A Simplified Integrative Approach to Assessing Productive Sustainability and Livelihoods in the “Amazonian Chakra” in Ecuador
Abstract
:1. Introduction
2. Theoretical Framework
2.1. Sustainable Livelihoods Framework
2.2. Sustainability Assessment of Food and Agriculture Systems (SAFA)
3. Materials and Methods
3.1. Study Area
3.2. Context of the Amazonian Chakra System
3.3. Sampling and Data Collection
3.4. Determination of per Capita Income and Poverty Index
3.5. Research Design
3.6. Statistical Analysis
4. Results and Discussion
4.1. Livelihoods in the Amazonian Chakra
4.2. Economic Welfare, Income, and Poverty Index in Households of the Amazonian Chakra
4.3. Sustainability Dimensions Assessment
4.3.1. Good Governance
4.3.2. Environmental Integrity
4.3.3. Economic Resilience
4.3.4. Social Welfare
4.4. Multivariate Discriminant Analysis by Association (SAFA-SLF)
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Chopin, P.; Mubaya, C.P.; Descheemaeker, K.; Öborn, I.; Bergkvist, G. Avenues for improving farming sustainability assessment with upgraded tools, sustainability framing and indicators. A review. Agron. Sustain. Dev. 2021, 41, 19. [Google Scholar] [CrossRef]
- Prost, L.; Martin, G.; Ballot, R.; Benoit, M.; Bergez, J.-E.; Bockstaller, C.; Cerf, M.; Deytieux, V.; Hossard, L.; Jeuffroy, M.-H.; et al. Key research challenges to supporting farm transitions to agroecology in advanced economies. A review. Agron. Sustain. Dev. 2023, 43, 11. [Google Scholar] [CrossRef]
- Ashley, C.; Carney, D. Sustainable Livelihoods: Lessons from Early Experience; Department for International Development: London, UK, 1999; Volume 7, p. 64. [Google Scholar]
- Ellis, F.; Biggs, S. Evolving Themes in Rural Development 1950s–2000s. Dev. Policy Rev. 2001, 19, 437–448. [Google Scholar] [CrossRef]
- Bebbington, A. Capitals and Capabilities, A Framework for Analyzing and rural livelihoods. World Dev. 1999, 27, 2021–2044. [Google Scholar] [CrossRef]
- Gan, C.I.; Soukoutou, R.; Conroy, D.M. Sustainability framing of controlled environment agriculture and consumer perceptions: A review. Sustainability 2023, 15, 304. [Google Scholar] [CrossRef]
- ur Rahman, M.H.; Ahrends, H.E.; Raza, A.; Gaiser, T. Current approaches for modeling ecosystem services and biodiversity in agroforestry systems: Challenges and ways forward. Front. For. Glob. Change 2023, 5, 1032442. [Google Scholar] [CrossRef]
- de Oliveira Claro, P.B.; Esteves, N.R. Sustainability-oriented strategy and sustainable development goals. Mark. Intell. Plan. 2021, 39, 613–630. [Google Scholar] [CrossRef]
- Goparaju, L.; Ahmad, F.; Uddin, M.; Rizvi, J. Agroforestry: An effective multi-dimensional mechanism for achieving Sustainable Development Goals. Ecol. Quest. 2020, 31, 63–71. [Google Scholar] [CrossRef]
- Holt-Giménez, E. One Billion Hungry: Can We Feed the World? by Gordon Conway. Agroecol. Sustain. Food Syst. 2013, 37, 968–971. [Google Scholar] [CrossRef]
- Vera-Vélez, R.; Cota-Sánchez, J.H.; Grijalva-Olmedo, J. Beta diversity and fallow length regulate soil fertility in cocoa agroforestry in the Northern Ecuadorian Amazon. Agric. Syst. 2021, 187, 103020. [Google Scholar] [CrossRef]
- Jadán, O.; Torres, B.; Selesi, D.; Peña, D.; Rosales, C.; Gunter, S. Diversidad Florística Y Estructura En Cacaotales Tradicionales Y Bosque Natural (Sumaco, Ecuador). Colomb. For. 2016, 19, 5–18. [Google Scholar] [CrossRef]
- Torres, B.; Jadan, O.; Aguirre, P.; Hinojosa, L.; Guenter, S. The contribution of traditional agroforestry to climate change adaptation in the Ecuadorian Amazon: The chakra system. In Handbook of Climate Change Adaptation; Leal Filho, W., Ed.; Springer: Berlin/Heidelberg, Germany, 2015; pp. 1973–1994. ISBN 978-3-642-38669-5. [Google Scholar]
- Bravo, C.; Torres, B.; Alemán, R.; Marín, H.; Durazno, G.; Navarrete, H.; Gutiérrez, E.T.; Tapia, A. Indicadores morfológicos y estructurales de calidad y potencial de erosión del suelo bajo diferentes usos de la tierra en la Amazonía ecuatoriana. In Anales de Geografía de la Universidad Complutense; Universidad Complutense de Madri: Madrid, Spain, 2017; Volume 37, pp. 247–264. [Google Scholar] [CrossRef]
- Vasco Pérez, C.; Bilsborrow, R.; Torres, B. Income diversification of migrant colonists vs. indigenous populations: Contrasting strategies in the Amazon. J. Rural Stud. 2015, 42, 1–10. [Google Scholar] [CrossRef]
- Torres, B.; Vasco, C.; Günter, S.; Knoke, T. Determinants of agricultural diversification in a hotspot area: Evidence from colonist and indigenous communities in the Sumaco Biosphere Reserve, Ecuadorian Amazon. Sustainability 2018, 10, 1432. [Google Scholar] [CrossRef]
- MacPherson, J.; Voglhuber-Slavinsky, A.; Olbrisch, M.; Schöbel, P.; Dönitz, E.; Mouratiadou, I.; Helming, K. Future agricultural systems and the role of digitalization for achieving sustainability goals. A review. Agron. Sustain. Dev. 2022, 42, 70. [Google Scholar] [CrossRef] [PubMed]
- Soulé, E.; Michonneau, P.; Michel, N.; Bockstaller, C. Environmental sustainability assessment in agricultural systems: A conceptual and methodological review. J. Clean. Prod. 2021, 325, 129291. [Google Scholar] [CrossRef]
- Herrero, A.M.; Thornton, P.K.; Notenbaert, A.M.; Wood, S.; Msangi, S.; Freeman, H.A.; Bossio, D.; Dixon, J.; Peters, M.; van de Steeg, J.; et al. Smart investments in sustainable food production: Revisiting mixed crop-livestock systems. Science 2010, 327, 822–825. [Google Scholar] [CrossRef]
- Heredia-R, M.; Torres, B.; Cayambe, J.; Ramos, N.; Luna, M.; Diaz-Ambrona, C.G.H. Sustainability Assessment of Smallholder Agroforestry Indigenous Farming in the Amazon: A Case Study of Ecuadorian Kichwas. Agronomy 2020, 10, 1973. [Google Scholar] [CrossRef]
- De Olde, E.M.; Oudshoorn, F.W.; Sørensen, C.A.G.; Bokkers, E.A.M.; De Boer, I.J.M. Assessing sustainability at farm-level: Lessons learned from a comparison of tools in practice. Ecol. Indic. 2016, 66, 391–404. [Google Scholar] [CrossRef]
- FAO. SAFA Sustainability Assessment of Food and Agriculture System—Guidelines Version 3.0; FAO: Rome, Italy, 2013. [Google Scholar]
- Arulnathan, V.; Heidari, M.D.; Doyon, M.; Li, E.; Pelletier, N. Farm-level decision support tools: A review of methodological choices and their consistency with principles of sustainability assessment. J. Clean. Prod. 2020, 256, 120410. [Google Scholar] [CrossRef]
- Torres, B.; Andrade, A.; Enriquez, F.; Luna, M.; Heredia-R, M.; Bravo, C. Estudios Sobre Medios de Vida, Sostenibilidad y Captura de Carbono en el Sistema Agroforestal Chakra con Cacao en Comunidades de Pueblos Originarios de la Provincia de Napo: Casos de las Asociaciones Kallari, Wiñak y Tsatsayaku, Amazonía Ecuatoriana; Primera; FAO: Quito, Ecuador, 2022; ISBN 978-9942-42-211-8. [Google Scholar]
- Heredia-R, M.; Torres, B.; Vasseur, L.; Puhl, L.; Barreto, D.; Díaz-Ambrona, C.G.H. Sustainability Dimensions Assessment in Four Traditional Agricultural Systems in the Amazon. Front. Sustain. Food Syst. 2022, 5, 782633. [Google Scholar] [CrossRef]
- Scoones, I. Sustainable Rural Livelihoods a Framework for Analysis. Analysis 1998, 42, 57–63. [Google Scholar] [CrossRef]
- Arias, E. Metodología Práctica para Establecer los Beneficios Brutos de la Extracción de Madera de Bosque Natural a Nivel de Finca en Ecuador; CATIE: Turrialba, Costa Rica, 2023. [Google Scholar]
- Vasco, C.; Torres, B.; Jácome, E.; Torres, A.; Eche, D.; Velasco, C. Use of chemical fertilizers and pesticides in frontier areas: A case study in the Northern Ecuadorian Amazon. Land Use Policy 2021, 107, 105490. [Google Scholar] [CrossRef]
- Torres, B.; Günter, S.; Acevedo-Cabra, R.; Knoke, T. Livelihood strategies, ethnicity and rural income: The case of migrant settlers and indigenous populations in the Ecuadorian Amazon. For. Policy Econ. 2018, 86, 22–34. [Google Scholar] [CrossRef]
- de Sherbinin, A.; VanWey, L.K.; McSweeney, K.; Aggarwal, R.; Barbieri, A.; Henry, S.; Hunter, L.M.; Twine, W.; Walker, R. Rural household demographics, livelihoods and the environment. Glob. Environ. Change 2008, 18, 38–53. [Google Scholar] [CrossRef]
- Gray, C.L.; Bilsborrow, R.E.; Bremner, J.L.; Lu, F. Indigenous land use in the Ecuadorian Amazon: A cross-cultural and multilevel analysis. Hum. Ecol. 2008, 36, 97–109. [Google Scholar] [CrossRef]
- Ellis, F. The determinants of rural livelihood diversification in developing countries. J. Agric. Econ. 2000, 51, 289–302. [Google Scholar] [CrossRef]
- Walelign, S.Z. Livelihood strategies, environmental dependency and rural poverty: The case of two villages in rural Mozambique. Environ. Dev. Sustain. 2016, 18, 593–613. [Google Scholar] [CrossRef]
- Masud, M.M.; Kari, F.; Yahaya, S.R.B.; Al-Amin, A.Q. Livelihood Assets and Vulnerability Context of Marine Park Community Development in Malaysia. Soc. Indic. Res. 2016, 125, 771–792. [Google Scholar] [CrossRef]
- Chen, S.; Wu, J.; Zhou, K.; Li, R. Livelihood resilience and livelihood construction path of China’s rural reservoir resettled households in the energy transition. Front. Sustain. Food Syst. 2023, 6, 1046761. [Google Scholar] [CrossRef]
- Walelign, S.Z.; Jiao, X. Dynamics of rural livelihoods and environmental reliance: Empirical evidence from Nepal. For. Policy Econ. 2017, 83, 199–209. [Google Scholar] [CrossRef]
- Luna, M.; Barcellos-Paula, L. Structured Equations to Assess the Socioeconomic and Business Factors Influencing the Financial Sustainability of Traditional Amazonian Chakra in the Ecuadorian Amazon. Sustainability 2024, 16, 2480. [Google Scholar] [CrossRef]
- Hřebíček, J.; Faldík, O.; Kasem, E.; Trenz, O. Determinants of sustainability reporting in food and agriculture sectors. Acta Univ. Agric. Et Silvic. Mendel. Brun. 2015, 63, 539–552. [Google Scholar] [CrossRef]
- Thornton, P.K.; Herrero, M. Integrated crop-livestock simulation models for scenario analysis and impact assessment. Agric. Syst. 2001, 70, 581–602. [Google Scholar] [CrossRef]
- Schader, C.; Grenz, J.; Meier, M.S.; Stolze, M. Scope and precision of sustainability assessment approaches to food systems. Ecol. Soc. 2014, 19. [Google Scholar] [CrossRef]
- Myers, N.; Mittermeier, R.A.; Fonseca, G.A.B.; Fonseca, G.A.B.; Kent, J. Biodiversity hotspots for conservation priorities. Nature 2000, 403, 853–858. [Google Scholar] [CrossRef]
- Mittermeier, R.A.; Myers, N.; Thomsen, J.B.; da Fonseca, G.A.B.; Olivieri, S. Biodiversity Hotspots and Major Tropical Wilderness Areas: Approaches to Setting Conservation Priorities. Conserv. Biol. 1998, 12, 516–520. [Google Scholar] [CrossRef]
- FAO. Amazonian Chakra|Sistemas Importantes del Patrimonio Agrícola Mundial (SIPAM)|Organización de las Naciones Unidas para la Alimentación y la Agricultura|GIAHS|Food and Agriculture Organization of the United Nations. Available online: https://www.fao.org/giahs/giahsaroundtheworld/designated-sites/latin-america-and-the-caribbean/amazon-chakra/es/ (accessed on 27 October 2024).
- Foster, J.; Greer, J.; Thorbecke, E. A Class of Decomposable Poverty Measures. Econometrica 1984, 52, 761–766. [Google Scholar] [CrossRef]
- INEC Encuesta Nacional de Empleo, Desempleo y Subempleo 2023 (ENEMDU). Available online: https://scholar.google.es/scholar?hl=es&as_sdt=0%2C5&q=Encuesta+Nacional+de+Empleo+%2C+Desempleo+y+Subempleo+2023+%28+ENEMDU+%29+&btnG= (accessed on 27 October 2024).
- Rivas, J.; Perea, J.M.; De-Pablos-Heredero, C.; Angon, E.; Barba, C.; García, A. Canonical correlation of technological innovation and performance in sheep’s dairy farms: Selection of a set of indicators. Agric. Syst. 2019, 176, 102665. [Google Scholar] [CrossRef]
- García-Martínez, A.; Rivas-Rangel, J.; Rangel-Quintos, J.; Espinosa, J.A.; Barba, C.; de-Pablos-Heredero, C. A methodological approach to evaluate livestock innovations on small-scale farms in developing countries. Futur. Internet 2016, 8, 25. [Google Scholar] [CrossRef]
- Torres, B.; Eche, D.; Torres, Y.; Bravo, C.; Velasco, C.; García, A. Identification and assessment of livestock best management practices (BMPs) using the REED+ approach in the ecuadorian amazon. Agronomy 2021, 11, 1336. [Google Scholar] [CrossRef]
- CIFOR. PEN Cuestionario Prototipo PEN 2007. pp. 1–25. Available online: https://www2.cifor.org/pen/the-pen-technical-guidelines/ (accessed on 28 October 2024).
- Angelsen, A.; Larsen, H.O.; Lund, J.F.; Smith-hall, C.; Wunder, S. (Eds.) Measuring Livelihoods and Environmental Dependence; Earthscan: Washington, DC, USA, 2011. [Google Scholar]
- Gonzalez-Martinez, A.; De-Pablos-heredero, C.; González, M.; Rodriguez, J.; Barba, C.; García, A. Morphological variations of wild populations of brycon dentex (Characidae, teleostei) in the guayas hydrographic basin (ecuador). The impact of fishing policies and environmental conditions. Animals 2021, 11, 1901. [Google Scholar] [CrossRef]
- Caez, J.; Gonzalez, A.; González, M.A.; Angón, E.; Rodriguez, J.M.; Peña, F.; Barba, C.; Garcia, A. Application of multifactorial discriminant analysis in the morphostructural differentiation of wild and cultured populations of Vieja Azul (Andinoacara rivulatus). Turk. J. Zool. 2019, 43, 516–530. [Google Scholar] [CrossRef]
- Vasco, C.; Torres, B.; Pacheco, P.; Griess, V. The socioeconomic determinants of legal and illegal smallholder logging: Evidence from the Ecuadorian Amazon. For. Policy Econ. 2017, 78, 133–140. [Google Scholar] [CrossRef]
- Vasco, C.; Bilsborrow, R.; Torres, B.; Griess, V. Agricultural land use among mestizo colonist and indigenous populations: Contrasting patterns in the Amazon. PLoS ONE 2018, 13, e0199518. [Google Scholar] [CrossRef]
- Bleys, B.; Whitby, A. Barriers and opportunities for alternative measures of economic welfare. Ecol. Econ. 2015, 117, 162–172. [Google Scholar] [CrossRef]
- GIZ. Fomento de la Cadena de Valor de Cacao en Organizaciones de Pequeños Productores de Esmeraldas y Napo. Análisis de Impactos del Programa GESOREN—GIZ; GIZ: Quito, Ecuador, 2011. [Google Scholar]
- Higuchi, A.; Coq-Huelva, D.; Vasco, C.; Alfalla-Luque, R.; Maehara, R. An evidence-based relationship between technical assistance and productivity in cocoa from Tocache, Peru. Rev. Econ. Sociol. Rural 2023, 61, e253614. [Google Scholar] [CrossRef]
- Cerda, R.; Deheuvels, O.; Calvache, D.; Niehaus, L.; Saenz, Y.; Kent, J.; Vilchez, S.; Villota, A.; Martinez, C.; Somarriba, E. Contribution of cocoa agroforestry systems to family income and domestic consumption: Looking toward intensification. Agrofor. Syst. 2014, 88, 957–981. [Google Scholar] [CrossRef]
- Torres, B.; Andrade, V.; Heredia-R, M.; Toulkeridis, T.; Estupiñán, K.; Luna, M.; Bravo, C.; García, A. Productive Livestock Characterization and Recommendations for Good Practices Focused on the Achievement of the SDGs in the Ecuadorian Amazon. Sustainability 2022, 14, 10738. [Google Scholar] [CrossRef]
- Benalcázar Landívar, I.E. Análisis Sobre la Sostenibilidad del Proceso Asociativo en la Asociación Kallari. Master’s Thesis, Universidad Andina Simón Bolívar, Quito, Ecuador, 2018. [Google Scholar]
- Torres, B.; Starnfeld, F.; Vargas, J.C.; Ramm, G.; Chapalbay, R.; Jurrius, I.; Gómez, A.; Torricelli, Y.; Tapia, A.; Shiguango, J.; et al. Gobernanza Participativa en la Amazonía del Ecuador: Recursos Naturales y Desarrollo Sostenible; Universidad Estatal Amazónica: Quito, Ecuador, 2014; ISBN 9789942932112. [Google Scholar]
- Vera-Vélez, R.; Grijalva, J.; Cota-Sánchez, J.H. Cocoa agroforestry and tree diversity in relation to past land use in the Northern Ecuadorian Amazon. New For. 2019, 50, 891–910. [Google Scholar] [CrossRef]
- Vera V, R.R.; Cota-Sánchez, J.H.; Grijalva Olmedo, J.E. Biodiversity, dynamics, and impact of chakras on the Ecuadorian Amazon. J. Plant Ecol. 2019, 12, 34–44. [Google Scholar] [CrossRef]
- Caicedo-Vargas, C.; Pérez-Neira, D.; Abad-González, J.; Gallar, D. Assessment of the environmental impact and economic performance of cacao agroforestry systems in the Ecuadorian Amazon region: An LCA approach. Sci. Total Environ. 2022, 849, 157795. [Google Scholar] [CrossRef] [PubMed]
- Huera-Lucero, T.; Lopez-Piñeiro, A.; Torres, B.; Bravo-Medina, C. Biodiversity and Carbon Sequestration in Chakra-Type Agroforestry Systems and Humid Tropical Forests of the Ecuadorian Amazon. Forests 2024, 15, 557. [Google Scholar] [CrossRef]
- Perreault, T. Why Chacras (Swidden gardens) Persist: Agrobiodiversity, Food Security, and Cultural identity in the Ecuadorian Amazon. Hum. Organ. 2005, 64, 327–339. [Google Scholar] [CrossRef]
- Jadán, O.; Günter, S.; Torres, B.; Selesi, D. Riqueza y potencial maderable en sistemas agroforestales tradicionales como alternativa al uso del bosque nativo, Amazonía del Ecuador. Rev. For. Mesoam. Kurú 2015, 12, 13–22. [Google Scholar] [CrossRef]
- Vasco, C.; Torres, B.; Tafur, V.; Caisaguano, L.; Luna, M.; Torres, A. Glass Half Full or Half Empty? The Contribution of Cacao in Traditional Agroforestry Systems to the Income of Indigenous Peoples in the Ecuadorian Amazon. Small-Scale For. 2024, 23, 191–210. [Google Scholar] [CrossRef]
- Broom, D.M.; Galindo, F.A.; Murgueitio, E. Sustainable, efficient livestock production with high biodiversity and good welfare for animals. Proc. R. Soc. B Biol. Sci. 2013, 280, 20132025. [Google Scholar] [CrossRef] [PubMed]
- Lemaire, G.; Franzluebbers, A.; de Faccio Carvalho, P.C.; Dedieu, B. Integrated crop–livestock systems: Strategies to achieve synergy between agricultural production and environmental quality. Agric. Ecosyst. Environ. 2014, 190, 4–8. [Google Scholar] [CrossRef]
- Martínez Mera, J.A. La Internacionalización de los Emprendimientos de las Comunidades Indígenas en Ecuador Mediante el Comercio Justo. Estudio de Caso: La Asociación Kallari. Ph.D. Dissertation, Instituto de Altos Estudios Nacionales, Quito, Ecuador, 2021. [Google Scholar]
- Baird, T.; Gray, C.L. Livelihood Diversification and Shifting Social Networks of Exchange: A Social Network Transition ? World Dev. 2014, 60, 14–30. [Google Scholar] [CrossRef] [PubMed]
- Jarrett, C.; Cummins, I.; Logan-Hines, E. Adapting Indigenous Agroforestry Systems for Integrative Landscape Management and Sustainable Supply Chain Development in Napo, Ecuador. In Integrating Landscapes: Agroforestry for Biodiversity Conservation and Food Sovereignty; Springer: Cham, Switzerland, 2017; pp. 283–309. [Google Scholar] [CrossRef]
- Fischer, R.; Tamayo Cordero, F.; Ojeda Luna, T.; Ferrer Velasco, R.; DeDecker, M.; Torres, B.; Giessen, L.; Günter, S. Interplay of governance elements and their effects on deforestation in tropical landscapes: Quantitative insights from Ecuador. World Dev. 2021, 148, 105665. [Google Scholar] [CrossRef]
- Kroll, S.A.; Oakland, H.C. A Review of Studies Documenting the Effects of Agricultural Best Management Practices on Physiochemical and Biological Measures of Stream Ecosystem Integrity. Nat. Areas J. 2019, 39, 58. [Google Scholar] [CrossRef]
- Tinoco-Jaramillo, L.; Vargas-Tierras, Y.; Habibi, N.; Caicedo, C.; Chanaluisa, A.; Paredes-Arcos, F.; Viera, W.; Almeida, M.; Vásquez-Castillo, W. Agroforestry Systems of Cocoa (Theobroma cacao L.) in the Ecuadorian Amazon. Forests 2024, 15, 195. [Google Scholar] [CrossRef]
- De-Pablos-Heredero, C.; Montes-Botella, J.L.; García, A. Impact of Technological Innovation on Performance in Dairy Sheep Farms in Spain. J. Agric. Sci. Technol. 2020, 22, 597–610. [Google Scholar]
- Bastanchury-López, M.T.; De-Pablos-Heredero, C.; Montes-Botella, J.L.; Martín-Romo-Romero, S.; García, A. Impact of dynamic capabilities on performance in dairy sheep farms in Spain. Sustainability 2020, 12, 3368. [Google Scholar] [CrossRef]
- García-Ochoa, C.P.; De-Pablos-Heredero, C.; Jimenez, F.J.B. The role of business accelerators in generating dynamic capabilities within startups. Int. J. Entrep. Innov. Manag. 2022, 26, 25–42. [Google Scholar] [CrossRef]
- McDonnell, S. Giving credit where it’s due: The operation of micro-credit models in an Indigenous Australian context. Indig. Law Bull. 2001, 5, 6–9. [Google Scholar]
- Soni, B. Moving Beyond Fear and Ego-Driven Leadership Through the Yogic Chakra System States of Consciousness. Ph.D. Dissertation, Indiana University of Pennsylvania, Indiana, PA, USA, 2021. [Google Scholar]
- Villarroel-Molina, O.; De-Pablos-Heredero, C.; Barba, C.; Rangel, J.; García, A. Does Gender Impact Technology Adoption in Dual-Purpose Cattle in Mexico? Animals 2022, 12, 3194. [Google Scholar] [CrossRef] [PubMed]
- Boerner, J.; Shively, G.; Wunder, S.; Wyman, M. How Do Rural Households Cope with Economic Shocks? Insights from Global Data using Hierarchical Analysis. J. Agric. Econ. 2015, 66, 392–414. [Google Scholar] [CrossRef]
- Walelign, S.Z. Getting stuck, falling behind or moving forward: Rural livelihood movements and persistence in Nepal. Land Use Policy 2017, 65, 294–307. [Google Scholar] [CrossRef]
- Phalan, B.; Onial, M.; Balmford, A.; Green, R.E. Reconciling food production and biodiversity conservation: Land sharing and land sparing compared. Science 2011, 333, 1289–1291. [Google Scholar] [CrossRef] [PubMed]
- Schroth, G.; Bede, L.C.; Paiva, A.O.; Cassano, C.R.; Amorim, A.M.; Faria, D.; Mariano-Neto, E.; Martini, A.M.Z.; Sambuichi, R.H.R.; Lôbo, R.N. Contribution of agroforests to landscape carbon storage. Mitig. Adapt. Strateg. Glob. Change 2015, 20, 1175–1190. [Google Scholar] [CrossRef]
- Izurieta, G.; Torres, A.; Patiño, J.; Vasco, C.; Vasseur, L.; Reyes, H.; Torres, B. Exploring community and key stakeholders’ perception of scientific tourism as a strategy to achieve SDGs in the Ecuadorian Amazon. Tour. Manag. Perspect. 2021, 39, 100830. [Google Scholar] [CrossRef]
Livelihood Variables | Mean n = 330 | Kallari n = 156 | Wiñak n = 129 | Tsatsayaku n = 45 | Sig. |
---|---|---|---|---|---|
Human capital (L-HC) | |||||
Gender/head of household (female%) | 59 | 57.7 a | 68.2 b | 51.1 a | * |
Ethnicity (% Kichwa) | 88.4 | 94.2 b | 97.7 b | 73.3 a | *** |
Household head age (years) | 48.7 | 51.8 a | 43.8 b | 50.5 a | *** |
Social capital (L-SC) | |||||
Training received (BMP) (%) | 52.3 | 43.6 a | 51.2 a | 62.2 b | * |
Natural capital (L-NC) | |||||
Chakra (ha) | 2.2 | 2.1 a | 1.9 a | 2.7 b | *** |
Forest (ha) | 5.7 | 4.1 a | 1.2 a | 11.8 b | *** |
Other crops (ha) | 0.4 | 0.0 a | 0.3 a | 1 b | ** |
Total farm area (ha) | 8.4 | 6.2 a | 3.5 a | 15.6 b | *** |
Financial capital (L-FC) | |||||
Access to credit (%) | 8 | 9.6 a | 4.7 a | 24.4 b | ** |
Access to government bonus (%) | 56 | 60.9 b | 62.0 b | 44.4 a | ** |
Physical capital (L-PhC) | |||||
Engine technology (yes = 1) | 1.54 | 64.1 c | 24.8 a | 48.9 b | *** |
Cell phone (yes = 1) | 69 | 59.6 a | 62.0 a | 77.8 b | * |
Variables | Mean n = 330 | Kallari n = 156 | Wiñak n = 129 | Tsatsayaku n = 45 | Sig. |
---|---|---|---|---|---|
Income | |||||
Total income (USD) | 1652.73 | 1540.68 a | 1287.45 a | 3096.94 b | *** |
Chakra income (USD) | 575.69 | 673.34 b | 487.38 a | 490.36 a | * |
Other income (USD) | 565.54 | 305.12 a | 299.03 a | 2232.35 b | *** |
Per capita income (USD/annual) | 394.94 | 361.46 a | 324.07 a | 714.15 b | ** |
Headcount index (% extremely poor) | 82 | 86.5 | 89.1 | 68.9 | n.s. |
SAFA –Themes—Indicators | All n = 330 | Kallari n = 156 | Wiñak n = 129 | Tsatsayaku n = 45 | Sig. | ||
---|---|---|---|---|---|---|---|
Godd governance (14) | G1.1.1 | Mission explicitness | 3.08 | 3.21 b | 3.27 b | 2.09 a | *** |
G1.1.2 | Mission-driven | 3.07 | 3.20 b | 3.25 b | 2.13 a | *** | |
G1.2.1 | Due diligence | 3.03 | 3.10 b | 3.25 b | 2.18 a | *** | |
G2.1.1 | Holistic audits | 3.11 | 3.14 b | 3.40 b | 2.18 a | *** | |
G2.2.1 | Responsibility | 3.02 | 3.03 b | 3.33 b | 2.11 a | *** | |
G2.3.1 | Transparency | 3.05 | 3.08 b | 3.32 b | 2.13 a | *** | |
G3.1.1 | Stakeholder identification | 3.23 | 3.28 b | 3.46 b | 2.38 a | *** | |
G3.1.2 | Stakeholder engagement | 3.25 | 3.24 b | 3.48 b | 2.60 a | *** | |
G3.1.4 | Effective participation | 3.05 | 3.13 b | 3.13 b | 2.51 a | ** | |
G3.2.1 | Grievance procedures | 3.11 | 3.27 b | 3.09 b | 2.64 a | ** | |
G4.2.1 | Remedy, restoration, and prevention | 3.34 | 3.32 a,b | 3.52 b | 2.87 a | * | |
G4.3.1 | Responsibility | 3.19 | 3.03 a,b | 3.48 b | 2.91 a | *** | |
G5.1.1 | Sustainability management plan | 3.38 | 3.50 b | 3.53 b | 2.51 a | *** | |
G5.2.1 | Full cost accounting | 3.18 | 3.33 b | 3.22 b | 2.56 a | *** | |
Ennvironmental integrity (15) | E1.1.1 | GHG reduction target | 3.48 | 3.68 b | 3.44 b | 2.91 a | *** |
E1.1.2 | GHG mitigation practices | 3.58 | 3.70 b | 3.57 a,b | 3.20 a | * | |
E2.1.2 | Water conservation practices | 3.26 | 3.10 a | 3.27 a,b | 3.78 b | * | |
E2.2.2 | Water pollution prevention practices | 4.14 | 4.31 b | 4.04 a,b | 3.87 a | * | |
E3.2.1 | Land conservation and rehabilitation plan | 3.68 | 3.86 b | 3.66 b | 3.13 a | *** | |
E3.2.2 | Land conservation and rehabilitation practices | 3.86 | 3.92 b | 4.00 b | 3.29 a | *** | |
E4.1.4 | Ecosystem connectivity | 3.96 | 4.06 b | 3.98 b | 3.53 a | ** | |
E4.1.5 | Land-use and land-cover change | 3.78 | 3.96 b | 3.76 b | 3.27 | *** | |
E4.2.2 | Species conservation practices | 3.83 | 4.01 b | 3.79 b | 3.31 a | *** | |
E4.2.3 | Diversity and abundance of key species | 3.94 | 4.09 b | 3.96 b | 3.33 a | ** | |
E4.2.4 | Diversity of production | 4.00 | 4.14 b | 4.01 b | 3.49 a | *** | |
E4.3.1 | Wild genetic diversity enhancing practices | 4.06 | 4.10 b | 4.19 b | 3.51 a | *** | |
E4.3.2 | Agro-biodiversity in situ conservation | 4.07 | 4.10 b | 4.14 b | 3.73 a | * | |
E5.2.1 | Renewable energy use target | 2.43 | 2.62 b | 2.40 b | 1.87 a | *** | |
E5.2.2 | Energy saving practices | 2.39 | 2.63 b | 2.32 b | 1.73 a | *** | |
Economic resilience (11) | C1.2.1 | Community investment | 3.47 | 3.62 b | 3.39 a,b | 3.20 a | * |
C1.3.1 | Long-term profitability | 3.23 | 3.40 b | 3.16 a,b | 2.82 a | ** | |
C1.3.2 | Business plan | 3.15 | 3.42 c | 3.05 b | 2.51 a | *** | |
C1.4.1 | Net income | 3.19 | 3.40 b | 3.06 a,b | 2.82 a | *** | |
C1.4.2 | Cost of production | 3.15 | 3.36 b | 3.03 a,b | 2.80 a | *** | |
C1.4.3 | Price determination | 3.26 | 3.44 b | 3.12 a,b | 3.09 a | ** | |
C2.1.2 | Product diversification | 3.59 | 3.67 b | 3.67 b | 3.09 a | ** | |
C2.3.1 | Stability of market | 3.09 | 3.22 b | 3.10 b | 2.64 a | ** | |
C2.4.1 | Net cash flow | 3.09 | 3.25 b | 3.08 b | 2.60 a | *** | |
C2.4.2 | Safety nets | 2.96 | 3.17 b | 2.93 b | 2.31 a | *** | |
C2.5.1 | Risk management | 3.31 | 3.47 b | 3.22 a,b | 2.96 a | * | |
Social well-being (4) | S2.1.1 | Fair pricing and transparent contracts | 3.30 | 3.45 b | 3.29 b | 2.82 a | *** |
S5.1.1 | Safety and health training | 3.47 | 3.74 b | 3.36 a,b | 2.84 a | *** | |
S5.2.1 | Public health | 4.19 | 4.12 a | 4.24 b | 4.29 b | *** | |
S6.1.1 | Indigenous knowledge | 4.26 | 4.44 b | 4.36 b | 4.21 a | *** |
No. | Parameters 1 | Wilks’—Lambda | Partial—Lambda | F-Remove | p-Level 2 | Toler | 1-Toler |
---|---|---|---|---|---|---|---|
1 | L-PhC.1 | 0.39 | 0.88 | 20.30 | *** | 0.90 | 0.10 |
2 | L-NC.1 | 0.35 | 0.98 | 2.50 | * | 0.04 | 0.96 |
3 | C1.3.2 | 0.35 | 0.97 | 4.23 | ** | 0.52 | 0.48 |
4 | E2.1.2 | 0.36 | 0.94 | 8.98 | *** | 0.72 | 0.28 |
5 | L-HC.1 | 0.36 | 0.96 | 5.92 | *** | 0.90 | 0.10 |
6 | E2.2.2 | 0.36 | 0.95 | 7.25 | *** | 0.54 | 0.46 |
7 | L-HC.2 | 0.35 | 0.97 | 4.12 | *** | 0.79 | 0.21 |
8 | C2.4.2 | 0.35 | 0.97 | 4.28 | ** | 0.32 | 0.68 |
9 | C1.4.3 | 0.35 | 0.97 | 4.91 | ** | 0.54 | 0.46 |
10 | S5.2.1 | 0.35 | 0.97 | 5.06 | ** | 0.62 | 0.38 |
11 | S5.1.1 | 0.35 | 0.98 | 3.16 | * | 0.72 | 0.28 |
12 | E4.3.1 | 0.35 | 0.97 | 4.91 | ** | 0.19 | 0.81 |
13 | L-FC.1 | 0.35 | 0.98 | 3.42 | ** | 0.74 | 0.26 |
14 | E4.3.2 | 0.35 | 0.98 | 3.38 | * | 0.22 | 0.78 |
15 | L-FC.2 | 0.35 | 0.97 | 4.06 | ** | 0.79 | 0.21 |
16 | L-FC.3 | 0.35 | 0.98 | 3.28 | * | 0.83 | 0.17 |
17 | G4.3.1 | 0.36 | 0.96 | 6.95 | *** | 0.40 | 0.60 |
18 | G5.2.1 | 0.35 | 0.98 | 3.01 | * | 0.73 | 0.27 |
19 | G2.1.1 | 0.35 | 0.98 | 3.68 | ** | 0.34 | 0.66 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Torres, B.; Luna, M.; Tipán-Torres, C.; Ramírez, P.; Muñoz, J.C.; García, A. A Simplified Integrative Approach to Assessing Productive Sustainability and Livelihoods in the “Amazonian Chakra” in Ecuador. Land 2024, 13, 2247. https://doi.org/10.3390/land13122247
Torres B, Luna M, Tipán-Torres C, Ramírez P, Muñoz JC, García A. A Simplified Integrative Approach to Assessing Productive Sustainability and Livelihoods in the “Amazonian Chakra” in Ecuador. Land. 2024; 13(12):2247. https://doi.org/10.3390/land13122247
Chicago/Turabian StyleTorres, Bolier, Marcelo Luna, Cristhian Tipán-Torres, Patricia Ramírez, Julio C. Muñoz, and Antón García. 2024. "A Simplified Integrative Approach to Assessing Productive Sustainability and Livelihoods in the “Amazonian Chakra” in Ecuador" Land 13, no. 12: 2247. https://doi.org/10.3390/land13122247
APA StyleTorres, B., Luna, M., Tipán-Torres, C., Ramírez, P., Muñoz, J. C., & García, A. (2024). A Simplified Integrative Approach to Assessing Productive Sustainability and Livelihoods in the “Amazonian Chakra” in Ecuador. Land, 13(12), 2247. https://doi.org/10.3390/land13122247