Spatial–Temporal Characteristics and Influencing Factors of Eco-Efficiency of Cultivated Land Use in the Yangtze River Delta Region
Abstract
:1. Introduction
2. Data and Methods
2.1. Study Area
2.2. Data Sources
2.3. Research Methodology
2.3.1. Index System for Measuring the Efficiency of Cultivated Land Use
2.3.2. Super-Efficient SBM Model Based on Undesired Outputs
2.3.3. Hot Spot Analysis
2.3.4. Dagum Gini Coefficient
2.3.5. Index System for Evaluating Factors Influencing the ECLU
2.3.6. Panel Tobit Models
3. Results
3.1. Temporal Variation Characteristics of the Eco-Efficiency of Cultivated Land Use
3.2. Spatial Variation Characteristics of the Eco-Efficiency of Cultivated Land Use
3.3. Regional Differences in Eco-Efficiency of Cultivated Land Use
3.4. Influencing Factors of the Eco-Efficiency of Cultivated Land Use
4. Discussion
4.1. Insights into the Spatial–Temporal Characteristics and Influencing Factors of the Eco-Efficiency of Cultivated Land Use
4.2. Implications for Improving Eco-Efficiency of Cultivated Land Use in YRD
4.3. Limitations and Future Prospects
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Kong, X. Problems, Causes and Countermeasures of “non-food” cultivated land. China Land 2020, 11, 17–19. [Google Scholar]
- Liu, X.; Xin, L. Assessment of the Efficiency of Cultivated Land Occupied by Urban and Rural Construction Land in China from 1990 to 2020. Land 2022, 11, 941. [Google Scholar] [CrossRef]
- Deng, X.; Huang, J.; Rozelle, S.; Zhang, J.; Li, Z. Impact of urbanization on cultivated land changes in China. Land Use Policy 2015, 45, 1–7. [Google Scholar] [CrossRef]
- Jiang, L.; Guo, S.; Wang, G.; Kan, S.; Jiang, H. Changes in agricultural land requirements for food provision in China 2003–2011, A comparison between urban and rural residents. Sci. Total Environ. 2020, 725, 138293–138310. [Google Scholar] [CrossRef] [PubMed]
- Li, Q.; Gao, W.; Wei, J.; Jiang, Z.; Zhang, Y. Spatial and temporal evolution of net carbon sinks from cropland utilization and comprehensive zoning in China. J. Agric. Eng. 2022, 38, 239–249. [Google Scholar]
- Xie, H.; Zhang, Y.; Choi, Y. Measuring the Cultivated Land Use Efficiency of the Main Grain-Producing Areas in China under the Constraints of Carbon Emissions and Agricultural Nonpoint Source Pollution. Sustainbility 2018, 10, 1932. [Google Scholar] [CrossRef]
- Barbosa, J.A.; Braganca, L.; Mateus, R. Assessment of land use efficiency using BSA tools, Development of a new index. J. Urban Plan. Dev. 2015, 141, 04014020–04014037. [Google Scholar] [CrossRef]
- Yin, R.; Wang, Z.; Xu, F. Multi-scenario simulation of China’s dynamic relationship between water-land resources allocation and cultivated land use based on shared socioeconomic pathways. J. Environ. Manag. 2023, 341, 118062–118063. [Google Scholar] [CrossRef]
- Song, G.; Ren, G. Spatial response of cultivated land use efficiency to the maize structural adjustment policy in the “Sickle Bend” region of China: An empirical study from the cold area of northeast. Land Use Policy 2022, 9, 106421–106433. [Google Scholar] [CrossRef]
- Guo, B.; Chen, K.; Jin, G. Does multi-goal policy affect agricultural land efficiency? A quasi-natural experiment based on the natural resource conservation and intensification pilot scheme. Appl. Geogr. 2023, 163, 103141–103153. [Google Scholar] [CrossRef]
- Zhou, X.; Wu, D.; Li, J.; Liang, J.; Zhang, D.; Chen, W. Cultivated land use efficiency and its driving factors in the Yellow River Basin, China. Ecol. Indic. 2022, 144, 109411–109424. [Google Scholar] [CrossRef]
- Kuang, B.; Lu, X.; Zhou, M.; Chen, D. Provincial cultivated land use efficiency in China: Empirical analysis based on the SBM-DEA model with carbon emissions considered. Technol. Forecast. Soc. Change 2020, 151, 119874–119884. [Google Scholar]
- Haibin, H.; Xiaoyu, Z. Static and dynamic cultivated land use efficiency in China: A minimum distance to strong efficient frontier approach. J. Clean. Prod. 2020, 246, 119002–119017. [Google Scholar]
- Wang, J.; Su, D.; Wu, Q.; Li, G.; Cao, Y. Study on eco-efficiency of cultivated land utilization based on the improvement of ecosystem services and emergy analysis. Sci. Total Environ. 2023, 882, 163489–163498. [Google Scholar] [CrossRef]
- Guo, B.; He, D.; Jin, G. Agricultural production efficiency estimation and spatiotemporal convergence characteristic analysis in the Yangtze River Economic Belt: A semi-parametric metafrontier approach. Land Degrad. Dev. 2023, 34, 4635–4648. [Google Scholar] [CrossRef]
- Chen, Y.; Li, S.; Cheng, L. Evaluation of cultivated land use efficiency with environmental constraints in the Dongting lake eco-economic zone of Hunan, China. Land 2020, 9, 440. [Google Scholar] [CrossRef]
- Yang, B.; Wang, Z.; Zou, L.; Zou, L.; Zhang, H. Exploring the eco-efficiency of cultivated land utilization and its influencing factors in China’s Yangtze River Economic Belt, 2001–2018. J. Environ. Manag. 2021, 294, 112939–112952. [Google Scholar] [CrossRef] [PubMed]
- Hou, X.; Liu, J.; Zhang, D.; Zhao, M.; Xia, C. Impact of urbanization on the eco-efficiency of cultivated land utilization, A case study on the Yangtze River Economic Belt, China. J. Clean. Prod. 2019, 238, 117916–117925. [Google Scholar] [CrossRef]
- Ferreira, M.D.P.; Féres, J.G. Farm size and Land use efficiency in the Brazilian Amazon. Land Use Policy 2020, 99, 104901–104911. [Google Scholar] [CrossRef]
- Nkwasa, A.; Chawanda, C.J.; Msigwa, A.; Komakech, H.C.; Verbeiren, B.; van Griensven, A. How can we represent seasonal land use dynamics in SWAT and SWAT+ models for African cultivated catchments. Water 2020, 12, 1541. [Google Scholar] [CrossRef]
- Chen, Q.; Xie, H. Temporal-spatial differentiation and optimization analysis of cultivated land green utilization efficiency in China. Land 2019, 8, 158. [Google Scholar] [CrossRef]
- Luo, X.; Ao, X.; Zhang, Z.; Wan, Q.; Liu, X. Spatiotemporal variations of cultivated land use efficiency in the Yangtze River Economic Belt based on carbon emission constraints. J. Geogr. Sci. 2020, 30, 535–552. [Google Scholar] [CrossRef]
- Shi, Y.; Duan, W.; Fleskens, L.; Li, M.; Hao, J. Study on evaluation of regional cultivated land quality based on resource-asset-capital attributes and its spatial mechanism. Appl. Geogr. 2020, 125, 102284–102297. [Google Scholar] [CrossRef]
- Lu, X.; Qu, Y.; Sun, P.; Yu, W.; Peng, W. Green transition of cultivated land use in the Yellow River Basin, A perspective of green utilization efficiency evaluation. Land 2020, 9, 475. [Google Scholar] [CrossRef]
- Chen, W.; He, R.; Wu, Q. A novel efficiency measure model for industrial land use based on subvector data envelope analysis and spatial analysis method. Complexity 2017, 2017, 9516267. [Google Scholar] [CrossRef]
- Herzig, A.; Thanh Nguyen, T.; Ausseil, A.E.; Maharjan, G.R.; Dymond, J.R.; Arnhold, S.; Koellner, T.; Rutledge, D.; Tenhunen, J. Assessing resource-use efficiency of land use. Environ. Model. Softw. 2018, 107, 34–49. [Google Scholar] [CrossRef]
- Maxime, D.; Marcotte, M.; Arcand, Y. Development of eco-efficiency indicators for the Canadian food and beverage industry. J. Clean. Prod. 2006, 14, 636–648. [Google Scholar] [CrossRef]
- Han, H.; Zhang, X. Exploring environmental efficiency and total factor productivity of cultivated land use in China. Sci. Total Environ. 2020, 726, 138434–138449. [Google Scholar] [CrossRef]
- Pang, Y.; Wang, X. Land-Use Efficiency in Shandong (China), Empirical Analysis Based on a Super-SBM Model. Sustainbility 2020, 12, 10618. [Google Scholar] [CrossRef]
- Deng, X.; Gibson, J. Sustainable land use management for improving land eco-efficiency, A case study of Hebei, China. Ann. Oper. Res. 2020, 290, 265–277. [Google Scholar] [CrossRef]
- Chen, J.; Cheng, S.; Song, M. Estimating policy pressure for China’s cultivated land use protection based on an extended index. Phys. Chem. Earth Parts A/B/C 2017, 101, 21–34. [Google Scholar] [CrossRef]
- Peng, J.; Wen, L.; Fu, L.; Yi, M. Total factor productivity of cultivated land use in China under environmental constraints, temporal and spatial variations and their influencing factors. Environ. Sci. Pollut. Res. 2020, 27, 18443–18462. [Google Scholar] [CrossRef] [PubMed]
- Schaltegger, S.; Sturm, A. Ökologische Rationalität: Ansatzpunkte zur Ausgestaltung von ökologieorientierten Managementinstrumenten. Unternehmung 1990, 44, 273–290. [Google Scholar]
- Masini, E.; Tomao, A.; Barbati, A.; Corona, P.; Serra, P.; Salvati, L. Urban growth, land-use efficiency and local socioeconomic context, A comparative analysis of 417 metropolitan regions in Europe. Environ. Manag. 2019, 63, 322–337. [Google Scholar] [CrossRef] [PubMed]
- Yin, Y.; Hou, X.; Liu, J.; Zhou, X.; Zhang, D. Detection and attribution of changes in cultivated land use ecological efficiency, A case study on Yangtze River Economic Belt, China. Ecol. Indic. 2022, 137, 108753. [Google Scholar] [CrossRef]
- The State Council of the People’s Republic of China. The CPC Central Committee and the State Council Print and Issue the Outline Development Plan for Regional Integration of the Yangtze River Delta. In Bulletin of the State Council of the People’s Republic of China; The State Council of the People’s Republic of China: Beijing, China, 2019; pp. 10–34. [Google Scholar]
- Bo, L.; Junbiao, Z.; Haipeng, L. Spatial and temporal characteristics of agricultural carbon emissions in China and decomposition of influencing factors. Chin. J. Popul. Resour. Environ. 2011, 21, 80–86. [Google Scholar]
- Du, J.; Liang, L.; Zhu, J. A slacks-based measure of super-efficiency in data envelopment analysis: A comment. Eur. J. Oper. Res. 2010, 204, 694–697. [Google Scholar] [CrossRef]
- Wei, Q. Data Envelopment Analysis (DEA). Chin. Sci. Bull. 2000, 17, 1793–1808. [Google Scholar]
- Majumdar, D.D.; Biswas, A. Quantifying land surface temperature change from LISA clusters: An alternative approach to identifying urban land use transformation. Landsc. Urban Plan. 2016, 153, 51–65. [Google Scholar] [CrossRef]
- Dagum, C. A new approach to the decomposition of the Gini income inequality ratio. Empir. Econ. 1997, 22, 515–531. [Google Scholar] [CrossRef]
- Theil, H. Economics and Information Theory; North Holland Publishing Company: Amsterdam, The Netherlands, 1967; pp. 1–488. [Google Scholar]
- Anselin, L. Local indicators of spatial association-LISA. Geogr. Anal. 1995, 27, 93–115. [Google Scholar] [CrossRef]
- Li, W.; Wang, D.; Li, H.; Liu, S. Urbanization-induced site condition changes of peri-urban cultivated land in the black soil region of northeast China. Ecol. Indic. 2017, 80, 215–223. [Google Scholar] [CrossRef]
- Cui, X.; Wang, X. Urban land use change and its effect on social metabolism, An empirical study in Shanghai. Habitat Int. 2015, 49, 251–259. [Google Scholar] [CrossRef]
- Shu, X.; Feng, W.; Liao, F.; Ling, C. Study on the Spatiotemporal Evolution and Driving Factors of Agricultural Eco-efficiency of Urba Agglomeration in the Middle Reaches of the Yangtze River. J. Soil Water Conserv. 2022, 29, 394–403. [Google Scholar]
- Zhou, B.B.; Aggarwal, R.; Wu, J.; Lv, L. Urbanization-associated farmland loss: A macro-micro comparative study in China. Land Use Policy 2021, 101, 105228–105237. [Google Scholar] [CrossRef]
- Tobit, J. Estimation of Relationships for Limited Dependent Varia-bles. Econometrica 1958, 26, 24–36. [Google Scholar]
- Greene, W.H. On the Asymptotic Bias of the Ordinary Least Squares Estimator of the Tobit Model. Econometrica 1981, 49, 505–513. [Google Scholar] [CrossRef]
- Zhou, H.; Li, X. Tobit model estimation methods and applications. J. Econ. Perspect. 2012, 5, 105–119. [Google Scholar]
- Cao, W.; Zhou, W.; Wu, T.; Wang, X.; Xu, J. Spatial-temporal characteristics of cultivated land use eco-efficiency under carbon constraints and its relationship with landscape pattern dynamics. Ecol. Indic. 2022, 141, 109140–109155. [Google Scholar] [CrossRef]
- Luo, X.; Zhang, Z.; Lu, X.; Zhang, L. Topographic heterogeneity, rural labour transfer and cultivated land use, An empirical study of plain and low-hill areas in China. Pap. Reg. Sci. 2019, 98, 2157–2178. [Google Scholar] [CrossRef]
- Zitti, M.; Ferrara, C.; Perini, L.; Carlucci, M.; Salvati, L. Long-term urban growth and land use efficiency in Southern Europe, Implications for sustainable land management. Sustainability 2015, 7, 3359–3385. [Google Scholar] [CrossRef]
- Fan, Y.; Jin, X.; Gan, L.; Jessup, L.H.; Pijanowski, B.C.; Lin, J.; Yang, Q.; Lyu, L. Dynamics of spatial associations among multiple land use functions and their driving mechanisms: A case study of the Yangtze River Delta region, China. Environ. Impact Assess. Rev. 2022, 97, 106858–106872. [Google Scholar] [CrossRef]
- Fan, Y.; Gan, L.; Hong, C.; Jessup, L.H.; Jin, X.; Pijanowski, B.C.; Sun, Y.; Lv, L. Spatial identification and determinants of trade-offs among multiple land use functions in Jiangsu, China. Sci. Total Environ. 2021, 772, 145022–145036. [Google Scholar]
City Scale | Urban Resident Population | Number of Cities of This Size in the YRD |
---|---|---|
Megacity | >10 million | 1 |
Supercity | 5–10 million | 2 |
Type I large-sized city | 3–5 million | 5 |
Type II large-sized city | 1–3 million | 11 |
Medium-sized city | 500,000–1,000,000 | 7 |
Type I small-sized city | 200,000–500,000 | 5 |
Norm | Variant | Description of Variables | Unit (Of Measurement) |
---|---|---|---|
Input indexes | labor force | Number of people working in agriculture | man |
cultivated land | Total area sown in crops | hm2 | |
irrigation | Effective irrigated area | hm2 | |
agricultural machinery | Gross power of agricultural machinery | kW | |
agricultural film | Agricultural plastic film use | tons | |
agrochemicals | Pesticide use | tons | |
fertilizers | Agricultural fertilizer application (pure) | tons | |
Output indexes | Desired outputs | Gross agricultural output | billions |
Grain production | tons | ||
Non-desired outputs | Carbon emissions from agriculture | tons |
Factor | Norm | Description of Indexes | Unit (Of Measurement) |
---|---|---|---|
Socio-economic factors | Urbanization level (X1) | Urban population/total population | % |
GDP per capita (X2) | GDP/total population | CNY 10,000/person | |
Share of agricultural output value (X3) | Agricultural output value/GDP | % | |
Farmers’ disposable income (X4) | Farmers’ disposable income | CNY | |
Natural environmental factors | Rainfall (X5) | Average annual precipitation | millimeter |
Agricultural development factors | Agricultural machinery density (X6) | Gross agricultural machinery power/gross sown acreage of crops | kw/hm2 |
Agricultural intensity level (X7) | Farmland area/rural population | Thousands of hm2/ten thousand people | |
Agricultural industrial structure (X8) | Gross value of agricultural output/gross value of agricultural, forestry, animal husbandry, and fishery outputs | % |
Year | Total Gini | Intra-Regional Variation | Inter-Regional Variation | Hypervariable Density | |||
---|---|---|---|---|---|---|---|
Gw | Contribution Rate (%) | Gnb | Contribution Rate (%) | Gt | Contribution Rate (%) | ||
2000 | 0.138 | 0.041 | 29.613 | 0.032 | 23.328 | 0.065 | 47.059 |
2001 | 0.139 | 0.041 | 29.489 | 0.034 | 24.199 | 0.065 | 46.311 |
2002 | 0.137 | 0.040 | 29.175 | 0.032 | 23.256 | 0.065 | 47.569 |
2003 | 0.148 | 0.043 | 29.363 | 0.035 | 23.842 | 0.069 | 46.795 |
2004 | 0.132 | 0.038 | 28.752 | 0.033 | 24.683 | 0.061 | 46.565 |
2005 | 0.141 | 0.041 | 29.238 | 0.033 | 23.060 | 0.067 | 47.702 |
2006 | 0.145 | 0.042 | 28.801 | 0.034 | 23.729 | 0.069 | 47.470 |
2007 | 0.150 | 0.043 | 29.016 | 0.034 | 22.555 | 0.072 | 48.429 |
2008 | 0.150 | 0.044 | 29.174 | 0.034 | 22.721 | 0.072 | 48.106 |
2009 | 0.158 | 0.046 | 29.197 | 0.041 | 25.677 | 0.071 | 45.125 |
2010 | 0.156 | 0.046 | 29.372 | 0.041 | 26.642 | 0.068 | 43.987 |
2011 | 0.158 | 0.046 | 29.116 | 0.044 | 27.718 | 0.068 | 43.165 |
2012 | 0.164 | 0.047 | 28.852 | 0.045 | 27.265 | 0.072 | 43.883 |
2013 | 0.170 | 0.049 | 28.893 | 0.047 | 27.848 | 0.074 | 43.260 |
2014 | 0.173 | 0.049 | 28.528 | 0.048 | 27.907 | 0.076 | 43.565 |
2015 | 0.173 | 0.050 | 28.981 | 0.047 | 26.983 | 0.076 | 44.036 |
2016 | 0.164 | 0.048 | 29.342 | 0.044 | 26.947 | 0.072 | 43.710 |
2017 | 0.170 | 0.049 | 28.963 | 0.051 | 29.708 | 0.070 | 41.329 |
2018 | 0.167 | 0.049 | 29.411 | 0.047 | 28.006 | 0.071 | 42.583 |
2019 | 0.160 | 0.048 | 29.770 | 0.041 | 25.751 | 0.071 | 44.479 |
2020 | 0.158 | 0.047 | 29.676 | 0.041 | 25.684 | 0.071 | 44.641 |
Explanatory Variable | Ratio | Standard Error | z-Value | p-Value |
---|---|---|---|---|
Constant term (math.) | −2.647 | 0.546 | −4.85 | 0.000 *** |
Proportion of urban population (X1) | 0.066 | 0.008 | 7.93 | 0.000 *** |
GDP per capita (X2) | 0.059 | 0.014 | 4.16 | 0.000 *** |
Share of agricultural GDP (X3) | 0.071 | 0.015 | 4.73 | 0.025 ** |
Farmers’ disposable income (X4) | −1.7 × 10−5 | 7.4 × 10−6 | −2.25 | 0.148 |
Rainfall (X5) | −9.7 × 10−6 | 6.7 × 10−6 | −1.45 | 0.002 *** |
Agricultural machinery density (X6) | 0.182 | 0.059 | 3.07 | 0.235 |
Agricultural intensity level (X7) | −0.008 | 0.007 | −1.19 | 0.002 *** |
Agricultural industrial structure (X8) | −0.206 | 0.065 | −3.17 | 0.000 *** |
LR test of sigma u = 0: chibar2(01) = 161.87 Prob >= chibar2 = 0.000 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Fan, Y.; Ning, W.; Liang, X.; Wang, L.; Lv, L.; Li, Y.; Wang, J. Spatial–Temporal Characteristics and Influencing Factors of Eco-Efficiency of Cultivated Land Use in the Yangtze River Delta Region. Land 2024, 13, 219. https://doi.org/10.3390/land13020219
Fan Y, Ning W, Liang X, Wang L, Lv L, Li Y, Wang J. Spatial–Temporal Characteristics and Influencing Factors of Eco-Efficiency of Cultivated Land Use in the Yangtze River Delta Region. Land. 2024; 13(2):219. https://doi.org/10.3390/land13020219
Chicago/Turabian StyleFan, Yeting, Wenjing Ning, Xinyuan Liang, Lingzhi Wang, Ligang Lv, Ying Li, and Junxiao Wang. 2024. "Spatial–Temporal Characteristics and Influencing Factors of Eco-Efficiency of Cultivated Land Use in the Yangtze River Delta Region" Land 13, no. 2: 219. https://doi.org/10.3390/land13020219
APA StyleFan, Y., Ning, W., Liang, X., Wang, L., Lv, L., Li, Y., & Wang, J. (2024). Spatial–Temporal Characteristics and Influencing Factors of Eco-Efficiency of Cultivated Land Use in the Yangtze River Delta Region. Land, 13(2), 219. https://doi.org/10.3390/land13020219