Interpretable Landslide Susceptibility Evaluation Based on Model Optimization
Abstract
:1. Introduction
2. Study Area and Data
2.1. Study Area
2.2. Data
2.2.1. Landslide Conditioning Factors
2.2.2. Prepare Training and Test Datasets
3. Materials and Methods
3.1. Landslide Susceptibility Model
3.1.1. Random Forest
3.1.2. Support Vector Machine
3.2. Hyperparameter Optimization Model
3.3. Model Evaluation and Comparison
3.4. Interpretability Model of Landslide Susceptibility Mapping
3.4.1. Partial Dependence Plot
3.4.2. Local Interpretable Model-Agnostic Explanations
3.4.3. Shapley Additive Explanations
4. Results
4.1. Results of Landslide Susceptibility Mapping
4.2. Model Performance Evaluation
4.3. Interpretability of the Model
4.3.1. Partial Dependence Plot
4.3.2. Local Interpretable Model-Agnostic Explanations
4.3.3. Shapley Additive Explanations
5. Discussion
5.1. Regional Analysis of Landslide Susceptibility Based on Model Optimization
5.2. Interpretability of the Model and Constraints of Landslide Hazards
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Reichenbach, P.; Rossi, M.; Malamud, B.; Mihir, M.; Guzzetti, F. A review of statistically-based landslide susceptibility models. Earth-Sci. Rev. 2018, 180, 60–91. [Google Scholar] [CrossRef]
- Khan, R.; Yousaf, S.; Haseeb, A.; Uddin, M.I. Exploring a Design of Landslide Monitoring System. Complexity 2021, 2, 1–13. [Google Scholar] [CrossRef]
- Ye, B.; Qiu, H.; Tang, B.; Liu, Y.; Liu, Z.; Jiang, X.; Kamp, U. Creep deformation monitoring of landslides in a reservoir area. J. Hydrol. 2024, 632, 130905. [Google Scholar] [CrossRef]
- Yang, D.; Qiu, H.; Hu, S.; Zhu, Y.; Cui, Y.; Du, C.; Cao, M. Spatiotemporal distribution and evolution characteristics of successive landslides on the Heifangtai tableland of the Chinese Loess Plateau. Geomorphology 2021, 378, 107619. [Google Scholar] [CrossRef]
- Sun, D.; Wen, H.; Xu, J.; Zhang, Y.; Wang, D.; Zhang, J. Improving Geospatial Agreement by Hybrid Optimization in Logistic Regression-Based Landslide Susceptibility Modelling. Front. Earth Sci. 2021, 9, 713803. [Google Scholar] [CrossRef]
- Qiu, H.; Cui, Y.; Pei, Y.; Yang, D.; Hu, S.; Wang, X.; Ma, S. Temporal patterns of nonseismically triggered landslides in Shaanxi Province, China. CATENA 2020, 187, 104356. [Google Scholar] [CrossRef]
- Yalcin, A.; Reis, S.; Aydinoglu, A.C.; Yomralioglu, T. A GIS-based comparative study of frequency ratio, analytical hierarchy process, bivariate statistics and logistics regression methods for landslide susceptibility mapping in Trabzon, ne turkey. CATENA 2021, 85, 274–287. [Google Scholar] [CrossRef]
- Can, A.; Dagdelenler, G.; Ercanoglu, M.; Sonmez, H. Landslide susceptibility mapping at Ovack-Karabük (Turkey) using different artificial neural network models: Comparison of training algorithms. Bull. Eng. Geol. Environ. 2017, 78, 89–102. [Google Scholar] [CrossRef]
- Park, S.; Hamm, S.Y.; Kim, J. Performance evaluation of the GIS-based data-mining techniques decision tree, random forest, and rotation forest for landslide susceptibility modeling. Sustainability 2019, 11, 5659. [Google Scholar] [CrossRef]
- Yao, X.; Tham, L.G.; Dai, F.C. Landslide susceptibility mapping based on Support Vector Machine: A case study on natural slopes of Hong Kong, China. Geomorphology 2008, 101, 572–582. [Google Scholar] [CrossRef]
- Xia, D.; Tang, H.; Sun, S.; Tang, C.; Zhang, B. Landslide Susceptibility Mapping Based on the Germinal Center Optimization Algorithm and Support Vector Classification. Remote Sens. 2022, 14, 2707. [Google Scholar] [CrossRef]
- Bai, Z.; Liu, Q.; Liu, Y. Landslide susceptibility mapping using GIS-based machine learning algorithms for the northeast Chongqing area. China. Arab. J. Geosci. 2021, 14, 2831. [Google Scholar] [CrossRef]
- Kraus, J.; Scholz, D.; Stiegemeier, D.; Baumann, M. The more you know: Trust dynamics and calibration in highly automated driving and the effects of take-overs, system malfunction, and system transparency. Hum. Factors 2020, 62, 718–736. [Google Scholar] [CrossRef] [PubMed]
- Long, D.; Magerko, B. What is AI literacy? Competencies and design considerations. In Proceedings of the 2020 CHI Conference on Human Factors in Computing Systems (CHI ′20), Honolulu, HI, USA, 25–30 April 2020; Association for Computing Machinery: New York, NY, USA, 2020; Volume 16, pp. 1–16. [Google Scholar]
- Zhang, J.; Ma, X.; Sun, D.; Zhou, X.; Mi, C.; Wen, H. Insights into geospatial heterogeneity of landslide susceptibility based on the SHAP-XGBoost model. J. Environ. Manag. 2023, 332, 117357. [Google Scholar] [CrossRef] [PubMed]
- Roscher, R.; Bohn, B.; Duarte, M.F.; Garcke, J. Explainable machine learning for scientific insights and discoveries. IEEE Access 2020, 8, 42200–42216. [Google Scholar] [CrossRef]
- Xu, F.; Uszkoreit, H.; Du, Y.; Fan, W.; Zhao, D.; Zhu, J. Explainable AI: A brief survey on history, research areas, Approaches and Challenges. In Natural Language Processing and Chinese Computing; Springer: Berlin/Heidelberg, Germany, 2019. [Google Scholar]
- Descals, A.; Verger, A.; Yin, G.; Filella, I.; Peñuelas, J. Local interpretation of machine learning models in remote sensing with SHAP: The case of global climate constraints on photosynthesis phenology. Int. J. Remote Sens. 2023, 44, 3160–3173. [Google Scholar] [CrossRef]
- Li, Z. Extracting spatial effects from machine learning model using local interpretation method: An example of SHAP and XGBoost. Comput. Environ. Urban Syst. 2022, 96, 101845. [Google Scholar] [CrossRef]
- Flemin, S.W.; Watson, J.R.; Ellenson, A.; Cannon, A.J.; Vesselinov, V.C. Machine learning in Earth and environmental science requires education and research policy reforms. Nat. Geosci. 2021, 14, 878–880. [Google Scholar] [CrossRef]
- Alqadhi, S.; Mallick, J.; Alkahtani, M. Integrated deep learning with explainable artificial intelligence for enhanced landslide management. Nat. Hazards 2024, 120, 1343–1365. [Google Scholar] [CrossRef]
- Chen, Z.; Chang, R.; Pei, X.; Yu, Z.; Guo, H.; He, Z. Tunnel Geothermal Disaster Susceptibility Evaluation Based on Interpretable Ensemble Learning: A Case Study in Yaan–Changdu Section of the Sichuan–Tibet Traffic Corridor. Eng. Geol. 2023, 313, 106985. [Google Scholar] [CrossRef]
- Lundberg, S.; Lee, S.I. A unified approach to interpreting model predictions. In Proceedings of the 31st International Conference on Neural Information Processing Systems (NIPS’17), Long Beach, CA, USA, 4–9 December 2017; Curran Associates Inc.: Red Hook, NY, USA, 2017; Volume 10, pp. 4768–4777. [Google Scholar]
- Biswajeet, P.; Abhirup, D.; Saro, L.; Hyesu, K. An Explainable AI (XAI) Model for Landslide Susceptibility Modeling. Appl. Soft Comput. 2023, 142, 1568–4946. [Google Scholar]
- Wei, X.; Gardoni, P.; Zhang, L.; Tan, L.; Liu, D.; Du, C.; Li, H. Improving pixel-based regional landslide susceptibility mapping. Geosci. Front. 2024, 15, 101782. [Google Scholar] [CrossRef]
- Wang, Y.; Feng, L.; Li, S.; Ren, F.; Du, Q. A hybrid model considering spatial heterogeneity for landslide susceptibility mapping in Zhejiang province, China. CATENA 2020, 188, 104425. [Google Scholar] [CrossRef]
- Qiu, H.; Su, L.; Tang, B.; Yang, D.; Ullah, M.; Zhu, Y.; Kamp, U. The effect of location and geometric properties of landslides caused by rainstorms and earthquakes. Earth Surf. Process. Landf. 2024, 1–13. [Google Scholar] [CrossRef]
- Pei, Y.; Qiu, H.; Yang, D.; Liu, Z.; Ma, S.; Li, J.; Wufuer, W. Increasing landslide activity in the Taxkorgan River Basin (eastern Pamirs Plateau, China) driven by climate change. CATENA 2023, 223, 106911. [Google Scholar] [CrossRef]
- Domènech, G.; Alvioli, M.; Corominas, J. Preparing first-time slope failures hazard maps: From pixel-based to slope unit-based. Landslides 2020, 17, 249–265. [Google Scholar] [CrossRef]
- Palau, R.M.; Hurlimann, M.; Berenguer, M. Influence of the mapping unit for regional landslide early warning systems: Comparison between pixels and polygons in Catalonia (NE Spain). Landslides 2020, 17, 2067–2083. [Google Scholar] [CrossRef]
- Bui, D.T.; Tuan, T.A.; Harald, K.; Biswajee, P.; Inge, R. Spatial prediction models for shallow landslide hazards: A comparative assessment of the efficacy of support vector machines, artificial neural networks, kernel logistic regression, and logistic model tree. Landslides 2016, 13, 361–378. [Google Scholar]
- Liu, Z.; Qiu, H.; Zhu, Y.; Liu, Y.; Yang, D.; Ma, S.; Tang, B. Efficient identification and monitoring of landslides by time-series InSAR combining single-and multi-look phases. Remote Sens. 2022, 14, 1026. [Google Scholar] [CrossRef]
- Sameen, M.; Pradhan, B.; Lee, S. Application of convolutional neural networks featuring Bayesian optimization for landslide susceptibility assessment. CATENA 2020, 186, 104249. [Google Scholar] [CrossRef]
- Yi, Y.; Zhang, Z.; Zhang, W.; Jia, H.; Zhang, J. Landslide susceptibility mapping using multiscale sampling strategy and convolutional neural network: A case study in Jiuzhaigou region. CATENA 2020, 195, 104851. [Google Scholar] [CrossRef]
- Breiman, L. Random forests. Mach Learn. 2001, 45, 5–32. [Google Scholar] [CrossRef]
- Kainthura, P.; Sharma, N. Machine learning driven landslide susceptibility prediction for the uttarkashi region of uttarakhand in india. Georisk Assess. Manag. Risk Eng. Syst. Geohazards 2021, 16, 570–583. [Google Scholar] [CrossRef]
- Corinna, C.; Vladimir, V. Support-vector networks. Mach. Learn. 1995, 20, 273–297. [Google Scholar]
- Roy, J.; Saha, S.; Arabameri, A.; Blaschke, T.; Bui, D.T. A novel ensemble approach for landslide susceptibility mapping (LSM) in Darjeeling and Kalimpong Districts, west Bengal, India. Remote Sens. 2019, 11, 2866. [Google Scholar] [CrossRef]
- Volker, D.; Bruno, D. Worst-case and average-case approximations by simple randomized search heuristics. In STACS 2005; Springer: Berlin/Heidelberg, Germany, 2015; Volume 3403, pp. 44–56. [Google Scholar]
- Pei, Y.; Qiu, H.; Zhu, Y.; Wang, J.; Yang, D.; Tang, B.; Wang, F.; Cao, M. Elevation dependence of landslide activity induced by climate change in the eastern Pamirs. Landslide 2023, 20, 1115–1133. [Google Scholar] [CrossRef]
- Hong, H.; Liu, J.; Zhu, A.X.; Shahabi, H.; Pham, B.T.; Chen, W. A novel hybrid integration model using support vector machines and random subspace for weather-triggered landslide susceptibility assessment in the Wuning area (China). Environ. Earth Sci. 2017, 76, 652. [Google Scholar] [CrossRef]
- Liu, Y.; Qiu, H.; Kamp, U.; Wang, N.; Wang, J.; Huang, C.; Tang, B. Higher temperature sensitivity of retrogressive thaw slump activity in the Arctic compared to the Third Pole. Sci. Total Environ. 2024, 914, 170007. [Google Scholar] [CrossRef]
- Hong, H.; Pradhan, B.; Bui, D.T.; Xu, C. Comparison of four kernel functions used in support vector machines for landslide susceptibility mapping: A case study at Suichuan area (China). Geomat. Nat Hazards Risk 2016, 8, 544–569. [Google Scholar] [CrossRef]
- He, Q.; Wang, M.; Liu, K. Rapidly assessing earthquake-induced landslide susceptibility on a global scale using random forest. Geomorphology 2021, 391, 107889–107907. [Google Scholar] [CrossRef]
- Dou, J.; Yunus, A.P.; Bui, D.T.; Merghadi, A.; Sahana, M.; Chen, C.; Khosravi, K.; Yang, Y. Assessment of advanced random forest and decision tree algorithms for modeling rainfall-induced landslide susceptibility in the Izu-Oshima Volcanic Island, Japan. Sci. Total Environ. 2019, 662, 332–346. [Google Scholar] [CrossRef] [PubMed]
- Qu, F.; Qiu, H.; Sun, H.; Tang, M. Post-failure landslide change detection and analysis using optical satellite Sentinel-2 images. Landslides 2021, 18, 447–455. [Google Scholar] [CrossRef]
- Friedman, J.H. Greedy function approximation: A gradient boosting machine. Ann. Stat. 2001, 29, 1189–1232. [Google Scholar] [CrossRef]
- Shepherd, C.; Clegg, C.; Stride, C. Opening the black box: A multi-method analysis of an enterprise resource planning implementation. J. Inf. Technol. 2009, 24, 81–102. [Google Scholar] [CrossRef]
- Ribeiro, M.T.; Singh, S.; Guestrin, C. Why should I trust you?: Explaining the predictions of any classifier. In Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, San Francisco, CA, USA, 13–17 August 2016; Association for Computing Machinery: New York, NY, USA, 2016; Volume 10, pp. 1135–1144. [Google Scholar]
- Charnes, A.; Golany, B.; Keane, M.; Rousseau, J. Extremal principle solutions of games in characteristic function form: Core, Chebychev and Shapley value generalizations. In Econometrics of Planning and Efficiency; Springer: Dordrecht, The Netherlands, 1988; Volume 11, pp. 123–133. [Google Scholar]
- Zhang, S.; Lu, T.; Xu, P.; Tao, Q.; Li, M.; Lu, W. Predicting the formability of hybrid organic–inorganic perovskites via an interpretable machine learning strategy. J. Phys. Chem. Lett. 2021, 12, 7423–7430. [Google Scholar] [CrossRef]
- Huang, M.; Deng, J.; Jia, G. Predicting viscosity of ionic liquids—Water mixtures by bridging unifac modeling with interpretable machine learning. J. Mol. Liq. 2023, 383, 122095. [Google Scholar] [CrossRef]
- Jian, D.; Guo, J. Dielectric constant prediction of pure organic liquids and their mixtures with water based on interpretable machine learning. Fluid Phase Equilibria 2022, 561, 113545. [Google Scholar]
- Talukdar, S.; Eibek, K.U.; Akhter, S.; Ziaul, S.; Islam, A.R.M.T.; Mallick, J. Modeling fragmentation probability of land-use and land-cover using the bagging, random forest and random subspace in the Teesta River Basin, Bangladesh. Ecol. Indic. 2021, 126, 107612. [Google Scholar] [CrossRef]
- Pham, B.T.; Phong, T.V.; Nguyen-Thoi, T.; Trinh, P.T.; Prakash, I. GIS-based ensemble soft computing models for landslide susceptibility mapping. Adv. Space Res. 2020, 66, 1303–1320. [Google Scholar] [CrossRef]
- Hu, Q.; Zhou, Y.; Wang, S.; Wang, F. Machine learning and fractal theory models for landslide susceptibility mapping: Case study from the Jinsha River Basin. Geomorphology 2020, 351, 106975. [Google Scholar] [CrossRef]
- Hastie, T.; Tibshirani, R.; Friedman, J. The elements of statistical learning. J. R. Stat. Soc. 2001, 167, 192. [Google Scholar]
- Lundberg, S.M.; Erion, G.G.; Lee, S.I. Consistent Individualized Feature Attribution for Tree Ensembles. Methods 2018, 5, 25. [Google Scholar]
- Vasu, N.N.; Lee, S.R. A hybrid feature selection algorithm integrating an extreme learning machine for landslide susceptibility modeling of Mt. Woomyeon, South Korea. Geomorphology 2016, 263, 50–70. [Google Scholar] [CrossRef]
- Al-Najjar, H.A.H.; Pradhan, B.; Kalantar, B.; Sameen, M.I.; Alamri, A. Landslide susceptibility modeling: An integrated novel method based on machine learning feature transformation. Remote Sens. 2021, 13, 3281. [Google Scholar] [CrossRef]
- Alqadhi, S.; Mallick, J.; Talukdar, S.; Bindajam, A.A.; Hong, V.N.; Saha, T.K. Selecting optimal conditioning parameters for landslide susceptibility: An experimental research on Aqabat Al-Sulbat, Saudi Arabia. Environ. Sci. Pollut. Res. Int. 2022, 29, 3743–3762. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Fang, Z.; Hong, H.; Pneg, L. Flood susceptibility mapping using convolutional neural network frameworks. J. Hydrol. 2020, 582, 124482. [Google Scholar] [CrossRef]
- Mandal, K.; Saha, S.; Mandal, S. Applying deep learning and benchmark machine learning algorithms for landslide susceptibility modelling in Rorachu river basin of Sikkim Himalaya, India. Geosci. Front. 2021, 12, 101203. [Google Scholar] [CrossRef]
- Hao, Y.; Liu, C.; Zhang, W.; Liu, X.; Liu, G. Landslide risk evaluation: Rainfall and blast-induced potential soil landsides in an expressway area underneath a railway tunnel, Guangzhou, China. Bull Eng. Geol. Environ. 2023, 82, 420. [Google Scholar] [CrossRef]
- Ulah, K.; Wang, Y.; Fang, Z.; Wang, L.; Rahman, M. Multi-hazard susceptibility mapping based on Convolutional Neural Networks. Geosci. Front. 2022, 13, 101425. [Google Scholar] [CrossRef]
- Zhou, W.; Qiu, H.; Wang, L.; Pei, Y.; Tang, B.; Ma, S.; Cao, M. Combining rainfall-induced shallow landslides and subsequent debris flows for hazard chain prediction. CATENA 2022, 213, 106199. [Google Scholar] [CrossRef]
- Qiu, H.; Zhu, Y.; Zhou, W.; Sun, H.; He, J.; Liu, Z. Influence of DEM resolution on landslide simulation performance based on the Scoops3D model. Geomat. Nat. Hazards Risk 2022, 13, 1663–1681. [Google Scholar] [CrossRef]
- Huo, J.; Al-Neshmi, H.M.M. Hyperparameters optimisation of ensemble classifiers and its application for landslide hazards classification. Int. J. Model. Identif. Control 2022, 40, 158–175. [Google Scholar] [CrossRef]
- Fu, Z.; Li, C.; Yao, W. Landslide susceptibility assessment through TrAdaBoost transfer learning models using two landslide inventories. CATENA 2023, 222, 106799. [Google Scholar]
- Liu, Y.; Meng, Z.; Zhu, L.; Hu, D.; He, H. Optimizing the Sample Selection of Machine Learning Models for Landslide Susceptibility Prediction Using Information Value Models in the Dabie Mountain Area of Anhui, China. Sustainability 2023, 15, 1971. [Google Scholar] [CrossRef]
- Gao, J.; Shi, X.; Li, L.; Zhou, Z.; Wang, J. Assessment of Landslide Susceptibility Using Different Machine Learning Methods in Longnan City, China. Sustainability 2022, 14, 16716. [Google Scholar] [CrossRef]
- Khabiri, S.; Crawford, M.M.; Koch, H.J.; Haneberg, W.C.; Zhu, Y. An Assessment of Negative Samples and Model Structures in Landslide Susceptibility Characterization Based on Bayesian Network Models. Remote Sens. 2023, 15, 3200. [Google Scholar] [CrossRef]
- Nhu, V.H.; Zandi, D.; Shahabi, H.; Chapi, K.; Shirzadi, A.; Al-Ansari, N.; Singh, S.K.; Dou, J.; Nguyen, H. Comparison of Support Vector Machine, Bayesian Logistic Regression, and Alternating Decision Tree Algorithms for Shallow Landslide Susceptibility Mapping along a Mountainous Road in the West of Iran. Appl. Sci. 2020, 10, 5047. [Google Scholar] [CrossRef]
- Sun, D.; Xu, J.; Wen, H.; Wang, D. Assessment of landslide susceptibility mapping based on Bayesian hyperparameter optimization: A comparison between logistic regression and random forest. Eng. Geol. 2021, 281, 105972. [Google Scholar] [CrossRef]
- Cravero, A.; Pardo, S.; Sepúlveda, S.; Muñoz, L. Challenges to Use Machine Learning in Agricultural Big Data: A Systematic Literature Review. Agronomy 2022, 12, 748. [Google Scholar] [CrossRef]
- Huang, S.; Tang, L.; Hupy, J.P.; Wang, Y.; Shao, G. A commentary review on the use of normalized difference vegetation index (NDVI) in the era of popular remote sensing. J. For. Res. 2021, 32, 2719. [Google Scholar] [CrossRef]
- Li, X.; Zhang, G.; Chen, Y. Vegetation cover change and driving factors in the agro pastoral ecotone of Liaohe River Basin of China from 2010 to 2019. J. Agric. Eng. 2022, 38, 63–72. [Google Scholar]
- Lu, J.; Zhou, R.; Liu, Y. Temporal and spatial dynamics of vegetation cover on the Loess Plateau and Its influencing factors. Soil Water Conserv. Res. 2023, 30, 211–219. [Google Scholar]
- Ma, S.; Qiu, H.; Zhu, Y.; Yang, D.; Tang, B.; Wang, D.; Cao, M. Topographic changes, surface deformation and movement process before, during and after a rotational landslide. Remote Sens. 2023, 15, 662. [Google Scholar] [CrossRef]
- Li, Y.; Cui, Y.; Hu, X.; Lu, Z.; Guo, J.; Wang, Y.; Zhou, X. Glacier retreat in Eastern Himalaya drives catastrophic glacier hazard chain. Geophys. Res. Lett. 2024, 51, e2024GL108202. [Google Scholar] [CrossRef]
- Yang, D.; Qiu, H.; Ye, B.; Liu, Y.; Zhang, J.; Zhu, Y. Distribution and Recurrence of Warming-Induced Retrogressive Thaw Slumps on the Central Qinghai-Tibet Plateau. J. Geophys. Res. Earth. 2023, 128, e2022JF007047. [Google Scholar] [CrossRef]
- Wang, L.; Qiu, H.; Zhou, W.; Zhu, Y.; Liu, Z.; Ma, S.; Tang, B. The post-failure spatiotemporal deformation of certain translational landslides may follow the pre-failure pattern. Remote Sens. 2022, 14, 2333. [Google Scholar] [CrossRef]
- Draebing, D.; Gebhard, T.; Pheiffer, M. Geology and vegetation control landsliding on forest-managed slopes in scarplands. Earth Surf. Dyn. 2023, 11, 71–88. [Google Scholar] [CrossRef]
Data Name | Data Name | Type | Accuracy |
---|---|---|---|
Historical landslides | Resources and Environmental Sciences and Data Center | Vector | |
DEM | Global digital elevation model (GDEM) | Grid | 30 m |
Geological data | National Data Center for Geological Information | Grid | 1:200,000 |
Administrative zoning | Shaanxi Municipal Bureau of Land | Vector | 1:100,000 |
River network | Resources and Environmental Sciences and Data Center | Vector | 1:100,000 |
Road network | Resources and Environmental Sciences and Data Center | Vector | 1:100,000 |
NDVI | Landsat 8 OLI | Grid | 30 m |
Land use | Shaanxi Municipal Bureau of Land | Grid | 10 m |
Factor | Original Factor | New Factor | ||
---|---|---|---|---|
Tolerances | VIF | Tolerances | VIF | |
Elevation | 0.596 | 1.679 | 0.596 | 1.678 |
Slope | 0.241 | 4.150 | 0.241 | 4.141 |
Aspect | 0.966 | 1.035 | 0.967 | 1.035 |
Topographic relief | 0.172 | 5.828 | 0.237 | 4.213 |
Curvature | 0.770 | 1.299 | 0.774 | 1.292 |
Lithology | 0.947 | 1.055 | 0.948 | 1.055 |
NDVI | 0.842 | 1.188 | 0.845 | 1.184 |
Land use | 0.911 | 1.098 | 0.948 | 1.055 |
TWI | 0.142 | 7.039 | / | / |
STI | 0.218 | 4.582 | 0.299 | 3.342 |
SPI | 0.208 | 4.808 | 0.274 | 3.652 |
Distance to faults | 0.887 | 1.127 | 0.888 | 1.127 |
Distance to rivers | 0.972 | 1.028 | 0.972 | 1.028 |
Distance to roads | 0.589 | 1.698 | 0.589 | 1.697 |
POI kernel density | 0.894 | 1.119 | 0.895 | 1.118 |
Model | Precision | Recall | F1-Score |
---|---|---|---|
RF | 87.97% | 87.91% | 87.94% |
SVM | 84.43% | 84.40% | 84.41% |
RS-RF | 90.49% | 90.47% | 90.48% |
RS-SVM | 90.24% | 90.23% | 90.23% |
Evaluation Indexes | Fold-1 | Fold-2 | Fold-3 | Fold-4 | Fold-5 |
---|---|---|---|---|---|
Precision | 90.82% | 90.33% | 90.63% | 90.58% | 90.94% |
Recall | 90.75% | 90.57% | 90.99% | 90.63% | 91.17% |
F1-score | 90.75% | 90.45% | 90.99% | 90.39% | 90.74% |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Qiu, H.; Xu, Y.; Tang, B.; Su, L.; Li, Y.; Yang, D.; Ullah, M. Interpretable Landslide Susceptibility Evaluation Based on Model Optimization. Land 2024, 13, 639. https://doi.org/10.3390/land13050639
Qiu H, Xu Y, Tang B, Su L, Li Y, Yang D, Ullah M. Interpretable Landslide Susceptibility Evaluation Based on Model Optimization. Land. 2024; 13(5):639. https://doi.org/10.3390/land13050639
Chicago/Turabian StyleQiu, Haijun, Yao Xu, Bingzhe Tang, Lingling Su, Yijun Li, Dongdong Yang, and Mohib Ullah. 2024. "Interpretable Landslide Susceptibility Evaluation Based on Model Optimization" Land 13, no. 5: 639. https://doi.org/10.3390/land13050639
APA StyleQiu, H., Xu, Y., Tang, B., Su, L., Li, Y., Yang, D., & Ullah, M. (2024). Interpretable Landslide Susceptibility Evaluation Based on Model Optimization. Land, 13(5), 639. https://doi.org/10.3390/land13050639