Ecological Risk Assessment of Land Use Change in the Tarim River Basin, Xinjiang, China
Abstract
:1. Introduction
2. Overview of the Study Area and Data Sources
2.1. Overview of the Study Area
2.2. Data Sources
3. Methodology
3.1. Research Framework
3.2. Quantification of Ecosystem Services
3.2.1. Carbon Stocks
3.2.2. Water Production
3.2.3. Soil Conservation
3.2.4. Habitat Quality
3.2.5. Quantification of Total Ecosystem Services
3.3. Model of PLUS Land-Use Dynamics
3.3.1. The PLUS Model
3.3.2. Multi-Scenario Model
3.4. Quantification of Ecological Risk Indicators
4. Results
4.1. Analysis of the Evolution of Spatial and Temporal Patterns of Land Use
4.2. Spatial Increase or Decrease in Different Land Use Types
4.3. Multi-Scenario Model of Land-Use Change
4.4. Characterizations of Ecosystem Services under Different Model Scenarios
4.5. Characteristics of Changes in the Distribution of Ecological Risks under Different Scenarios
5. Discussion
5.1. Spatial Heterogeneity of Ecological Risk Indices and Their Formation Mechanisms
5.2. Comparison with Previous Research
5.3. Shortcomings and Prospects
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Foley, J.A.; DeFries, R.; Asner, G.P.; Barford, C.; Bonan, G.; Carpenter, S.R.; Chapin, F.S.; Coe, M.T.; Daily, G.C.; Gibbs, H.K. Global consequences of land use. Science 2005, 309, 570–574. [Google Scholar] [CrossRef] [PubMed]
- García-Nieto, A.P.; Geijzendorffer, I.R.; Baró, F.; Roche, P.K.; Bondeau, A.; Cramer, W. Impacts of urbanization around Mediterranean cities: Changes in ecosystem service supply. Ecol. Indic. 2018, 91, 589–606. [Google Scholar] [CrossRef]
- Omar, H.; Cabral, P. Ecological risk assessment based on land cover changes: A case of Zanzibar (Tanzania). Remote Sens. 2020, 12, 3114. [Google Scholar] [CrossRef]
- Wu, X.; Hu, F. Analysis of ecological carrying capacity using a fuzzy comprehensive evaluation method. Ecol. Indic. 2020, 113, 106243. [Google Scholar] [CrossRef]
- Bryan, B.A.; Gao, L.; Ye, Y.; Sun, X.; Connor, J.D.; Crossman, N.D.; Stafford-Smith, M.; Wu, J.; He, C.; Yu, D. China’s response to a national land-system sustainability emergency. Nature 2018, 559, 193–204. [Google Scholar] [CrossRef] [PubMed]
- Qiu, M.; Zuo, Q.; Wu, Q.; Yang, Z.; Zhang, J. Water ecological security assessment and spatial autocorrelation analysis of prefectural regions involved in the Yellow River Basin. Sci. Rep. 2022, 12, 5105. [Google Scholar] [CrossRef] [PubMed]
- Schirpke, U.; Tasser, E.; Borsky, S.; Braun, M.; Eitzinger, J.; Gaube, V.; Getzner, M.; Glatzel, S.; Gschwantner, T.; Kirchner, M. Past and future impacts of land-use changes on ecosystem services in Austria. J. Environ. Manag. 2023, 345, 118728. [Google Scholar] [CrossRef] [PubMed]
- Cao, Q.; Zhang, X.; Lei, D.; Guo, L.; Sun, X.; Wu, J. Multi-scenario simulation of landscape ecological risk probability to facilitate different decision-making preferences. J. Clean. Prod. 2019, 227, 325–335. [Google Scholar] [CrossRef]
- Chen, J.; Dong, B.; Li, H.; Zhang, S.; Peng, L.; Fang, L.; Zhang, C.; Li, S. Study on landscape ecological risk assessment of Hooded Crane breeding and overwintering habitat. Environ. Res. 2020, 187, 109649. [Google Scholar] [CrossRef]
- US Environmental Protection Agency. Risk Assessment Forum 1992. Report on the Ecological Risk Assessment Guidelines Strategic Planning Workshop; US Environmental Protection Agency: Washington, DC, USA, 1992. [Google Scholar]
- Tian, P.; Li, J.; Gong, H.; Pu, R.; Cao, L.; Shao, S.; Shi, Z.; Feng, X.; Wang, L.; Liu, R. Research on land use changes and ecological risk assessment in Yongjiang River Basin in Zhejiang Province, China. Sustainability 2019, 11, 2817. [Google Scholar] [CrossRef]
- Liang, Y.; Song, W. Integrating potential ecosystem services losses into ecological risk assessment of land use changes: A case study on the Qinghai-Tibet Plateau. J. Environ. Manag. 2022, 318, 115607. [Google Scholar] [CrossRef]
- Deng, G.; Jiang, H.; Zhu, S.; Wen, Y.; He, C.; Wang, X.; Sheng, L.; Guo, Y.; Cao, Y. Projecting the response of ecological risk to land use/land cover change in ecologically fragile regions. Sci. Total Environ. 2024, 914, 169908. [Google Scholar] [CrossRef] [PubMed]
- Bertollo, P. Assessing landscape health: A case study from northeastern Italy. Environ. Manag. 2001, 27, 349–365. [Google Scholar] [CrossRef] [PubMed]
- Barnthouse, L.W.; Suter, I.I. User’s Manual for Ecological Risk Assessment; Oak Ridge National Lab.: Oak Ridge, TN, USA, 1986. [Google Scholar]
- Kong, X.; Fu, M.; Zhao, X.; Wang, J.; Jiang, P. Ecological effects of land-use change on two sides of the Hu Huanyong Line in China. Land Use Policy 2022, 113, 105895. [Google Scholar] [CrossRef]
- Liang, Y.; Song, W. Ecological and Environmental Effects of Land Use and Cover Changes on the Qinghai-Tibetan Plateau: A Bibliometric Review. Land 2022, 11, 2163. [Google Scholar] [CrossRef]
- Song, W.; Deng, X. Land-use/land-cover change and ecosystem service provision in China. Sci. Total Environ. 2017, 576, 705–719. [Google Scholar] [CrossRef]
- Wang, D.; Ji, X.; Li, C.; Gong, Y. Spatiotemporal variations of landscape ecological risks in a resource-based city under transformation. Sustainability 2021, 13, 5297. [Google Scholar] [CrossRef]
- Gao, L.; Tao, F.; Liu, R.; Wang, Z.; Leng, H.; Zhou, T. Multi-scenario simulation and ecological risk analysis of land use based on the PLUS model: A case study of Nanjing. Sustain. Cities Soc. 2022, 85, 104055. [Google Scholar] [CrossRef]
- Qu, Y.; Zong, H.; Su, D.; Ping, Z.; Guan, M. Land use change and its impact on landscape ecological risk in typical areas of the Yellow River Basin in China. Int. J. Environ. Res. Public Health 2021, 18, 11301. [Google Scholar] [CrossRef]
- Cheng, Y.; Song, W.; Yu, H.; Wei, X.; Sheng, S.; Liu, B.; Gao, H.; Li, J.; Cao, C.; Yang, D. Assessment and Prediction of Landscape Ecological Risk from Land Use Change in Xinjiang, China. Land 2023, 12, 895. [Google Scholar] [CrossRef]
- Zhang, W.; Chang, W.J.; Zhu, Z.C.; Hui, Z. Landscape ecological risk assessment of Chinese coastal cities based on land use change. Appl. Geogr. 2020, 117, 102174. [Google Scholar] [CrossRef]
- Li, J.; Pu, R.; Gong, H.; Luo, X.; Ye, M.; Feng, B. Evolution characteristics of landscape ecological risk patterns in coastal zones in Zhejiang Province, China. Sustainability 2017, 9, 584. [Google Scholar] [CrossRef]
- Men, C.; Liu, R.; Xu, L.; Wang, Q.; Guo, L.; Miao, Y.; Shen, Z. Source-specific ecological risk analysis and critical source identification of heavy metals in road dust in Beijing, China. J. Hazard. Mater. 2020, 388, 121763. [Google Scholar] [CrossRef] [PubMed]
- Heenkenda, M.K.; Bartolo, R. Regional ecological risk assessment using a relative risk model: A case study of the Darwin Harbour, Darwin, Australia. Hum. Ecol. Risk Assess. 2016, 22, 401–423. [Google Scholar] [CrossRef]
- Kanwar, P.; Bowden, W.B.; Greenhalgh, S. A regional ecological risk assessment of the Kaipara Harbour, New Zealand, using a relative risk model. Hum. Ecol. Risk Assess. 2015, 21, 1123–1146. [Google Scholar] [CrossRef]
- Yu, W.; Zhang, L.; Ricci, P.F.; Chen, B.; Huang, H. Coastal ecological risk assessment in regional scale: Application of the relative risk model to Xiamen Bay, China. Ocean. Coast. Manag. 2015, 108, 131–139. [Google Scholar] [CrossRef]
- Du, X.; Lin, X. Conceptual model on regional natural disaster risk assessment. Procedia Eng. 2012, 45, 96–100. [Google Scholar] [CrossRef]
- Du, L.; Dong, C.; Kang, X.; Qian, X.; Gu, L. Spatiotemporal evolution of land cover changes and landscape ecological risk assessment in the Yellow River Basin, 2015–2020. J. Environ. Manag. 2023, 332, 117149. [Google Scholar] [CrossRef] [PubMed]
- Yu, Z.; Deng, X.; Fu, P.; Grebby, S.; Mangi, E. Assessment of land degradation risks in the Loess Plateau. Land Degrad. Dev. 2024, 35, 2409–2424. [Google Scholar] [CrossRef]
- Liang, X.; Guan, Q.; Clarke, K.C.; Liu, S.; Wang, B.; Yao, Y. Understanding the drivers of sustainable land expansion using a patch-generating land use simulation (PLUS) model: A case study in Wuhan, China. Comput. Environ. Urban Syst. 2021, 85, 101569. [Google Scholar] [CrossRef]
- Sharpet, W.F. Capital asset prices: A theory of market equilibrium under conditions of risk. J. Financ. 1964, 19, 425–442. [Google Scholar]
- Feng, M.; Chen, Y.; Li, Z.; Duan, W.; Zhu, Z.; Liu, Y.; Zhou, Y. Optimisation model for sustainable agricultural development based on water-energy-food nexus and CO2 emissions: A case study in Tarim river basin. Energ. Convers. Manag. 2024, 303, 118174. [Google Scholar] [CrossRef]
- Chen, Y.; Li, Z.; Li, W.; Deng, H.; Shen, Y. Water and ecological security: Dealing with hydroclimatic challenges at the heart of China’s Silk Road. Environ. Earth Sci. 2016, 75, 881. [Google Scholar] [CrossRef]
- Zhang, Z. Study on Trade-Off Synergistic Relationships and Driving Factors of Key Ecosystem Services in Xinjiang Region. Master’s Thesis, Chinese Academy of Environmental Sciences, Beijing, China, 2023. [Google Scholar]
- Sharp, R.; Tallis, H.T.; Ricketts, T.; Guerry, A.D.; Wood, S.A.; Chaplin-Kramer, R.; Nelson, E.; Ennaanay, D.; Wolny, S.; Olwero, N. VEST 3.2. 0 user’s guide. In The Natural Capital Project; Stanford University: Stanford, CA, USA, 2015; Volume 133. [Google Scholar]
- Zhang, L.; Dawes, W.R.; Walker, G.R. Response of mean annual evapotranspiration to vegetation changes at catchment scale. Water Resour. Res. 2001, 37, 701–708. [Google Scholar] [CrossRef]
- Baixue, W.; Weiming, C.; Shengxin, L. Impact of land use changes on habitat quality in Altay region. J. Resour. Ecol. 2021, 12, 715–728. [Google Scholar] [CrossRef]
- Zhang, X.; Zhou, Y.; Long, L.; Hu, P.; Huang, M.; Xie, W.; Chen, Y.; Chen, X. Simulation of land use trends and assessment of scale effects on ecosystem service values in the Huaihe River basin, China. Environ. Sci. Pollut. Res. 2023, 30, 58630–58653. [Google Scholar] [CrossRef] [PubMed]
- Congjuan, L.; Abulimiti, M.; Jinglong, F.; Haifeng, W. Ecologic service, economic benefits, and sustainability of the man-made ecosystem in the taklamakan desert. Front. Environ. Sci. 2022, 10, 813932. [Google Scholar] [CrossRef]
- Zhang, F.; Yushanjiang, A.; Wang, D. Ecological risk assessment due to land use/cover changes (LUCC) in Jinghe County, Xinjiang, China from 1990 to 2014 based on landscape patterns and spatial statistics. Environ. Earth Sci. 2018, 77, 491. [Google Scholar] [CrossRef]
- Xu, D.; Cheng, J.; Xu, S.; Geng, J.; Yang, F.; Fang, H.; Xu, J.; Wang, S.; Wang, Y.; Huang, J. Understanding the relationship between China’s eco-environmental quality and urbanization using multisource remote sensing data. Remote Sens. 2022, 14, 198. [Google Scholar] [CrossRef]
- Meng, Z.; Dong, J.; Ellis, E.C.; Metternicht, G.; Qin, Y.; Song, X.; Löfqvist, S.; Garrett, R.D.; Jia, X.; Xiao, X. Post-2020 biodiversity framework challenged by cropland expansion in protected areas. Nat. Sustain. 2023, 6, 758–768. [Google Scholar] [CrossRef]
- Li, Z.; Cheng, X.; Han, H. Future impacts of land use change on ecosystem services under different scenarios in the ecological conservation area, Beijing, China. Forests 2020, 11, 584. [Google Scholar] [CrossRef]
- Cai, D.; Ge, Q.; Wang, X.; Liu, B.; Goudie, A.S.; Hu, S. Contributions of ecological programs to vegetation restoration in arid and semiarid China. Environ. Res. Lett. 2020, 15, 114046. [Google Scholar] [CrossRef]
- Yu, C.; Zhang, Z.; Jeppesen, E.; Gao, Y.; Liu, Y.; Liu, Y.; Lu, Q.; Wang, C.; Sun, X. Assessment of the effectiveness of China’s protected areas in enhancing ecosystem services. Ecosyst. Serv. 2024, 65, 101588. [Google Scholar] [CrossRef]
- Zhang, Y.; Zhao, X.; Gong, J.; Luo, F.; Pan, Y. Effectiveness and driving mechanism of ecological restoration efforts in China from 2009 to 2019. Sci. Total Environ. 2024, 910, 168676. [Google Scholar] [CrossRef]
- Zhang, J.; Hao, X.; Li, X.; Fan, X.; Zhang, S. Evaluation and regulation strategy for ecological security in the Tarim River Basin based on the ecological footprint. J. Clean. Prod. 2024, 435, 140488. [Google Scholar] [CrossRef]
- Xue, L.; Wang, J.; Zhang, L.; Wei, G.; Zhu, B. Spatiotemporal analysis of ecological vulnerability and management in the Tarim River Basin, China. Sci. Total Environ. 2024, 649, 876–888. [Google Scholar] [CrossRef]
- Qian, K.; Ma, X.; Yan, W.; Li, J.; Xu, S.; Liu, Y.; Wang, Y. Trade-offs and synergies among ecosystem services in Inland River Basins under the influence of ecological water transfer project: A case study on the Tarim River basin. Sci. Total Environ. 2024, 908, 168248. [Google Scholar] [CrossRef]
Data Type | Data Name | Spatial Resolution | Data Sources |
---|---|---|---|
Land Use Data | 2000 | 30 m | https://www.resdc.cn/ (accessed on 13 March 2020) |
2010 | 30 m | ||
2020 | 30 m | ||
Limiting Factor | Open Water | 30 m | https://www.resdc.cn/ (accessed on 13 March 2020) |
Nature Reserve | 250 m | https://www.resdc.cn/ (accessed on 13 March 2020) | |
Driving Factor | DEM | 250 m | https://www.resdc.cn/ (accessed on 15 March 2020) |
Slope | 250 m | by DEM data | |
Aspect | 250 m | by DEM data | |
Roads | 250 m | http://www.gis5g.com/ (accessed on 15 March 2020) | |
Waterways | 250 m | http://openstreetmap.org/ (accessed on 15 March 2020) | |
NDVI | 30 m | https://www.resdc.cn/ (accessed on 15 March 2020) | |
Other Factors | Rainfall Erosion Factor R | 1000 m | http://www.gis5g.com/ (accessed on 16 March 2020) |
Soil Erodibility Factor K | 300 m | http://www.gis5g.com/ (accessed on 16 March 2020) | |
Potential Evaporation | 1000 m | https://www.resdc.cn/ (accessed on 16 March 2020) | |
Amount of Precipitation | 1000 m | https://www.resdc.cn/ (accessed on 16 March 2020) |
Name | Habitat | Cropland | Construction Land | Unused Land |
---|---|---|---|---|
Cropland | 0.3 | 0 | 0.8 | 0.4 |
Forest | 1 | 0.6 | 0.4 | 0.2 |
Grassland | 1 | 0.8 | 0.6 | 0.6 |
Water | 0.7 | 0.5 | 0.4 | 0.2 |
Construction land | 0 | 0 | 0 | 0.1 |
Unused land | 0.6 | 0.6 | 0.4 | 0 |
Threat | Max_dist | Weight | Decay |
---|---|---|---|
Cropland | 4 | 0.6 | Linear |
Construction land | 8 | 0.4 | Exponential |
Unused land | 6 | 0.5 | Linear |
Land Use Type | 2000 | 2010 | 2020 | Change of Percentage (%) | |||
---|---|---|---|---|---|---|---|
Areas (km2) | Percentage (%) | Areas (km2) | Percentage (%) | Areas (km2) | Percentage (%) | ||
Cropland | 45,496.3 | 2.61 | 61,433.9 | 3.52 | 72,384.8 | 4.15 | 1.54 |
Forest | 23,854.9 | 1.37 | 22,583.8 | 1.29 | 22,168.1 | 1.27 | −0.10 |
Grassland | 427,430.4 | 24.50 | 404,483.4 | 23.19 | 394,739.2 | 22.63 | −1.87 |
Water | 61,828.1 | 3.54 | 35,809.1 | 2.05 | 36,452.3 | 2.09 | −1.45 |
Construction land | 2552.3 | 0.15 | 6788.4 | 0.39 | 5436.3 | 0.31 | 0.17 |
Unused land | 1,183,220.6 | 67.83 | 1,213,283.9 | 69.55 | 1,213,201.9 | 69.55 | 1.72 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cheng, Y.; Zhang, X.; Song, W. Ecological Risk Assessment of Land Use Change in the Tarim River Basin, Xinjiang, China. Land 2024, 13, 561. https://doi.org/10.3390/land13040561
Cheng Y, Zhang X, Song W. Ecological Risk Assessment of Land Use Change in the Tarim River Basin, Xinjiang, China. Land. 2024; 13(4):561. https://doi.org/10.3390/land13040561
Chicago/Turabian StyleCheng, Yaqi, Xuyang Zhang, and Wei Song. 2024. "Ecological Risk Assessment of Land Use Change in the Tarim River Basin, Xinjiang, China" Land 13, no. 4: 561. https://doi.org/10.3390/land13040561
APA StyleCheng, Y., Zhang, X., & Song, W. (2024). Ecological Risk Assessment of Land Use Change in the Tarim River Basin, Xinjiang, China. Land, 13(4), 561. https://doi.org/10.3390/land13040561