Mediterranean Wildfires’ Effect on Soil Quality and Properties: A Case from Northern Euboea, Greece
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Soil Sampling and Analysis
3. Results and Discussion
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- San-Miguel-Ayanz, J.; Durrant, T.; Boca, R.; Maianti, P.; Libertá, G.; Artés-Vivancos, T.; Oom, D.; Branco, A.; de Rigo, D.; Ferrari, D.; et al. Wildfires in Europe, Middle East and North Africa 2021; Publications Office of the European Union: Luxembourg, 2022. [Google Scholar] [CrossRef]
- USGCRP (U.S. Global Change Research Program). Impacts, Risks, and Adaptation in the United States: Fourth National Climate Assessment, Volume II; Reidmiller, D.R., Avery, C.W., Easterling, D.R., Kunkel, K.E., Lewis, K.L.M., Maycock, T.K., Stewart, B.C., Eds.; 2018. Available online: https://nca2018.globalchange.gov/downloads (accessed on 1 August 2023). [CrossRef]
- Pacifico, L.R.; Pizzolante, A.; Guarino, A.; Iannone, A.; Esposito, M.; Albanese, S. Wildfires as a Source of Potentially Toxic Elements (PTEs) in Soil: A Case Study from Campania Region (Italy). Int. J. Environ. Res. Public Health 2023, 20, 4513. [Google Scholar] [CrossRef]
- Abatzoglou, J.T.; Williams, A.P. Impact of anthropogenic climate change on wildfire across western US forests. Proc. Natl. Acad. Sci. USA 2016, 113, 11770–11775. [Google Scholar] [CrossRef]
- Certini, G. Effects of fire on properties of forest soils: A review. Oecologia 2005, 143, 1–10. [Google Scholar] [CrossRef]
- Hrelja, I.; Šestak, I.; Delač, D.; Pereira, P.; Bogunović, I. Soil Chemical Properties and Trace Elements after Wildfire in Mediterranean Croatia: Effect of Severity, Vegetation Type and Time-Since-Fire. Agronomy 2022, 12, 1515. [Google Scholar] [CrossRef]
- Pereira, P.; Francos, M.; Brevik, E.C.; Ubeda, X.; Bogunovic, I. Post-fire soil management. Curr. Opin. Environ. Sci. Health 2018, 5, 26–32. [Google Scholar] [CrossRef]
- Campos, I.; Abrantes, N.; Keizer, J.J.; Vale, C.; Pereira, P. Major and trace elements in soils and ashes of eucalypt and pine forest plantations in Portugal following a wildfire. Sci. Total Environ. 2016, 572, 1363–1376. [Google Scholar] [CrossRef] [PubMed]
- Merino, A.; Fonturbel, M.T.; Fernandez, C.; Chavez-Vergara, B.; Garcia-Oliva, F.; Vega, J.A. Inferring changes in soil organic matter in post-wildfire soil burn severity levels in a temperate climate. Sci. Total Environ. 2018, 627, 622–632. [Google Scholar] [CrossRef]
- Arocena, J.; Opio, C. Prescribed fire-induced changes in properties of sub-boreal forest soils. Geoderma 2003, 113, 1–16. [Google Scholar] [CrossRef]
- Badia, D.; Marti, C.; Aguirre, A.J.; Aznar, J.M.; Gonzalez-Perez, J.; De la Rosa, J.M.; Leon, J.; Ibarra, P.; Etcheverria, T. Wildfire effects on nutrients and organic carbon of a Rendzic Phaeozem in NE Spain: Changes at cm-scale topsoil. Catena 2014, 113, 267–275. [Google Scholar] [CrossRef]
- Plumlee, G.S.; Martin, D.A.; Hoefen, T.; Kokaly, R.; Hagentan, P.; Eckberg, A.; Meeker, G.P.; Adams, M.; Anthony, M.; Lamothe, P.J. Preliminary Analytical Results for Ash and Burned Soils from the October 2007 Southern California Wildfires; US Geological Survey, Open-File Report 2007-1407; US Geological Survey: Reston, VA, USA, 2007.
- Oliveira, S.; Zêzere, J.L.; Queirós, M.; Pereira, J.M. Assessing the social context of wildfire-affected areas. The case of mainland Portugal. Appl. Geogr. 2017, 88, 104–117. [Google Scholar] [CrossRef]
- Alexakis, D.E. Contaminated land by wildfire effect on ultramafic soil and associated human health and ecological risk. Land 2020, 9, 409. [Google Scholar] [CrossRef]
- Bento-Gonçalves, A.; Vieira, A.; Úbeda, X.; Martin, D. Fire and soils: Key concepts and recent advances. Geoderma 2012, 191, 3–13. [Google Scholar] [CrossRef]
- DeBano, L.F. The role of fire and soil heating on water repellency in wildland environments: A review. J. Hydrol. 2000, 231–232, 195–206. [Google Scholar] [CrossRef]
- Neary, D.G.; Ryan, K.C.; DeBano, L.F. (Eds). Wildland Fire in Ecosystems: Effects of Fire on Soils and Water; Gen. Tech. Rep. RMRS-GTR-42-vol.4; U.S. Department of Agriculture, Forest Service, Rocky Mountain Research Station: Ogden, UT, USA, 2005; 250p.
- Reynard-Callanan, J.R.; Pope, G.A.; Gorring, M.L.; Feng, H. Effects of High-Intensity Wildfires on Soil Clay Mineralogy. Phys. Geogr. 2010, 31, 407–422. [Google Scholar] [CrossRef]
- Neary, D.G.; Klopatek, C.C.; DeBano, L.F.; Ffolliott, P.F. Fire effects on belowground sustainability: A review and synthesis. For. Ecol. Manag. 1999, 122, 51–71. [Google Scholar] [CrossRef]
- Lekkas, E.; Parcharidis, I.; Arianoutsou, M.; Lozios, S.; Mavroulis, S.; Spyrou, N.-I.; Antoniou, V.; Nastos, P.; Mavrouli, M.; Speis, P.; et al. The July–August 2021 Wildfires in Greece. Newsl. Environ. Disaster Cris. Manag. Strateg. 2021, 25, 61–91. [Google Scholar]
- Evelpidou, N.; Tzouxanioti, M.; Gavalas, T.; Spyrou, E.; Saitis, G.; Petropoulos, A.; Karkani, A. Assessment of Fire Effects on Surface Runoff Erosion Susceptibility: The Case of the Summer 2021 Wildfires in Greece. Land 2022, 11, 21. [Google Scholar] [CrossRef]
- Valkanou, K.; Karymbalis, E.; Bathrellos, G.; Skilodimou, H.; Tsanakas, K.; Papanastassiou, D.; Gaki-Papanastassiou, K. Soil Loss Potential Assessment for Natural and Post-Fire Conditions in Evia Island, Greece. Geosciences 2022, 12, 367. [Google Scholar] [CrossRef]
- Filgueiras, A.V.; Lavilla, I.; Bendicho, C. Chemical sequential extraction for metal partitioning in environmental solid samples. J. Environ. Monit. 2002, 4, 823–857. [Google Scholar] [CrossRef]
- Stefanidis, S.; Alexandridis, V.; Spalevic, V.; Mincato, R.L. Wildfire Effects on Soil Erosion Dynamics: The Case of 2021 Megafires in Greece. Agric. For. 2022, 68, 49–63. [Google Scholar] [CrossRef]
- Corine Land Cover (CLC). 2018. Available online: https://land.copernicus.eu/pan-european/corine-land-cover/clc2018 (accessed on 10 August 2023).
- Gemitzi, A.; Koutsias, N.A. Google Earth Engine code to estimate properties of vegetation phenology in fire affected areas–A case study in North Evia wildfire event on August 2021, Remote Sensing Applications. Soc. Environ. 2022, 26, 100720. [Google Scholar] [CrossRef]
- Megremi, I. Distribution and bioavailability of Cr in central Euboea, Greece. Cent. Eur. J. Geosci. 2010, 2, 103–123. [Google Scholar] [CrossRef]
- Kanellopoulos, C.; Argyraki, A. Soil baseline geochemistry and plant response in areas of complex geology. Application to NW Euboea, Greece. Chemie der rde-Geochem. 2013, 73, 519–532. [Google Scholar] [CrossRef]
- Costa, M.R.; Calvão, A.R.; Aranha, J. Linking wildfire effects on soil and water chemistry of the Marão River watershed, Portugal, and biomass changes detected from Landsat imagery. Appl. Geochem. 2014, 44, 93–102. [Google Scholar] [CrossRef]
- Kabata-Pendias, A. Trace Elements in Soils and Plants, 4th ed.; CRS Press: Boca Raton, FL, USA, 2011. [Google Scholar]
- Seguin, V.; Gagnon, C.; Courchesne, F. Changes in water extractable metals, pH and organic carbon concentrations at the soil-root interface of forested soils. Plant Soil 2004, 260, 1–17. [Google Scholar] [CrossRef]
- European Commission. Council Directive 98/83/EC of 3 November 1998 on the Quality of Water Intended for Human Consumption; European Commission: Brussels, Belgium, 1998; pp. 32–54. [Google Scholar]
- Pashkova, G.V.; Revenko, A.G. A Review of Application of Total Reflection X-ray Fluorescence Spectrometry to Water Analysis. Appl. Spectrosc. Rev. 2015, 50, 443–473. [Google Scholar] [CrossRef]
- Smith, H.G.; Sheridan, G.J.; Lane, P.N.J.; Nyman, P.; Haydon, S. Wildfire effects on water quality in forest catchments: A review with implications for water supply. J. Hydrol. 2011, 396, 170–192. [Google Scholar] [CrossRef]
- Johnston, S.G.; Karimian, N.; Burton, E.D. Fire promotes arsenic mobilization and rapid arsenic(III) formation in soil via thermal alteration of arsenic-bearing iron oxides. Front. Earth Sci. 2019, 7, 139. [Google Scholar] [CrossRef]
- Yan, X.-L.; Chen, T.-B.; Liao, X.-Y.; Huang, Z.-C.; Pan, J.-R.; Hu, T.-D.; Nie, C.-J.; Xie, H. Arsenic transformation and volatilization during incineration of the hyperaccumulator Pteris vittata L. Environ. Sci. Technol. 2008, 42, 1479–1484. [Google Scholar] [CrossRef]
- Moreno-Jiménez, E.; Esteban, E.; Peñalosa, J.M. The fate of arsenic in soil-plant systems. In Reviews of Environmental Contamination and Toxicology; Whitacre, D.M., Ed.; Springer: Berlin/Heidelberg, Germany, 2012. [Google Scholar] [CrossRef]
- Michopoulos, P.; Kostakis, M.; Solomou, A.; Pasias, I.; Grigoratos, T.; Thomaidis, N.S.; Samara, C. Total and bioavailable heavy metals in the soils of two adjacent forests. Glob. NEST J. 2022, 24, 65–73. [Google Scholar] [CrossRef]
- Manceau, A.; Schlegel, M.L.; Musso, M.; Sole, V.A.; Gauthier, C.; Petit, P.A.; Trolard, F. Crystal chemistry of trace elements in natural and synthetic goethite. Geochim. Cosmochim. Acta 2000, 64, 3643–3661. [Google Scholar] [CrossRef]
- Parra, J.G.; Rivero, V.C.; Lopez, T.I. Forms of Mn in soils affected by a forest fire. Sci. Total Environ. 1996, 181, 231–236. [Google Scholar] [CrossRef]
- Chambers, D.P.; Attiwill, P.M. The ash-bed effect in Eucalyptus regnans forest: Chemical, physical, and microbiological changes in soil after heating or partial sterilization. Aust. J. Bot. 1994, 42, 739–749. [Google Scholar] [CrossRef]
- European Environment Agency. Natura 2000 Network Viewer. European Environment Agency: Copenhagen. Available online: https://natura2000.eea.europa.eu/ (accessed on 10 August 2023).
- Evans, L.J.; Spiers, G.A.; Zhao, G. Chemical aspects of heavy metals solubility with references to sewage sludge-amended soils. Int. J. Environ. Anal. Chem. 1995, 59, 291–302. [Google Scholar] [CrossRef]
Burned of Study Area | Unburned of North Euboea [27] | |||
---|---|---|---|---|
Topsoils (n = 17) | Subsoils (n = 17) | Topsoils | Subsoils | |
Pb | 77 | 20 | 18 | 16 |
Zn | 91 | 64 | 67 | 55 |
Cd | 1.00 | 0.29 | 0.6 | n.d |
Cu | 27 | 28 | 35 | 46 |
Mn | 834 | 845 | 480 | 360 |
Fe | 19,400 | 29,455 | 27,400 | 24,100 |
Cr | 334 | 269 | 78 | 40 |
Ni | 174 | 564 | 44 | 34 |
Co | 62 | 63 | 12 | 9 |
As | n.m | 8 | 10 | 9 |
Major and Trace Elements | TOPSOILS LEACHATES | Blank of NMW Leaching Agent | Blank of NSW Leaching Agent | Parametric Values | ||||||
With NMW Leaching Agent | With NSW Leaching Agent | |||||||||
Median | Min | Max | Median | Min | Max | Median Values | ||||
Pb | μg/L | 0.143 | BDL | 1.48 | 0.166 | BDL | 1.24 | 0.009 | 0.024 | 10 μg/L |
Zn | 13 | 4.08 | 42 | 25 | BDL | 33 | 3.24 | 1.69 | ||
Cd | 0.059 | 0.012 | 0.143 | 0.047 | 0.009 | 0.112 | 0.014 | 0.009 | 5 μg/L | |
Cu | 7.23 | 3.31 | 11 | 6.47 | 2.81 | 9.45 | 0.03 | 1.28 | 2mg/L | |
Mn | 151 | 19 | 772 | 216 | 8.31 | 681 | 6.21 | 8.73 | 50 μg/L | |
Fe | 30 | 2.32 | 142 | 25 | 2.38 | 140 | 0.025 | 0.025 | 200 μg/L | |
Cr | 2.9 | BDL | 35 | 2.50 | BDL | 36 | 0.003 | 2.92 | 50 μg/L | |
Ni | 78 | 9.31 | 291 | 48 | 7.42 | 293 | 0.025 | 1.80 | 20 μg/L | |
Co | 23 | 9.26 | 195 | 26 | 9.20 | 214 | 0.296 | 0.278 | ||
As | 23 | 4.48 | 37 | 24 | 4.99 | 40 | 0.392 | 0.418 | 10 μg/L | |
Ca | mg/L | 159 | 90 | 375 | 149 | 87 | 354 | 71 | 50 | |
Mg | 36 | 24 | 84 | 51 | 36 | 101 | 3.79 | 47 | ||
Na | 13 | 8.63 | 28 | 18 | 13 | 28 | 2.83 | 11 | 200 mg/L | |
K | 39 | 26 | 76 | 54 | 28 | 87 | 0.159 | 0.070 | ||
BDL = Below Detection Limit | ||||||||||
Major and Trace Elements | SUBSOILS LEACHATES | |||||||||
With NMW Leaching Agent | With NSW Leaching Agent | |||||||||
Median | Min | Max | Median | Min | Max | |||||
Pb | μg/L | 0.048 | 0.001 | 0.191 | 0.005 | 0.001 | 0.373 | |||
Zn | 9.89 | 0.725 | 33 | 9.27 | 0.504 | 48 | ||||
Cd | 0.020 | BDL | 0.089 | 0.022 | 0.006 | 0.169 | ||||
Cu | 3.56 | 0.598 | 7.86 | 3.35 | 0.656 | 7.67 | ||||
Mn | 48 | 3.63 | 2662 | 56 | 3.02 | 2423 | ||||
Fe | 6.69 | BDL | 47 | 6.82 | BDL | 48 | ||||
Cr | 1.18 | BDL | 12 | 4.87 | 0.003 | 10 | ||||
Ni | 15 | 0.639 | 468 | 22 | 1.74 | 461 | ||||
Co | 8.62 | 0.666 | 65 | 6.18 | 1.41 | 78 | ||||
As | 5.87 | 2.14 | 18 | 5.99 | 2.40 | 15 | ||||
Ca | mg/L | 81 | 31 | 139 | 77 | 31 | 154 | |||
Mg | 19 | 8.04 | 56 | 39 | 21 | 57 | ||||
Na | 9.34 | 6.60 | 13 | 15 | 13 | 18 | ||||
K | 16 | 5.82 | 21 | 13 | 6.00 | 22 | ||||
BDL = Below Detection Limit |
Leaching Agents | Topsoils | Subsoils |
---|---|---|
Natural Mineral Water | Mn > Ni > Fe > As > Co > Zn > Cu > Cr > Pb > Cd | Mn > Ni > Zn > Co > Fe > As > Cu > Cr > Pb > Cd |
Natural Surface Water | Mn > Ni > Co > Fe > Zn > As > Cu > Cr > Pb > Cd | Mn > Ni > Zn > Fe > Co > As > Cr > Cu > Cd > Pb |
Leaching Agents | Topsoils | Subsoils |
---|---|---|
Natural Mineral Water | Co > Mn > Ni > Cu > Zn > Cd > Cr > Pb > Fe | As > Co > Cu > Zn > Cd > Ni > Mn > Cr > Pb > Fe |
Natural Surface Water | Co > Ni > Zn > Mn > Cu > Cd > Cr > Fe > Pb | As > Zn > Cu > Cd > Co > Ni > Mn > Cr > Pb > Fe |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Megremi, I.; Stathopoulou, E.; Vorris, E.; Kostakis, M.; Karavoltsos, S.; Thomaidis, N.; Vasilatos, C. Mediterranean Wildfires’ Effect on Soil Quality and Properties: A Case from Northern Euboea, Greece. Land 2024, 13, 325. https://doi.org/10.3390/land13030325
Megremi I, Stathopoulou E, Vorris E, Kostakis M, Karavoltsos S, Thomaidis N, Vasilatos C. Mediterranean Wildfires’ Effect on Soil Quality and Properties: A Case from Northern Euboea, Greece. Land. 2024; 13(3):325. https://doi.org/10.3390/land13030325
Chicago/Turabian StyleMegremi, Ifigeneia, Eleni Stathopoulou, Efstathios Vorris, Marios Kostakis, Sotirios Karavoltsos, Nikolaos Thomaidis, and Charalampos Vasilatos. 2024. "Mediterranean Wildfires’ Effect on Soil Quality and Properties: A Case from Northern Euboea, Greece" Land 13, no. 3: 325. https://doi.org/10.3390/land13030325
APA StyleMegremi, I., Stathopoulou, E., Vorris, E., Kostakis, M., Karavoltsos, S., Thomaidis, N., & Vasilatos, C. (2024). Mediterranean Wildfires’ Effect on Soil Quality and Properties: A Case from Northern Euboea, Greece. Land, 13(3), 325. https://doi.org/10.3390/land13030325