, 18, 1725–1736. [Google Scholar] [CrossRef]
- Zhang, X.R.; Wang, X.; Cheng, C.; Liu, S.; Zhou, C. Ecosystem service flows in Karst area of China based on the relationship between supply and demand. Acta Ecol. Sin. 2021, 41, 3368–3380. [Google Scholar]
Data Name | Data Type | Data Sources |
---|---|---|
Land use data | Raster data | Environmental Science and Data Center (https://www.resdc.cn, accessed on 3 April 2024) |
DEM | Raster data | Geospatial Data Cloud (https://www.gscloud.cn, accessed on 3 April 2024) |
NDVI | Raster data | Global Resources Data Cloud (http://www.gis5g.com, accessed on 3 April 2024) |
Population density data | Raster data | World Pop (https://hub.worldpop.org, accessed on 3 April 2024) |
Per capita GDP data | Raster data | Resource and Environmental Science Data Platform (https://www.resdc.cn, accessed on 3 April 2024) |
Traffic road data | Vector data | GEOVIS Earth Open Platform (https://open.geovisearth.com, accessed on 3 April 2024) |
River system data | Vector data | Global Resources Data Cloud (http://www.gis5g.com, accessed on 3 April 2024) |
Meteorological data | Vector data | National Climatic Data Center (ftp://ftp.ncdc.noaa.gov/pub/data/noaa/isd-lite/, accessed on 3 April 2024) |
Explanatory Variable | OLS | Quantile | ||||
---|---|---|---|---|---|---|
0.1 | 0.3 | 0.5 | 0.7 | 0.9 | ||
Proportion of cropland | −0.0104 (0.0303) | 0.0605 (0.0603) | 0.0207 (0.0401) | −0.0282 (0.0363) | −0.0503 (0.0332) | −0.198 *** (0.0428) |
Proportion of woodland | 0.438 *** (0.0511) | 0.338 *** (0.102) | 0.421 *** (0.0676) | 0.422 *** (0.0613) | 0.431 *** (0.0561) | 0.366 *** (0.0723) |
Proportion of grassland | 0.0371 *** (0.00894) | 0.0520 *** (0.0178) | 0.0476 *** (0.0118) | 0.0358 *** (0.0107) | 0.0310 *** (0.00981) | −0.00490 (0.0126) |
Proportion of construction | −0.768 *** (0.0312) | −1.061 *** (0.0621) | −0.867 *** (0.0412) | −0.776 *** (0.0374) | −0.654 *** (0.0342) | −0.647 *** (0.0441) |
Proportion of unused land | −0.204 *** (0.0378) | −0.310 *** (0.0754) | −0.219 *** (0.0500) | −0.242 *** (0.0453) | −0.199 *** (0.0415) | −0.0102 (0.0535) |
_cons | 0.0229 (0.0378) | −0.187 *** (0.0754) | −0.0574 (0.0500) | 0.0481 (0.0359) | 0.119 *** (0.0329) | 0.334 *** (0.0423) |
Explanatory Variable | OLS | Quantile | ||||
---|---|---|---|---|---|---|
0.1 | 0.3 | 0.5 | 0.7 | 0.9 | ||
Proportion of cropland | 0.0151 (0.00934) | 0.00635 (0.0156) | 0.0109 ** (0.00461) | 0.0098 *** (0.00314) | 0.0121 *** (0.00256) | 0.00960 *** (0.00166) |
Proportion of woodland | 0.0260 (0.0166) | 0.00172 (0.0278) | 0.00579 (0.00823) | 0.0131 ** (0.00561) | 0.0374 *** (0.00456) | 0.0448 *** (0.00296) |
Proportion of grassland | 0.00599 *** (0.00286) | 0.00714 (0.00478) | 0.00525 *** (0.00141) | 0.00395 *** (0.000963) | 0.00388 *** (0.000783) | 0.00385 *** (0.000509) |
Proportion of construction | −0.0872 *** (0.00963) | −0.144 *** (0.0161) | −0.0585 *** (0.00476) | −0.0366 *** (0.00324) | −0.0192 *** (0.00263) | −0.00947 *** (0.0171) |
Proportion of unused land | 0.0171 (0.0199) | 0.00857 (0.0199) | 0.0122 ** (0.00590) | 0.00669 * (0.00402) | 0.00830 ** (0.00327) | 0.00502 ** (0.00212) |
_cons | 0.00600 (0.00922) | −0.00377 (0.0154) | 0.00296 (0.00456) | 0.0100 *** (0.00311) | 0.0129 *** (0.00252) | 0.0205 *** (0.001643) |
Northwestern Demand Area | Central Demand Area | Southern Demand Area | Southeastern Demand Area | |
---|---|---|---|---|
Number of corridors | 6 | 9 | 2 | 8 |
Average length/km | 21.60 | 28.25 | 20.19 | 24.13 |
Total length/km | 129.58 | 254.27 | 40.38 | 193.05 |
Supply Area | Maximum Flow Radius (km) | Maximum Radius of Reachable Area | Minimum Flow Radius (km) | Minimum Radius Reachable Area |
---|---|---|---|---|
Yihe Town, Hekou County | 73.80 | Qingtian Sub-district, Bincheng County | 24.10 | Fuyuan Sub-district, Zhanhua County |
Liubao Town, Wudi County | 69.10 | Shizhong Sub-district, Bincheng County | 31.31 | Fuguo Sub-district, Zhanhua County |
Huangsheng Town, Zhanhua County | 3345 | Longju Town, Dongying County | 6.52 | Binbei Sub-district, Bincheng District |
Xi Xiaowang Town, Wudi County | 61.09 | Xiaoying Sub-district, Bincheng County | 24.96 | Huangsheng Town, Zhanhua County |
Xiahe Town, Zhanhua County | 63.61 | Qingtian Sub-district, Bincheng County | 17.64 | Hekou Sub-district, Hekou County |
Xiwa Town, Zhanhua County | 41.56 | Qiaozhuang Town, Boxing County | 10.67 | Fengjia Town, Zhanhua County |
Fengjia Town, Zhanhua County | 55.08 | Xiaoying Sub-district, Bincheng County | 20.47 | Xihe Township, Zhanhua County |
Fuyuan Sub-district, Zhanhua County | 51.47 | Pangjia Town, Boxing County | 11.76 | Fengjia Town, Zhanhua County |
Hekou Sub-district, Hekou County | 89.97 | Lizhe Sub-district, Bincheng County | 39.01 | Fuyuan Sub-district, Zhanhua County |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, W.; Ma, X.; Sun, Q.; Qi, W.; Yu, X. Quantification and Flow Simulation of Ecosystem Service Supply and Demand in the Yellow River Delta High-Efficiency Eco-Economic Zone. Land 2024, 13, 1784. https://doi.org/10.3390/land13111784
Liu W, Ma X, Sun Q, Qi W, Yu X. Quantification and Flow Simulation of Ecosystem Service Supply and Demand in the Yellow River Delta High-Efficiency Eco-Economic Zone. Land. 2024; 13(11):1784. https://doi.org/10.3390/land13111784
Chicago/Turabian StyleLiu, Wenjun, Xiangyi Ma, Qian Sun, Wei Qi, and Xinyang Yu. 2024. "Quantification and Flow Simulation of Ecosystem Service Supply and Demand in the Yellow River Delta High-Efficiency Eco-Economic Zone" Land 13, no. 11: 1784. https://doi.org/10.3390/land13111784
APA StyleLiu, W., Ma, X., Sun, Q., Qi, W., & Yu, X. (2024). Quantification and Flow Simulation of Ecosystem Service Supply and Demand in the Yellow River Delta High-Efficiency Eco-Economic Zone. Land, 13(11), 1784. https://doi.org/10.3390/land13111784