Soil Loss Estimation by Water Erosion in Agricultural Areas Introducing Artificial Intelligence Geospatial Layers into the RUSLE Model
Highlights
- The implementation of a Digital Soil Mapping (DSM) approach for the prediction of top soil SOC and soil texture via Sentinel-2 satellite imagery data and AI architectures.
- Innovative integration of Artificial Intelligence into the RUSLE model for the generation of finer spatial resolution maps.
- Utilization of the Soil Data Cube self-hosted custom tool to process and handle a large volume of EO data.
Abstract
:1. Introduction
2. Materials and Methods
2.1. Proposed Architecture Pipeline
2.2. Study Area
2.3. Datasets
2.3.1. Satellite Imagery Data
2.3.2. Topographic Data
2.3.3. Meteorological Data
2.3.4. Land Use Land Cover data
2.3.5. Ground Truth Soil Data
2.4. Methodological Approach
2.4.1. Generation of SOC and Soil Texture Maps Using Artificial Intelligence Techniques
- Learning Rate (or ): This hyperparameter controls the contribution of each tree to the final prediction. A lower learning rate makes the model more robust by shrinking the contribution of each individual tree, potentially improving generalization but requiring more trees in the ensemble. The grid space used was .
- Maximum Depth: Determines the maximum depth of each tree in the boosting process. A deeper tree can capture more complex patterns in the data but can also lead to overfitting if not properly controlled. The optimal value was selected from .
- Subsampling: The fraction of samples that are randomly selected to build each tree in the ensemble. It controls the sampling of the training dataset to prevent overfitting and improve the model’s generalization ability and was selected from .
2.4.2. Generation of Soil Erosion Map Using RUSLE Formula
- R-factor—RainfallThe erosive force of a specific rainfall in particular location could be measured by the rainfall erosivity factor (R), and it depends on the amount and the intensity of rainfall [42,43].For the R-factor, the ERA-5 dataset was used, which offers data with 1 km of spatial resolution. As already mentioned, meteorological data from 2007 to 2021 were downloaded and the equation of Wichmeier and Smith (1978) [44] was used:
- K-factor—Soil erodibilityThe soil erodibility factor (K) is perhaps the most critical factor governing soil erosion, and it expresses the susceptibility of soils toward erosion and measures the contribution of soil types [45]. At this point, it should be highlighted that the K-factor (soil erodibility) is related mainly to soil texture and SOC (see also Equation (3)). By using a time-series analysis of Sentinel-2 imagery data and ground truth point estimations from a soil survey, an AI approach was implemented (Section 2.4.1) to generate the soil spatial explicit indicators of SOC and soil texture with higher spatial resolution than the existing soil digital soil maps. These enhanced products are used as inputs to calculate the K-factor based on the equation described in [46]:
- C-factor—Crop cover and managementGenerally, various formulas exist in the literature for calculating the C-factor, which often involve the use of vegetation indices derived from satellite imagery data. In this study, the C-factor is determined by taking the median value of the NDVI index, which is calculated using bands B4 and B8 from multi-temporal Sentinel-2 imagery with a spatial resolution of 10 m. This approach is applied in accordance with the equation described by van Der Knijff et al. (1999) [47], who suggest that employing this scaling approach yields better outputs compared to assuming a linear relationship:
- LS-factor—Slope length and steepnessThe RUSLE topographic factor (LS) in general is defined by the combination of the slope length factor (L) and slope steepness factor (S), describing the effect of topography and terrain morphology on the complicated soil erosion processes [48]. The aforementioned factors in most cases can be calculated by using the DEM, which was generated either from topographic maps or from satellite data [49,50], while the reliability and accuracy factors depend on the topographic dataset precision [51,52,53].In this study, the required input data in order to calculate the LS-factor are the slope values extracted from the Copernicus DEM (30 m) and the flow accumulation, downloaded from https://github.com/davidbrochart/flow_acc_3s, accessed on 18 November 2023, which is a 3 s flow accumulation derived form HydroSHEDS. After that, the equation proposed by [54] was used:
- P-factor—Support practicesAccording to Panagos et al. (2015) [41], p-values can be derived either from image classifications using remote sensing data from previous studies or expert knowledge. As this study focuses on an agricultural area inside Europe, we decided to utilize the estimated P-factor data developed by [41] for all arable lands in Europe, which is based on the Common Agricultural Policy (CAP) implementation. This dataset has a spatial resolution of 1 km and was downloaded from the European Soil Data Centre (ESDAC) official platform (https://esdac.jrc.ec.europa.eu/themes/support-practices-factor, accessed on 2 February 2023).
2.4.3. Artificial Intelligence Model Performance Metrics
- The coefficient of determination , quantifying the degree of any linear correlation between the observed and the model predicted output; it usually ranges from 0 to 1 (higher is better) and is calculated as:
- The root mean squared error (RMSE) which is calculated via:
- The ratio of performance to interquartile range (RPIQ) which takes both the prediction error and the variation of observed values into account without making assumptions about the distribution of the observed values. It is defined as the interquartile range of the observed values divided by the RMSE of prediction [55]:
3. Results
3.1. SOC and Soil Texture Analysis in the Laboratory
3.2. AI Model Performance; Predicting SOC and Soil Texture from EO Data
3.2.1. Model Accuracy
3.2.2. Feature Importance
3.2.3. Generating Enhanced Geospatial Layers
3.3. Soil Erosion Assessment
3.3.1. Spatial Layers of RUSLE Factors
3.3.2. Map of Average Annual Soil Erosion in the Unit
4. Discussion
4.1. Generation of the Enhanced Soil Property Layers
4.1.1. Accuracy of the AI Models
4.1.2. Relative Feature Importance Results
4.2. Spatial Distribution of the Soil Erosion
4.3. Limitations and Future Perspectives
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
AI | Artificial Intelligence |
CAP | Common Agricultural Policy |
DSM | Digital Soil Mapping |
EO | Earth Observation |
EU | European Union |
FAO | Food and Agriculture Organization of the United Nations |
LUCAS | Land Use and Coverage Frame Survey |
LULC | Land Use Land Cover |
IACS | Integrated Administration and Control System |
ODC | Open Data Cube |
NDVI | Normalized Difference Vegetation Index |
RF | Random Forest |
RPIQ | Ratio of Performance to Interquartile Range |
RMSE | Root Mean Square Error |
RUSLE | Revised Universal Soil Loss Equation |
SCL | Scene Classification |
SDC | Soil Data Cube |
SOC | Soil Organic Carbon |
SWIR | Shortwave Infrared |
XGBoost | eXtreme Gradient Boosting |
References
- Panagos, P.; Montanarella, L.; Barbero, M.; Schneegans, A.; Aguglia, L.; Jones, A. Soil priorities in the European Union. Geoderma Reg. 2022, 29, e00510. [Google Scholar] [CrossRef]
- Keesstra, S.D.; Bouma, J.; Wallinga, J.; Tittonell, P.; Smith, P.; Cerdà, A.; Montanarella, L.; Quinton, J.N.; Pachepsky, Y.; van der Putten, W.H.; et al. The significance of soils and soil science towards realization of the United Nations Sustainable Development Goals. Soil 2016, 2, 111–128. [Google Scholar] [CrossRef]
- Poesen, J. Soil erosion in the Anthropocene: Research needs. Earth Surf. Process. Landforms 2017, 43, 64–84. [Google Scholar] [CrossRef]
- Wuepper, D.; Borrelli, P.; Finger, R. Countries and the global rate of soil erosion. Nat. Sustain. 2019, 3, 51–55. [Google Scholar] [CrossRef]
- Ganasri, B.; Ramesh, H. Assessment of soil erosion by RUSLE model using remote sensing and GIS—A case study of Nethravathi Basin. Geosci. Front. 2016, 7, 953–961. [Google Scholar] [CrossRef]
- Pimentel, D.; Burgess, M. Soil Erosion Threatens Food Production. Agriculture 2013, 3, 443–463. [Google Scholar] [CrossRef]
- Amundson, R.; Berhe, A.A.; Hopmans, J.W.; Olson, C.; Sztein, A.E.; Sparks, D.L. Soil and human security in the 21st century. Science 2015, 348, 1261071. [Google Scholar] [CrossRef] [PubMed]
- Phinzi, K.; Ngetar, N.S. The assessment of water-borne erosion at catchment level using GIS-based RUSLE and remote sensing: A review. Int. Soil Water Conserv. Res. 2019, 7, 27–46. [Google Scholar] [CrossRef]
- Renard, K.G.; Foster, G.R.; Weesies, G.A.; McCool, D.; Yoder, D. Predicting Soil Erosion by Water: A Guide to Conservation Planning with the Revised Universal Soil Loss Equation (RUSLE); Agriculture Handbook No. 537; US Department of Agriculture, Agricultural Research Service: Washington, DC, USA, 1997.
- Borrelli, P.; Alewell, C.; Alvarez, P.; Anache, J.A.A.; Baartman, J.; Ballabio, C.; Bezak, N.; Biddoccu, M.; Cerdà, A.; Chalise, D.; et al. Soil erosion modelling: A global review and statistical analysis. Sci. Total Environ. 2021, 780, 146494. [Google Scholar] [CrossRef] [PubMed]
- Weslati, O.; Serbaji, M.M. Spatial assessment of soil erosion by water using RUSLE model, remote sensing and GIS: A case study of Mellegue Watershed, Algeria–Tunisia. Environ. Monit. Assess. 2023, 196, 14. [Google Scholar] [CrossRef] [PubMed]
- Hagos, Y.G.; Andualem, T.G.; Sebhat, M.Y.; Bedaso, Z.K.; Teshome, F.T.; Bayabil, H.K.; Kebede, E.A.; Demeke, G.G.; Mitiku, A.B.; Ayele, W.T.; et al. Soil erosion estimation and erosion risk area prioritization using GIS-based RUSLE model and identification of conservation strategies in Jejebe watershed, Southwestern Ethiopia. Environ. Monit. Assess. 2023, 195, 1501. [Google Scholar] [CrossRef]
- Behera, D.K.; Jamal, S.; Ahmad, W.S.; Taqi, M.; Kumar, R. Estimation of Soil Erosion Using RUSLE Model and GIS Tools: A Study of Chilika Lake, Odisha. J. Geol. Soc. India 2023, 99, 406–414. [Google Scholar] [CrossRef]
- Ejaz, N.; Elhag, M.; Bahrawi, J.; Zhang, L.; Gabriel, H.F.; Rahman, K.U. Soil Erosion Modelling and Accumulation Using RUSLE and Remote Sensing Techniques: Case Study Wadi Baysh, Kingdom of Saudi Arabia. Sustainability 2023, 15, 3218. [Google Scholar] [CrossRef]
- Romshoo, S.A.; Yousuf, A.; Altaf, S.; Amin, M. Evaluation of Various DEMs for Quantifying Soil Erosion Under Changing Land Use and Land Cover in the Himalaya. Front. Earth Sci. 2021, 9, 782128. [Google Scholar] [CrossRef]
- Al Shoumik, B.A.; Khan, M.Z.; Islam, M.S. Soil erosion estimation by RUSLE model using GIS and remote sensing techniques: A case study of the tertiary hilly regions in Bangladesh from 2017 to 2021. Environ. Monit. Assess. 2023, 195, 1096. [Google Scholar] [CrossRef] [PubMed]
- Abdi, B.; Kolo, K.; Shahabi, H. Soil erosion and degradation assessment integrating multi-parametric methods of RUSLE model, RS, and GIS in the Shaqlawa agricultural area, Kurdistan Region, Iraq. Environ. Monit. Assess. 2023, 195, 1149. [Google Scholar] [CrossRef] [PubMed]
- Benavidez, R.; Jackson, B.; Maxwell, D.; Norton, K. A review of the (Revised) Universal Soil Loss Equation ((R)USLE): With a view to increasing its global applicability and improving soil loss estimates. Hydrol. Earth Syst. Sci. 2018, 22, 6059–6086. [Google Scholar] [CrossRef]
- Ustin, S.L.; Middleton, E.M. Current and near-term advances in Earth observation for ecological applications. Ecol. Process. 2021, 10, 1. [Google Scholar] [CrossRef]
- Di, L.; Yu, E. Remote Sensing. In Remote Sensing Big Data; Springer International Publishing: Berlin/Heidelberg, Germany, 2023; pp. 17–43. [Google Scholar] [CrossRef]
- Jodhani, K.H.; Patel, D.; Madhavan, N.; Singh, S.K. Soil Erosion Assessment by RUSLE, Google Earth Engine, and Geospatial Techniques over Rel River Watershed, Gujarat, India. Water Conserv. Sci. Eng. 2023, 8, 49. [Google Scholar] [CrossRef]
- Ferreira, V.; Panagopoulos, T. Seasonality of Soil Erosion Under Mediterranean Conditions at the Alqueva Dam Watershed. Environ. Manag. 2014, 54, 67–83. [Google Scholar] [CrossRef] [PubMed]
- Othmani, O.; Khanchoul, K.; Boubehziz, S.; Bouguerra, H.; Benslama, A.; Navarro-Pedreño, J. Spatial Variability of Soil Erodibility at the Rhirane Catchment Using Geostatistical Analysis. Soil Syst. 2023, 7, 32. [Google Scholar] [CrossRef]
- Lin, B.S.; Chen, C.K.; Thomas, K.; Hsu, C.K.; Ho, H.C. Improvement of the K-Factor of USLE and Soil Erosion Estimation in Shihmen Reservoir Watershed. Sustainability 2019, 11, 355. [Google Scholar] [CrossRef]
- McBratney, A.; Mendonça Santos, M.; Minasny, B. On digital soil mapping. Geoderma 2003, 117, 3–52. [Google Scholar] [CrossRef]
- Chen, S.; Arrouays, D.; Mulder, V.L.; Poggio, L.; Minasny, B.; Roudier, P.; Libohova, Z.; Lagacherie, P.; Shi, Z.; Hannam, J.; et al. Digital mapping of GlobalSoilMap soil properties at a broad scale: A review. Geoderma 2022, 409, 115567. [Google Scholar] [CrossRef]
- Arrouays, D.; Lagacherie, P.; Hartemink, A.E. Digital soil mapping across the globe. Geoderma Reg. 2017, 9, 1–4. [Google Scholar] [CrossRef]
- Thomas, M.; Brough, D.; Bui, E.; Harms, B.; Hill, J.; Holmes, K.; Morrison, D.; Philip, S.; Searle, R.; Smolinski, H.; et al. Soil erodibility DSM data of the Fitzroy catchment WA, Darwin catchments and Mitchell catchment Qld generated by the Northern Australia Water Resource Assessment. CSIRO Data Collection 2018. [Google Scholar] [CrossRef]
- Yang, X.; Gray, J.; Chapman, G.; Zhu, Q.; Tulau, M.; McInnes-Clarke, S. Digital mapping of soil erodibility for water erosion in New South Wales, Australia. Soil Res. 2018, 56, 158. [Google Scholar] [CrossRef]
- Taghizadeh-Mehrjardi, R.; Bawa, A.; Kumar, S.; Zeraatpisheh, M.; Amirian-Chakan, A.; Akbarzadeh, A. Soil Erosion Spatial Prediction using Digital Soil Mapping and RUSLE methods for Big Sioux River Watershed. Soil Syst. 2019, 3, 43. [Google Scholar] [CrossRef]
- Jahandideh, M.; Amirian-Chakan, A.; Faraji, M.; Jafarizadeh, M. Soil Erodibility and its Spatial Variation in Areas under Erosion Control Measures in Behbahan Region. Appl. Soil Res. 2021, 9, 73–88. [Google Scholar]
- European Environment Agency. Soil Monitoring in Europe—Indicators and Thresholds for Soil Health Assessments. 2023. Available online: https://www.eea.europa.eu/publications/soil-monitoring-in-europe (accessed on 15 October 2023).
- Killough, B. Overview of the Open Data Cube Initiative. In Proceedings of the IGARSS 2018—2018 IEEE International Geoscience and Remote Sensing Symposium, Valencia, Spain, 22–27 July 2018; pp. 8629–8632. [Google Scholar] [CrossRef]
- Kalopesa, E.; Tsakiridis, N.L.; Boletos, G.; Tziolas, N.; Zalidis, G.C. The Greek Soil Data Cube in support of generating soil-related Analysis Ready Data. In Proceedings of the IGARSS 2023–2023 IEEE International Geoscience and Remote Sensing Symposium, Pasadena, CA, USA, 16–21 July 2023; pp. 5363–5366. [Google Scholar]
- Samarinas, N.; Tsakiridis, N.L.; Kokkas, S.; Kalopesa, E.; Zalidis, G.C. Soil Data Cube and Artificial Intelligence Techniques for Generating National-Scale Topsoil Thematic Maps: A Case Study in Lithuanian Croplands. Remote Sens. 2023, 15, 5304. [Google Scholar] [CrossRef]
- Hersbach, H.; Bell, B.; Berrisford, P.; Hirahara, S.; Horányi, A.; Muñoz-Sabater, J.; Nicolas, J.; Peubey, C.; Radu, R.; Schepers, D.; et al. The ERA5 global reanalysis. Q. J. R. Meteorol. Soc. 2020, 146, 1999–2049. [Google Scholar] [CrossRef]
- Walkley, A.; Black, I.A. An Examination of the Degtjareff Method for Determining Soil Organic Matter, and a Proposed Modification of the Chromic Acid Titration Method. Soil Sci. 1934, 37, 29–38. [Google Scholar] [CrossRef]
- Bouyoucos, G.J. Hydrometer Method Improved for Making Particle Size Analyses of Soils1. Agron. J. 1962, 54, 464–465. [Google Scholar] [CrossRef]
- Wadoux, A.M.C.; Minasny, B.; McBratney, A.B. Machine learning for digital soil mapping: Applications, challenges and suggested solutions. Earth-Sci. Rev. 2020, 210, 103359. [Google Scholar] [CrossRef]
- Chen, T.; Guestrin, C. XGBoost: A Scalable Tree Boosting System. In Proceedings of the KDD’16: Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, San Francisco, CA, USA, 13–17 August 2016; pp. 785–794. [Google Scholar] [CrossRef]
- Panagos, P.; Borrelli, P.; Meusburger, K.; van der Zanden, E.H.; Poesen, J.; Alewell, C. Modelling the effect of support practices (P-factor) on the reduction of soil erosion by water at European scale. Environ. Sci. Policy 2015, 51, 23–34. [Google Scholar] [CrossRef]
- Lee, J.; Lee, S.; Hong, J.; Lee, D.; Bae, J.H.; Yang, J.E.; Kim, J.; Lim, K.J. Evaluation of Rainfall Erosivity Factor Estimation Using Machine and Deep Learning Models. Water 2021, 13, 382. [Google Scholar] [CrossRef]
- Li, H.; Chen, J.; Jiang, L. Elevated critical micelle concentration in soil–water system and its implication on PAH removal and surfactant selecting. Environ. Earth Sci. 2013, 71, 3991–3998. [Google Scholar] [CrossRef]
- Wischmeier, W.H.; Smith, D.D. Predicting Rainfall Erosion Losses a Guide to Conservation Planning; Agriculture Handbook No. 537; US Department of Agriculture: Washington, DC, USA, 1978.
- Sharma, A. Integrating terrain and vegetation indices for identifying potential soil erosion risk area. Geo-Spat. Inf. Sci. 2010, 13, 201–209. [Google Scholar] [CrossRef]
- Sharply, A.N.; Williams, J.R. EPIC—Erosion/Productivity Impact Calculator 1. Model Documentation; United 257 States Department of Agriculture Technical Bulletin Number 1768, 258 USDA-ARS; US Department of Agriculture: Washington, DC, USA, 1990.
- Van der Knijff, J.; Jones, R.; Montanarella, L. Soil Erosion Risk: Assessment in Europe. 2000. Available online: https://esdac.jrc.ec.europa.eu/ESDB_Archive/pesera/pesera_cd/pdf/ereurnew2.pdf (accessed on 18 November 2023).
- Lu, S.; Liu, B.; Hu, Y.; Fu, S.; Cao, Q.; Shi, Y.; Huang, T. Soil erosion topographic factor (LS): Accuracy calculated from different data sources. CATENA 2020, 187, 104334. [Google Scholar] [CrossRef]
- Hickey, R. Slope Angle and Slope Length Solutions for GIS. Cartography 2000, 29, 1–8. [Google Scholar] [CrossRef]
- Van Remortel, R.; Maichle, R.; Hickey, R. Computing the LS factor for the Revised Universal Soil Loss Equation through array-based slope processing of digital elevation data using a C++ executable. Comput. Geosci. 2004, 30, 1043–1053. [Google Scholar] [CrossRef]
- Wang, C.; Yang, Q.; Guo, W.; Liu, H.; Jupp, D.; Li, R.; Zhang, H. Influence of resolution on slope in areas with different topographic characteristics. Comput. Geosci. 2012, 41, 156–168. [Google Scholar] [CrossRef]
- Wolock, D.M.; McCabe, G.J. Differences in topographic characteristics computed from 100- and 1000-m resolution digital elevation model data. Hydrol. Process. 2000, 14, 987–1002. [Google Scholar] [CrossRef]
- Wu, S.; Li, J.; Huang, G. An evaluation of grid size uncertainty in empirical soil loss modeling with digital elevation models. Environ. Model. Assess. 2005, 10, 33–42. [Google Scholar] [CrossRef]
- McCool, D.K.; Brown, L.C.; Foster, G.R.; Mutchler, C.K.; Meyer, L.D. Revised Slope Steepness Factor for the Universal Soil Loss Equation. Trans. ASAE 1987, 30, 1387–1396. [Google Scholar] [CrossRef]
- Bellon-Maurel, V.; Fernandez-Ahumada, E.; Palagos, B.; Roger, J.M.; McBratney, A. Critical review of chemometric indicators commonly used for assessing the quality of the prediction of soil attributes by NIR spectroscopy. TrAC Trends Anal. Chem. 2010, 29, 1073–1081. [Google Scholar] [CrossRef]
- Parris, K. Environmental indicators for agriculture: Overview in OECD countries. In Environmental Indicators and Agricultural Policy; CABI: Oxford, UK, 1999. [Google Scholar]
- Panagos, P.; Ballabio, C.; Poesen, J.; Lugato, E.; Scarpa, S.; Montanarella, L.; Borrelli, P. A Soil Erosion Indicator for Supporting Agricultural, Environmental and Climate Policies in the European Union. Remote Sens. 2020, 12, 1365. [Google Scholar] [CrossRef]
- Schmaltz, E.M.; Krammer, C.; Dersch, G.; Weinberger, C.; Kuderna, M.; Strauss, P. The effectiveness of soil erosion measures for cropland in the Austrian Agri-environmental Programme: A national approach using local data. Agric. Ecosyst. Environ. 2023, 355, 108590. [Google Scholar] [CrossRef]
- Tziolas, N.; Tsakiridis, N.; Chabrillat, S.; Demattê, J.A.M.; Ben-Dor, E.; Gholizadeh, A.; Zalidis, G.; van Wesemael, B. Earth Observation Data-Driven Cropland Soil Monitoring: A Review. Remote Sens. 2021, 13, 4439. [Google Scholar] [CrossRef]
- Pouladi, N.; Gholizadeh, A.; Khosravi, V.; Borůvka, L. Digital mapping of soil organic carbon using remote sensing data: A systematic review. CATENA 2023, 232, 107409. [Google Scholar] [CrossRef]
- Folorunso, O.; Ojo, O.; Busari, M.; Adebayo, M.; Joshua, A.; Folorunso, D.; Ugwunna, C.O.; Olabanjo, O.; Olabanjo, O. Exploring Machine Learning Models for Soil Nutrient Properties Prediction: A Systematic Review. Big Data Cogn. Comput. 2023, 7, 113. [Google Scholar] [CrossRef]
- Kempen, B.; Dalsgaard, S.; Kaaya, A.K.; Chamuya, N.; Ruipérez-González, M.; Pekkarinen, A.; Walsh, M.G. Mapping topsoil organic carbon concentrations and stocks for Tanzania. Geoderma 2019, 337, 164–180. [Google Scholar] [CrossRef]
- Song, X.D.; Wu, H.Y.; Ju, B.; Liu, F.; Yang, F.; Li, D.C.; Zhao, Y.G.; Yang, J.L.; Zhang, G.L. Pedoclimatic zone-based three-dimensional soil organic carbon mapping in China. Geoderma 2020, 363, 114145. [Google Scholar] [CrossRef]
- Paul, S.S.; Heung, B.; Lynch, D.H. Modeling of total and active organic carbon dynamics in agricultural soil using digital soil mapping: A case study from Central Nova Scotia. Can. J. Soil Sci. 2023, 103, 64–80. [Google Scholar] [CrossRef]
- Liu, F.; Zhang, G.L.; Song, X.; Li, D.; Zhao, Y.; Yang, J.; Wu, H.; Yang, F. High-resolution and three-dimensional mapping of soil texture of China. Geoderma 2020, 361, 114061. [Google Scholar] [CrossRef]
- Safanelli, J.L.; Demattê, J.A.; Chabrillat, S.; Poppiel, R.R.; Rizzo, R.; Dotto, A.C.; Silvero, N.E.; de S. Mendes, W.; Bonfatti, B.R.; Ruiz, L.F.; et al. Leveraging the application of Earth observation data for mapping cropland soils in Brazil. Geoderma 2021, 396, 115042. [Google Scholar] [CrossRef]
- Xia, Y.; McSweeney, K.; Wander, M.M. Digital Mapping of Agricultural Soil Organic Carbon Using Soil Forming Factors: A Review of Current Efforts at the Regional and National Scales. Front. Soil Sci. 2022, 2, 890437. [Google Scholar] [CrossRef]
- Angelopoulou, T.; Tziolas, N.; Balafoutis, A.; Zalidis, G.; Bochtis, D. Remote Sensing Techniques for Soil Organic Carbon Estimation: A Review. Remote Sens. 2019, 11, 676. [Google Scholar] [CrossRef]
- Emde, D.; Hannam, K.D.; Most, I.; Nelson, L.M.; Jones, M.D. Soil organic carbon in irrigated agricultural systems: A meta-analysis. Glob. Chang. Biol. 2021, 27, 3898–3910. [Google Scholar] [CrossRef] [PubMed]
- García-Tejero, I.F.; Carbonell, R.; Ordoñez, R.; Torres, F.P.; Durán Zuazo, V.H. Conservation Agriculture Practices to Improve the Soil Water Management and Soil Carbon Storage in Mediterranean Rainfed Agro-Ecosystems. In Soil Health Restoration and Management; Springer: Singapore, 2019; pp. 203–230. [Google Scholar] [CrossRef]
- Francaviglia, R.; Almagro, M.; Vicente-Vicente, J.L. Conservation Agriculture and Soil Organic Carbon: Principles, Processes, Practices and Policy Options. Soil Syst. 2023, 7, 17. [Google Scholar] [CrossRef]
- Borrelli, P.; Robinson, D.A.; Fleischer, L.R.; Lugato, E.; Ballabio, C.; Alewell, C.; Meusburger, K.; Modugno, S.; Schütt, B.; Ferro, V.; et al. An assessment of the global impact of 21st century land use change on soil erosion. Nat. Commun. 2017, 8, 2013. [Google Scholar] [CrossRef] [PubMed]
- Morgan, R.P.C. Soil Erosion and Conservation; Longman: London, UK; New York, NY, USA, 1995. [Google Scholar]
- Panagos, P.; Borrelli, P.; Poesen, J.; Ballabio, C.; Lugato, E.; Meusburger, K.; Montanarella, L.; Alewell, C. The new assessment of soil loss by water erosion in Europe. Environ. Sci. Policy 2015, 54, 438–447. [Google Scholar] [CrossRef]
- Samarinas, N.; Tziolas, N.; Zalidis, G. Assess land degradation status based on Earth Observation driven proxy indicator. In Proceedings of the Copernicus Meetings EGU General Assembly 2023, Vienna, Austria, 24–28 April 2023. [Google Scholar] [CrossRef]
- Tsakiridis, N.L.; Samarinas, N.; Kalopesa, E.; Zalidis, G.C. Cognitive Soil Digital Twin for Monitoring the Soil Ecosystem: A Conceptual Framework. Soil Syst. 2023, 7, 88. [Google Scholar] [CrossRef]
- Alewell, C.; Borrelli, P.; Meusburger, K.; Panagos, P. Using the USLE: Chances, challenges and limitations of soil erosion modelling. Int. Soil Water Conserv. Res. 2019, 7, 203–225. [Google Scholar] [CrossRef]
Property | N | Mean | Std | Min | Max | |||
---|---|---|---|---|---|---|---|---|
SOC (g C/kg) | 84 | 9.32 | 1.28 | 6.90 | 8.40 | 9.05 | 10.00 | 13.00 |
Sand (g/kg) | 84 | 356.42 | 48.2 | 185 | 346 | 373 | 383 | 396 |
Clay (g/kg) | 84 | 244.08 | 61.2 | 164 | 187 | 230 | 300 | 402 |
Silt (g/kg) | 84 | 399.50 | 63.3 | 262 | 353 | 424 | 439 | 575 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Samarinas, N.; Tsakiridis, N.L.; Kalopesa, E.; Zalidis, G.C. Soil Loss Estimation by Water Erosion in Agricultural Areas Introducing Artificial Intelligence Geospatial Layers into the RUSLE Model. Land 2024, 13, 174. https://doi.org/10.3390/land13020174
Samarinas N, Tsakiridis NL, Kalopesa E, Zalidis GC. Soil Loss Estimation by Water Erosion in Agricultural Areas Introducing Artificial Intelligence Geospatial Layers into the RUSLE Model. Land. 2024; 13(2):174. https://doi.org/10.3390/land13020174
Chicago/Turabian StyleSamarinas, Nikiforos, Nikolaos L. Tsakiridis, Eleni Kalopesa, and George C. Zalidis. 2024. "Soil Loss Estimation by Water Erosion in Agricultural Areas Introducing Artificial Intelligence Geospatial Layers into the RUSLE Model" Land 13, no. 2: 174. https://doi.org/10.3390/land13020174