Retention Levels and Years-After-Harvesting Influence over Soil Microbial Activity and Biomass in Southern Patagonian Forests
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area and Experimental Design
2.2. Characterization of Environmental and Vegetation Variables
2.3. Soil Microbial Biomass and Activity
2.4. Statistical Analyses
3. Results
3.1. Environmental and Vegetation Variables of the Studied Forest Areas
3.2. Response of Soil Microbial Variables to Retention Types and Years-After-Harvesting
3.3. Relationships of Soil Microbial Variables with Environmental Factors
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Appendix A
References
- Peri, P.L.; Martínez Pastur, G.; Schlichter, T. Uso Sustentable del Bosque: Aportes Desde la Silvicultura Argentina; Ministerio de Ambiente y Desarrollo Sostenible de la Nación Argentina: Buenos Aires, Argentina, 2021. Available online: http://hdl.handle.net/20.500.12123/10343 (accessed on 15 March 2024).
- Soler, R.M.; Lorenzo, C.; González, J.; Carboni, L.; Delgado, J.; Díaz, M.; Huertas Herrera, A. The politics behind scientific knowledge: Sustainable forest management in Latin America. For. Pol. Econ. 2021, 131, e102543. [Google Scholar] [CrossRef]
- Muys, B. Forest ecosystem services. In Life on Land: Encyclopedia of the UN Sustainable Development Goals; Leal Filho, W., Azul, A.M., Brandli, L., Lange Salvia, A., Wall, T., Eds.; Springer: Cham, Switzerland, 2021. [Google Scholar] [CrossRef]
- Peri, P.L.; Martínez Pastur, G.; Nahuelhual, L. Ecosystem Services in Patagonia: A Multi-Criteria Approach for an Integrated Assessment; Springer Nature: Charm, Switzerland, 2021. [Google Scholar] [CrossRef]
- Lencinas, M.V.; Martínez Pastur, G.; Gallo, E.; Cellini, J.M. Alternative silvicultural practices with variable retention to improve understory plant diversity conservation in southern Patagonian forests. For. Ecol. Manag. 2011, 262, 1236–1250. [Google Scholar] [CrossRef]
- Martínez Pastur, G.; Cellini, J.M.; Lencinas, M.V.; Barrera, M.; Peri, P.L. Environmental variables influencing regeneration of Nothofagus pumilio in a system with combined aggregated and dispersed retention. For. Ecol. Manag. 2011, 261, 178–186. [Google Scholar] [CrossRef]
- Gallo, E.A.; Lencinas, M.V.; Martínez Pastur, G. Site quality influences over understory plant diversity in old-growth and harvested Nothofagus pumilio forests. For. Syst. 2013, 22, 25–38. [Google Scholar] [CrossRef]
- Soler, R.M.; Schindler, S.; Lencinas, M.V.; Peri, P.L.; Martínez Pastur, G. Why biodiversity increases after variable retention harvesting: A meta-analysis for southern Patagonian forests. For. Ecol. Manag. 2016, 369, 161–169. [Google Scholar] [CrossRef]
- Lencinas, M.V.; Sola, F.J.; Martínez Pastur, G. Variable retention effects on vascular plants and beetles along a regional gradient in Nothofagus pumilio forests. For. Ecol. Manag. 2017, 406, 251–265. [Google Scholar] [CrossRef]
- Huertas Herrera, A.; Cellini, J.M.; Barrera, M.D.; Lencinas, M.V.; Martínez Pastur, G. Environment and anthropogenic impacts as main drivers of plant assemblages in forest mountain landscapes of Southern Patagonia. For. Ecol. Manag. 2018, 430, 380–393. [Google Scholar] [CrossRef]
- Toro Manríquez, M.D.; Cellini, J.M.; Lencinas, M.V.; Peri, P.L.; Peña Rojas, K.; Martínez Pastur, G. Suitable conditions for natural regeneration in variable retention harvesting of southern Patagonian Nothofagus pumilio forests. Ecol. Process. 2019, 8, 18. [Google Scholar] [CrossRef]
- Foote, J.A.; Boutton, T.W.; Scott, D.A. Soil C and N storage and microbial biomass in US southern pine forests: Influence of forest management. For. Ecol. Manag. 2015, 355, 48–57. [Google Scholar] [CrossRef]
- Lewandowski, T.E.; Forrester, J.A.; Mladenoff, D.J.; D’Amato, A.W.; Palik, B.J. Response of the soil microbial community and soil nutrient bioavailability to biomass harvesting and reserve tree retention in northern Minnesota aspen-dominated forests. Appl. Soil Ecol. 2016, 99, 110–117. [Google Scholar] [CrossRef]
- Lewandowski, T.E.; Forrester, J.A.; Mladenoff, D.J.; D’Amato, A.W.; Fassnacht, D.S.; Padley, E.; Martin, K.J. Do biological legacies moderate the effects of forest harvesting on soil microbial community composition and soil respiration. For. Ecol. Manag. 2019, 432, 298–308. [Google Scholar] [CrossRef]
- Singh, S.B.; Saha, S.; Dutta, S.K.; Singh, A.R.; Boopathi, T. Impact of secondary forest fallow period on soil microbial biomass carbon and enzyme activity dynamics under shifting cultivation in North Eastern Hill region, India. Catena 2017, 156, 10–17. [Google Scholar] [CrossRef]
- Churchland, C.; Bengtson, P.; Prescott, C.E.; Grayston, S.J. Dispersed variable-retention harvesting mitigates N losses on harvested sites in conjunction with changes in soil microbial community structure. Front. For. Glob. Change 2021, 3, e609216. [Google Scholar] [CrossRef]
- Li, F.; Zi, H.; Sonne, C.; Li, X. Microbiome sustains forest ecosystem functions across hierarchical scales. Eco-Environ. Health 2023, 2, 24–31. [Google Scholar] [CrossRef] [PubMed]
- Blagodatskaya, E.; Kuzyakov, Y. Active microorganisms in soil: Critical review of estimation criteria and approaches. Soil Biol. Biochem. 2013, 67, 192–211. [Google Scholar] [CrossRef]
- Delgado-Baquerizo, M.; Maestre, F.T.; Reich, P.B.; Jeffries, T.C.; Gaitan, J.J.; Encinar, D.; Singh, B.K. Microbial diversity drives multifunctionality in terrestrial ecosystems. Nat. Commun. 2016, 7, e10541. [Google Scholar] [CrossRef]
- Gargaglione, V.; Gonzalez Polo, M.; Birgi, J.; Toledo, S.; Peri, P.L. Silvopastoral use of Nothofagus antarctica forests in Patagonia: Impact on soil microorganisms. Agrofor. Syst. 2022, 96, 957–968. [Google Scholar] [CrossRef]
- Marcos, M.S.; Olivera, N.L. Microbiological and biochemical indicators for assessing soil quality in drylands from Patagonia. In Biology and Biotechnology of Patagonian Microorganisms; Olivera, N., Libkind, D., Donati, E., Eds.; Springer: Cham, Switzerland, 2016. [Google Scholar] [CrossRef]
- Schloter, M.; Nannipieri, P.; Sørensen, S.J.; van Elsas, J.D. Microbial indicators for soil quality. Biol. Fert. Soils 2018, 54, 1–10. [Google Scholar] [CrossRef]
- Fierer, N.; Wood, S.A.; de Mesquita, C.P.B. How microbes can, and cannot, be used to assess soil health. Soil Biol. Biochem. 2021, 153, e108111. [Google Scholar] [CrossRef]
- Siira-Pietikäinen, A.; Pietikäinen, J.; Fritze, H.; Haimi, J. Short-term responses of soil decomposer communities to forest management: Clear felling versus alternative forest harvesting methods. Can. J. For. Res. 2001, 31, 88–99. [Google Scholar] [CrossRef]
- Kranabetter, J.M.; De Montigny, L.; Ross, G. Effectiveness of green-tree retention in the conservation of ectomycorrhizal fungi. Fungal Ecol. 2013, 6, 430–438. [Google Scholar] [CrossRef]
- Philpott, T.J.; Barker, J.S.; Prescott, C.E.; Grayston, S.J. Limited effects of variable-retention harvesting on fungal communities decomposing fine roots in coastal temperate rainforests. Appl. Environ. Microbiol. 2018, 84, e02061-17. [Google Scholar] [CrossRef] [PubMed]
- Sultaire, S.M.; Benucci, G.; Longley, R.; Kroll, A.; Verschuyl, J.; Bonito, G.; Roloff, G. Using high-throughput sequencing to investigate summer truffle consumption by chipmunks in relation to retention forestry. For. Ecol. Manag. 2023, 549, e121460. [Google Scholar] [CrossRef]
- Martínez Pastur, G.; Lencinas, M.V.; Cellini, J.M.; Peri, P.L.; Soler, R. Timber management with variable retention in Nothofagus pumilio forests of Southern Patagonia. For. Ecol. Manag. 2009, 258, 436–443. [Google Scholar] [CrossRef]
- Elíades, L.A.; Cabello, M.N.; Pancotto, V.; Moretto, A.; Ferreri, N.A.; Saparrat, M.C.; Barrera, M.D. Soil mycobiota under managed and unmanaged forests of Nothofagus pumilio in Tierra del Fuego, Argentina. N. Z. J. For. Sci. 2019, 49, e7. [Google Scholar] [CrossRef]
- Martínez Pastur, G.; Vanha-Majamaa, I.; Franklin, J.F. Ecological perspectives on variable retention forestry. Ecol. Process. 2020, 9, 12. [Google Scholar] [CrossRef]
- Chaves, J.E.; Aravena Acuña, M.C.; Rodríguez-Souilla, J.; Cellini, J.M.; Rappa, N.J.; Lencinas, M.V.; Martínez Pastur, G. Carbon pool dynamics after variable retention harvesting in Nothofagus pumilio forests of Tierra del Fuego. Ecol. Process. 2023, 12, 5. [Google Scholar] [CrossRef]
- Jerabkova, L.; Prescott, C.E.; Titus, B.D.; Hope, G.D.; Walters, M.B. A meta-analysis of the effects of clearcut and variable-retention harvesting on soil nitrogen fluxes in boreal and temperate forests. Can. J. For. Res. 2011, 41, 1852–1870. [Google Scholar] [CrossRef]
- Gustafsson, L.; Baker, S.C.; Bauhus, J.; Beese, W.J.; Brodie, A.; Kouki, J.; Lindenmayer, D.B.; Lõhmus, A.; Martínez Pastur, G.; Messier, C.; et al. Retention forestry to maintain multifunctional forests: A world perspective. BioScience 2012, 62, 633–645. [Google Scholar] [CrossRef]
- Martínez Pastur, G.; Aravena Acuña, M.C.; Chaves, J.E.; Cellini, J.M.; Silveira, E.M.; Rodríguez-Souilla, J.; Peri, P.L. Nitrogenous and phosphorus soil contents in Tierra del Fuego forests: Relationships with soil organic carbon, climate, vegetation and landscape metrics. Land 2023, 12, 983. [Google Scholar] [CrossRef]
- Bach, L.H.; Grytnes, J.A.; Halvorsen, R.; Ohlson, M. Tree influence on soil microbial community structure. Soil Biol. Biochem. 2010, 42, 1934–1943. [Google Scholar] [CrossRef]
- Mitchell, R.J.; Campbell, C.D.; Chapman, S.J.; Cameron, C.M. The ecological engineering impact of a single tree species on the soil microbial community. J. Ecol. 2010, 98, 50–61. [Google Scholar] [CrossRef]
- Hartmann, M.; Howes, C.G.; Van Insberghe, D.; Yu, H.; Bachar, D.; Christen, R.; Mohn, W.W. Significant and persistent impact of timber harvesting on soil microbial communities in Northern coniferous forests. ISME J. 2012, 6, 2199–2218. [Google Scholar] [CrossRef]
- Teste, F.P.; Lieffers, V.J.; Strelkov, S.E. Ectomycorrhizal community responses to intensive forest management: Thinning alters impacts of fertilization. Plant Soil 2012, 360, 333–347. [Google Scholar] [CrossRef]
- Churchland, C.; Grayston, S.J.; Bengtson, P. Spatial variability of soil fungal and bacterial abundance: Consequences for carbon turnover along a transition from a forested to clear-cut site. Soil Biol. Biochem. 2013, 63, 5–13. [Google Scholar] [CrossRef]
- Fick, S.E.; Hijmans, R.J. WorldClim 2: New 1-km spatial resolution climate surfaces for global land areas. Int. J. Clim. 2017, 37, 4302–4315. [Google Scholar] [CrossRef]
- Farr, T.G.; Rosen, P.A.; Caro, E.; Crippen, R.; Duren, R.; Hensley, S.; Kobrick, M.; Paller, M.; Rodríguez, E.; Roth, L.; et al. The shuttle radar topography mission. Rev. Geophys. 2007, 45, RG2004. [Google Scholar] [CrossRef]
- Bitterlich, W. The Relascope Idea: Relative Measurements in Forestry; CAB: London, UK, 1984. [Google Scholar]
- Martínez Pastur, G.; Rosas, Y.M.; Toro Manríquez, M.; Huertas Herrera, A.; Miller, J.A.; Cellini, J.M.; Lencinas, M.V. Knowledge arising from long-term research of variable retention harvesting in Tierra del Fuego: Where do we go from here? Ecol. Process. 2019, 8, 24. [Google Scholar] [CrossRef]
- Levy, E.G.; Madden, E.A. The point method of pasture analyses. N. Z. J. Agric. 1933, 46, 267–379. [Google Scholar]
- Moore, D. Flora of Tierra del Fuego; Anthony Nelson: London, UK, 1983. [Google Scholar]
- Correa, M.N. Flora Patagónica; INTA: Buenos Aires, Argentina, 1998. [Google Scholar]
- IUSS Working Group WRB. World Reference Base for Soil Resources 2014, Update 2015: International Soil Classification System for Naming Soils and Creating Legends for Soil Maps; World Soil Resources Reports, FAO: Rome, Italy, 2015; n° 106. [Google Scholar]
- Peña-Rodríguez, S.; Moretto, A.S.; Pontevedra-Pombal, X.; Oro, N.; García Rodeja Gayoso, E.; Rodríguez-Salgado, I.; Rodríguez-Racedo, J.; Escobar, J.; Nóvoa-Muñoz, J.C. Trends in nutrient reservoirs stored in uppermost soil horizons of subantarctic forests differing in their structure. Agrofor. Syst. 2013, 87, 1273–1281. [Google Scholar] [CrossRef]
- Peri, P.L.; Rosas, Y.M.; Ladd, B.; Toledo, S.; Lasagno, R.G.; Martínez Pastur, G. Modelling soil carbon content in South Patagonia and evaluating changes according to climate, vegetation, desertification and grazing. Sustainability 2018, 10, 438. [Google Scholar] [CrossRef]
- Bremner, J.M.; Mulvaney, C.S. Nitrogen-total. In Methods of Soil Analysis: Part 2, Chemical and Microbiological Properties; Page, A.L., Ed.; Agronomy Monographs, American Society of Agronomy: New York, NY, USA, 1983. [Google Scholar] [CrossRef]
- Olsen, S.R. Estimation of Available Phosphorus in Soils by Extraction with Sodium Bicarbonate; US Department of Agriculture: New York, NY, USA, 1954; n° 939.
- Vance, E.D.; Brookes, P.C.; Jenkinson, D.S. An extraction method for measuring soil microbial biomass C. Soil Biol. Biochem. 1987, 19, 703–707. [Google Scholar] [CrossRef]
- Joergensen, R.G.; Mueller, T. The fumigation-extraction method to estimate soil microbial biomass: Calibration of the kEN value. Soil Biol. Biochem. 1996, 28, 33–37. [Google Scholar] [CrossRef]
- Robertson, G.P.; Wedin, D.; Groffman, P.M.; Blair, J.M.; Holland, E.A.; Nadelhoffer, K.J.; Harris, D. Soil Carbon and nitrogen availability nitrogen mineralization, nitrification and soil respiration potentials. In Standard Soil Methods for Long Term Ecological Research; Robertson, G.P., Coleman, D.C., Bledsoes, C.S., Sollins, P., Eds.; Oxford University Press: New York, NY, USA, 1999. [Google Scholar]
- Anderson, T.H.; Domsch, K.H. Application of eco-physiological quotients (qCO2 and qMC) on microbial biomasses from soils of different cropping histories. Soil Biol. Biochem. 1990, 22, 251–255. [Google Scholar] [CrossRef]
- Sun, Y.; Liao, J.; Zou, X.; Xu, X.; Yang, J.; Chen, H.Y.; Ruan, H. Coherent responses of terrestrial C:N stoichiometry to drought across plants, soil, and microorganisms in forests and grasslands. Agric. For. Meteorol. 2020, 292, e108104. [Google Scholar] [CrossRef]
- Wan, P.; He, R.; Wang, P.; Cao, A. Implementation of different forest management methods in a natural forest: Changes in soil microbial biomass and enzyme activities. For. Ecol. Manag. 2022, 520, e120409. [Google Scholar] [CrossRef]
- Wang, M.; Xu, Z.; Huang, Z. Soil carbon accrual under harvest residue retention modulated by the copiotroph-oligotroph spectrum in bacterial community. J. Soils Sediments 2022, 22, 2459–2474. [Google Scholar] [CrossRef]
- Das, S.; Deb, S.; Sahoo, S.S.; Sahoo, U.K. Soil microbial biomass carbon stock and its relation with climatic and other environmental factors in forest ecosystems: A review. Acta Ecol. Sin. 2023, 43, 933–945. [Google Scholar] [CrossRef]
- Toledo, S.; Bondaruk, V.F.; Yahdjian, L.; Oñatibia, G.R.; Loydi, A.; Alberti, J.; Peri, P.L. Environmental factors regulate soil microbial attributes and their response to drought in rangeland ecosystems. Sci. Total Environ. 2023, 892, e164406. [Google Scholar] [CrossRef] [PubMed]
- Kuzyakov, Y.; Xu, X. Competition between roots and microorganisms for nitrogen: Mechanisms and ecological relevance. New Phytol. 2013, 198, 656–669. [Google Scholar] [CrossRef]
- Morikawa, Y.; Hayashi, S.; Negishi, Y.; Masuda, C.; Watanabe, M.; Watanabe, K.; Seiwa, K. Relationship between the vertical distribution of fine roots and residual soil nitrogen along a gradient of hardwood mixture in a conifer plantation. New Phytol. 2022, 235, 993–1004. [Google Scholar] [CrossRef] [PubMed]
- Zhang, S.; Yang, X.; Li, D.; Li, S.; Chen, Z.; Wu, J. A meta-analysis of understory plant removal impacts on soil properties in forest ecosystems. Geoderma 2022, 426, e116116. [Google Scholar] [CrossRef]
- Xiao, R.; Man, X.; Duan, B.; Cai, T.; Ge, Z.; Li, X.; Vesala, T. Changes in soil bacterial communities and nitrogen mineralization with understory vegetation in boreal larch forests. Soil Biol. Biochem. 2022, 166, e108572. [Google Scholar] [CrossRef]
- Fernández, M.; Vincent, G.; Dorr, E.; Bakker, S.; Lerch, T.Z.; Leloup, J.; Bazot, S. Does forest stand density affect soil microbial communities? Appl. Soil Ecol. 2024, 195, e105244. [Google Scholar] [CrossRef]
- Freschet, G.T.; Cornwell, W.K.; Wardle, D.A.; Elumeeva, T.G.; Liu, W.; Jackson, B.G.; Cornelissen, J.H. Linking litter decomposition of above- and below-ground organs to plant–soil feedbacks worldwide. J. Ecol. 2013, 101, 943–952. [Google Scholar] [CrossRef]
- Högberg, M.N.; Briones, M.J.; Keel, S.G.; Metcalfe, D.B.; Campbell, C.; Midwood, A.J.; Högberg, P. Quantification of effects of season and nitrogen supply on tree below-ground carbon transfer to ectomycorrhizal fungi and other soil organisms in a boreal pine forest. New Phytol. 2010, 187, 485–493. [Google Scholar] [CrossRef] [PubMed]
- Simard, S.W.; Roach, W.J.; Defrenne, C.E.; Pickles, B.J.; Snyder, E.N.; Robinson, A.; Lavkulich, L.M. Harvest intensity effects on carbon stocks and biodiversity are dependent on regional climate in Douglas-fir forests of British Columbia. Front. For. Glob. Chang. 2020, 3, e88. [Google Scholar] [CrossRef]
- Liu, J.; Wang, Q.; Ku, Y.; Zhang, W.; Zhu, H.; Zhao, Z. Precipitation and soil pH drive the soil microbial spatial patterns in the Robinia pseudoacacia forests at the regional scale. Catena 2022, 212, e106120. [Google Scholar] [CrossRef]
- Chen, Y.L.; Ding, J.Z.; Peng, Y.F.; Li, F.; Yang, G.B.; Liu, L.; Yang, Y.H. Patterns and drivers of soil microbial communities in Tibetan alpine and global terrestrial ecosystems. J. Biogeogr. 2016, 43, 2027–2039. [Google Scholar] [CrossRef]
- Mummey, D.L.; Clarke, J.T.; Cole, C.A.; O’Connor, B.G.; Gannon, J.E.; Ramsey, P.W. Spatial analysis reveals differences in soil microbial community interactions between adjacent coniferous forest and clearcut ecosystems. Soil Biol. Biochem. 2010, 42, 1138–1147. [Google Scholar] [CrossRef]
- Rodríguez-Souilla, J.; Cellini, J.M.; Lencinas, M.V.; Roig, F.A.; Chaves, J.E.; Aravena Acuña, M.C.; Martínez Pastur, G. Variable retention harvesting and climate variations influence over natural regeneration dynamics in Nothofagus pumilio forests of Southern Patagonia. For. Ecol. Manag. 2023, 544, e121221. [Google Scholar] [CrossRef]
- Webster, K.L.; Wilson, S.A.; Hazlett, P.W.; Fleming, R.L.; Morris, D.M. Soil CO2 efflux and net ecosystem exchange following biomass harvesting: Impacts of harvest intensity, residue retention and vegetation control. For. Ecol. Manag. 2016, 360, 181–194. [Google Scholar] [CrossRef]
- Bingham, A.H.; Cotrufo, M.F. Organic nitrogen storage in mineral soil: Implications for policy and management. Sci. Total Environ. 2016, 551, 116–126. [Google Scholar] [CrossRef]
- Soares, M.; Rousk, J. Microbial growth and carbon use efficiency in soil: Links to fungal-bacterial dominance, SOC-quality and stoichiometry. Soil Biol. Biochem. 2019, 131, 195–205. [Google Scholar] [CrossRef]
- Ponder, F.; Tadros, M. Phospholipid fatty acids in forest soil four years after organic matter removal and soil compaction. Appl. Soil Ecol. 2002, 19, 173–182. [Google Scholar] [CrossRef]
- Moore-Kucera, J.; Dick, R.P. PLFA profiling of microbial community structure and seasonal shifts in soils of a Douglas-fir chronosequence. Microb. Ecol. 2008, 55, 500–511. [Google Scholar] [CrossRef]
- Moretto, A.S.; Martínez Pastur, G. Litterfall and leaf decomposition in Nothofagus pumilio forests along an altitudinal gradient in Tierra del Fuego, Argentina. J. For. Sci. 2014, 60, 500–510. [Google Scholar] [CrossRef]
- Spake, R.; Ezard, T.H.; Martin, P.A.; Newton, A.C.; Doncaster, C.P. A meta-analysis of functional group responses to forest recovery outside of the tropics. Conserv. Biol. 2015, 29, 1695–1703. [Google Scholar] [CrossRef]
- Holden, S.R.; Treseder, K.K. A meta-analysis of soil microbial biomass responses to forest disturbances. Front. Microbiol. 2013, 4, e52720. [Google Scholar] [CrossRef]
Factor | 6-YAH | 9-YAH | 16-YAH | |||||||
---|---|---|---|---|---|---|---|---|---|---|
AR | DR | PF | AR | DR | PF | AR | DR | PF | ||
Latitude | −54.483 | −54.480 | −54.482 | −54.580 | −54.581 | −54.569 | −54.382 | −54.381 | −54.365 | |
Longitude | −66.828 | −66.823 | −66.802 | −66.907 | −66.907 | −66.927 | −67.864 | −67.862 | −67.869 | |
Climate | MAP | 486.6 ± 1.7 | 487.2 ± 1.2 | 488.7 ± 2.1 | 530.0 ± 1.1 | 530.0 ± 1.1 | 520.6 ± 1.3 | 422.4 ± 1.0 | 425.4 ± 1.0 | 427.1 ± 3.6 |
MAT | 4.7 ± 0.1 | 4.6 ± 0.1 | 4.6 ± 0.1 | 4.0 ± 0.1 | 4.0 ± 0.1 | 4.4 ± 0.1 | 4.7 ± 0.1 | 4.7 ± 0.1 | 5.0 ± 0.1 | |
ELE | 230 ± 11 | 232 ± 12 | 254 ± 16 | 261 ± 10 | 265 ± 8 | 262 ± 21 | 214 ± 24 | 208 ± 19 | 157 ± 3 | |
Forest Structure | DH | 23.6 ± 3.9 | 21.9 ± 1.9 | 19.1 ± 1.6 | 23.3 ± 2.2 | 24.4 ± 2.1 | 22.4 ± 2.9 | 21.7 ± 2.0 | 21.7 ± 1.3 | 22.7 ± 2.7 |
TD | 229 ± 111 | 120 ± 87 | 376 ± 89 | 234 ± 172 | 61 ± 37 | 671 ± 172 | 354 ± 170 | 45 ± 20 | 350 ± 114 | |
BA | 51.0 ± 10.4 | 18.3 ± 6.8 | 55.5 ± 5.2 | 49.5 ± 7.5 | 14.9 ± 3.0 | 63.8 ± 11.1 | 51.0 ± 11.5 | 12.8 ± 3.2 | 50.3 ± 9.0 | |
FG | 3.3 ± 0.8 | 1.1 ± 0.4 | 2.7 ± 0.6 | 3.6 ± 0.4 | 1.3 ± 0.4 | 5.3 ± 1.5 | 3.2 ± 0.7 | 0.8 ± 0.2 | 3.3 ± 1.0 | |
I-R | 603 ± 220 | 101 ± 71 | 1078 ± 357 | 446 ± 95 | 94 ± 40 | 195 ± 31 | 181 ± 61 | 31 ± 21 | 170 ± 39 | |
A-R | 0 ± 0 | 0 ± 0 | 0 ± 0 | 2 ± 1 | 3.3 ± 2.9 | 0 ± 0 | 0 ± 0 | 4.0 ± 2.7 | 0 ± 0 | |
REC | 198 ± 27 | 21 ± 13 | 56 ± 30 | 0 ± 0 | 3 ± 1 | 0 ± 0 | 31 ±18 | 0 ± 0 | 138 ± 25 | |
Understory Vegetation | SR | 17 ± 1 | 27 ± 4 | 15 ± 4 | 16 ±3 | 23 ± 2 | 17 ± 6 | 15 ± 1 | 16 ± 2 | 13 ± 1 |
BIO | 406 ± 131 | 3613 ± 178 | 779 ± 236 | 1771 ± 487 | 2493 ± 1216 | 859 ± 184 | 611 ± 267 | 1968 ± 727 | 524 ± 136 | |
DS | OSDE, VIMA, POPR | GAAP, OSDE, TAOF | OSDE, VIMA, TAOF | OSDE, SCRA, PHAL | OSDE, SCRA, VIMA | MAGR, SCRA, VIMA | GAAP, OSDE, TAOF | OSDE, SCRA, HIRE | GAAP, OSDE, FEMA | |
COV | 103.2 ± 39.2 | 141.5 ± 34.0 | 78.5 ± 38.1 | 174.2 ± 49.3 | 209.0 ± 24.6 | 89.7 ± 56.0 | 63.0 ± 14.8 | 189.0 ± 33.6 | 107.5 ± 27.9 | |
BS | 25.5 ± 13.7 | 16.0 ± 7.3 | 37.5 ± 17.9 | 7.5 ± 2.4 | 5.5 ± 2.5 | 33.0 ± 22.1 | 35.5 ± 6.2 | 2.5 ± 1.6 | 21.5 ± 10.6 | |
Soil | pH | 4.62 ± 0.44 | 4.24 ± 0.17 | 4.44 ± 0.25 | 4.66 ± 0.21 | 4.66 ± 0.23 | 4.44 ± 0.44 | 5.24 ± 0.28 | 5.01 ± 0.37 | 4.74 ± 0.27 |
SOC | 8.81 ± 5.10 | 9.85 ± 2.79 | 9.85 ± 3.62 | 19.11 ± 5.94 | 13.63 ± 2.69 | 15.59 ± 5.37 | 8.24 ± 1.62 | 7.52 ± 0.57 | 9.56 ± 1.55 | |
SN | 0.34 ± 0.18 | 0.32 ± 0.04 | 0.29 ± 0.06 | 0.69 ± 0.17 | 0.48 ± 0.13 | 0.49 ± 0.30 | 0.26 ± 0.03 | 0.27 ± 0.03 | 0.29 ± 0.04 | |
SP | 55.9 ± 36.7 | 52.1 ± 17.2 | 48.3 ± 34.5 | 66.7 ± 34.9 | 39.0 ± 21.8 | 62.3 ± 28.2 | 62.9 ± 17.9 | 58.4 ± 27.0 | 47.5 ± 9.6 |
Treatments | Levels | MBC | MBN | SBR | MBC/MBN | qCO2 | qMC |
---|---|---|---|---|---|---|---|
FT | PF | 865 ± 228 ab | 66 ± 33 a | 133 ± 37 b | 13 ± 9 b | 0.17 ± 0.07 a | 0.81 ± 0.29 a |
AR | 1021 ± 206 b | 104 ± 42 b | 155 ± 31 b | 10 ± 4 a | 0.15 ± 0.02 a | 1.09 ± 0.60 a | |
DR | 658 ± 331 a | 65 ± 50 a | 99 ± 46 a | 10 ± 8 a | 0.17 ± 0.07 a | 0.75 ± 0.44 a | |
F(p) | 7.50 (<0.05) | 8.62 (<0.05) | 12.82 (<0.05) | 5.58 (<0.05) | 0.15 (0.86) | 3.00 (0.06) | |
YAH | 6 | 835 ± 226 a | 75 ± 47 a | 129 ± 30 ab | 11 ± 7 ab | 0.17 ± 0.05 a | 1.08 ± 0.50 b |
9 | 712 ± 378 a | 55 ± 32 a | 109 ± 55 a | 13 ± 9 b | 0.16 ± 0.06 a | 0.43 ± 0.26 a | |
16 | 970 ± 256 a | 122 ± 39 b | 141 ± 34 b | 8 ± 4 a | 0.15 ± 0.06 a | 1.26 ± 0.40 b | |
F(p) | 1.70 (0.20) | 11.20 (<0.05) | 8.28 (<0.05) | 6.24 (<0.05) | 0.67 (0.52) | 9.38 (<0.05) | |
Interactions FT × YAH | |||||||
F(p) | 2.93 (<0.05) | 0.47 (0.75) | 5.36 (<0.05) | 1.79 (0.15) | 1.62 (0.19) | 1.25 (0.31) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Toledo, S.; Martínez Pastur, G.; Rodríguez-Souilla, J.; Peri, P.L. Retention Levels and Years-After-Harvesting Influence over Soil Microbial Activity and Biomass in Southern Patagonian Forests. Land 2024, 13, 1963. https://doi.org/10.3390/land13111963
Toledo S, Martínez Pastur G, Rodríguez-Souilla J, Peri PL. Retention Levels and Years-After-Harvesting Influence over Soil Microbial Activity and Biomass in Southern Patagonian Forests. Land. 2024; 13(11):1963. https://doi.org/10.3390/land13111963
Chicago/Turabian StyleToledo, Santiago, Guillermo Martínez Pastur, Julián Rodríguez-Souilla, and Pablo L. Peri. 2024. "Retention Levels and Years-After-Harvesting Influence over Soil Microbial Activity and Biomass in Southern Patagonian Forests" Land 13, no. 11: 1963. https://doi.org/10.3390/land13111963
APA StyleToledo, S., Martínez Pastur, G., Rodríguez-Souilla, J., & Peri, P. L. (2024). Retention Levels and Years-After-Harvesting Influence over Soil Microbial Activity and Biomass in Southern Patagonian Forests. Land, 13(11), 1963. https://doi.org/10.3390/land13111963