Understanding and Assessing Climate Change Risk to Green Infrastructure: Experiences from Greater Manchester (UK)
Abstract
:1. Introduction
2. Literature Review
3. Materials and Methods
3.1. Case Study Scope and Focus
3.2. Climate Change Risk Estimation for Grass
3.2.1. Hazard-Exposure Assessment
3.2.2. Vulnerability
3.2.3. Risk Assessment
3.3. Mapping and Analysis of the Risk Assessment Output
4. Results
5. Discussion
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
SERIES_NAME | Series Number | RZAWC (in mm) | LIMDEF (in mm) |
---|---|---|---|
ALUN | 37 | 117.75 | 78.65 |
BELMONT | 113 | 109 | 71.8 |
BLACKWOOD | 124 | 119.35 | 97.25 |
BRICKFIELD | 142 | 90.5 | 51.9 |
CONWAY | 236 | 101.9 | 60.9 |
CRANNYMOOR | 242 | 87.45 | 63.6 |
CREWE | 244 | 81.25 | 46.75 |
ENBORNE | 413 | 111.95 | 70.25 |
FLINT | 514 | 98.2 | 60.7 |
LONGMOSS | 1136 | 253.3 | 219.5 |
NEWPORT | 1310 | 83.75 | 62.5 |
RIVINGTON | 1713 | 113.7 | 73.2 |
RUFFORD | 1726 | 92.5 | 56.4 |
SALOP | 1802 | 95.9 | 61.15 |
SOLLOM | 1833 | 81.4 | 62.45 |
TURBARY MOOR | 1928 | 252.5 | 212.5 |
WICK | 2225 | 123.8 | 85.5 |
WILCOCKS | 2235 | 145.5 | 100 |
WINTER HILL | 2242 | 267.4 | 236.5 |
Multiple Comparisons | ||||||
---|---|---|---|---|---|---|
Dependent Variable: MEAN GI Risk | ||||||
Tukey HSD | ||||||
(I) IMD_Decile | (J) IMD_Decile | Mean Difference (I–J) | Std. Error | Sig. | 95% Confidence Interval | |
Lower Bound | Upper Bound | |||||
1 | 2 | 0.113 | 0.060 | 0.693 | −0.079 | 0.304 |
3 | 0.149 | 0.065 | 0.385 | −0.056 | 0.353 | |
4 | 0.315 * | 0.067 | 0.000 | 0.104 | 0.526 | |
5 | 0.298 * | 0.074 | 0.003 | 0.062 | 0.533 | |
6 | 0.548 * | 0.074 | 0.000 | 0.314 | 0.783 | |
7 | 0.553 * | 0.081 | 0.000 | 0.297 | 0.809 | |
8 | 0.589 * | 0.071 | 0.000 | 0.365 | 0.813 | |
9 | 0.714 * | 0.073 | 0.000 | 0.482 | 0.946 | |
10 | 0.651 * | 0.080 | 0.000 | 0.396 | 0.906 | |
2 | 1 | −0.113 | 0.060 | 0.693 | −0.304 | 0.079 |
3 | 0.036 | 0.070 | 1.000 | −0.185 | 0.258 | |
4 | 0.202 | 0.072 | 0.133 | −0.026 | 0.430 | |
5 | 0.185 | 0.079 | 0.363 | −0.065 | 0.435 | |
6 | 0.436 * | 0.079 | 0.000 | 0.186 | 0.685 | |
7 | 0.441 * | 0.085 | 0.000 | 0.171 | 0.710 | |
8 | 0.476 * | 0.076 | 0.000 | 0.236 | 0.716 | |
9 | 0.601 * | 0.078 | 0.000 | 0.354 | 0.848 | |
10 | 0.538 * | 0.085 | 0.000 | 0.269 | 0.807 | |
3 | 1 | −0.149 | 0.065 | 0.385 | −0.353 | 0.056 |
2 | −0.036 | 0.070 | 1.000 | −0.258 | 0.185 | |
4 | 0.166 | 0.075 | 0.455 | −0.073 | 0.405 | |
5 | 0.149 | 0.082 | 0.728 | −0.112 | 0.409 | |
6 | 0.399 * | 0.082 | 0.000 | 0.140 | 0.659 | |
7 | 0.404 * | 0.088 | 0.000 | 0.125 | 0.683 | |
8 | 0.440 * | 0.079 | 0.000 | 0.190 | 0.690 | |
9 | 0.565 * | 0.081 | 0.000 | 0.308 | 0.822 | |
10 | 0.502 * | 0.088 | 0.000 | 0.224 | 0.780 | |
4 | 1 | −0.315 * | 0.067 | 0.000 | −0.526 | −0.104 |
2 | −0.202 | 0.072 | 0.133 | −0.430 | 0.026 | |
3 | −0.166 | 0.075 | 0.455 | −0.405 | 0.073 | |
5 | −0.017 | 0.084 | 1.000 | −0.283 | 0.248 | |
6 | 0.233 | 0.084 | 0.142 | −0.032 | 0.498 | |
7 | 0.238 | 0.090 | 0.192 | −0.046 | 0.522 | |
8 | 0.274 * | 0.081 | 0.025 | 0.018 | 0.530 | |
9 | 0.399 * | 0.083 | 0.000 | 0.136 | 0.662 | |
10 | 0.336 * | 0.089 | 0.007 | 0.052 | 0.619 | |
5 | 1 | −0.298 * | 0.074 | 0.003 | −0.533 | −0.062 |
2 | −0.185 | 0.079 | 0.363 | −0.435 | 0.065 | |
3 | −0.149 | 0.082 | 0.728 | −0.409 | 0.112 | |
4 | 0.017 | 0.084 | 1.000 | −0.248 | 0.283 | |
6 | 0.251 | 0.090 | 0.141 | −0.034 | 0.535 | |
7 | 0.256 | 0.095 | 0.183 | −0.047 | 0.558 | |
8 | 0.291 * | 0.087 | 0.029 | 0.015 | 0.567 | |
9 | 0.416 * | 0.089 | 0.000 | 0.134 | 0.699 | |
10 | 0.353 * | 0.095 | 0.008 | 0.051 | 0.654 | |
6 | 1 | −0.548 * | 0.074 | 0.000 | −0.783 | −0.314 |
2 | −0.436 * | 0.079 | 0.000 | −0.685 | −0.186 | |
3 | −0.399 * | 0.082 | 0.000 | −0.659 | −0.140 | |
4 | −0.233 | 0.084 | 0.142 | −0.498 | 0.032 | |
5 | −0.251 | 0.090 | 0.141 | −0.535 | 0.034 | |
7 | 0.005 | 0.095 | 1.000 | −0.297 | 0.307 | |
8 | 0.041 | 0.087 | 1.000 | −0.235 | 0.316 | |
9 | 0.166 | 0.089 | 0.695 | −0.116 | 0.448 | |
10 | 0.102 | 0.095 | 0.987 | −0.199 | 0.403 | |
7 | 1 | −0.553 * | 0.081 | 0.000 | −0.809 | −0.297 |
2 | −0.441 * | 0.085 | 0.000 | −0.710 | −0.171 | |
3 | −0.404 * | 0.088 | 0.000 | −0.683 | −0.125 | |
4 | −0.238 | 0.090 | 0.192 | −0.522 | 0.046 | |
5 | −0.256 | 0.095 | 0.183 | −0.558 | 0.047 | |
6 | −0.005 | 0.095 | 1.000 | −0.307 | 0.297 | |
8 | 0.036 | 0.093 | 1.000 | −0.258 | 0.329 | |
9 | 0.161 | 0.095 | 0.797 | −0.139 | 0.460 | |
10 | 0.097 | 0.100 | 0.994 | −0.220 | 0.415 | |
8 | 1 | −0.589 * | 0.071 | 0.000 | −0.813 | −0.365 |
2 | −0.476 * | 0.076 | 0.000 | −0.716 | −0.236 | |
3 | −0.440 * | 0.079 | 0.000 | −0.690 | −0.190 | |
4 | −0.274 * | 0.081 | 0.025 | −0.530 | −0.018 | |
5 | −0.291 * | 0.087 | 0.029 | −0.567 | −0.015 | |
6 | −0.041 | 0.087 | 1.000 | −0.316 | 0.235 | |
7 | −0.036 | 0.093 | 1.000 | −0.329 | 0.258 | |
9 | 0.125 | 0.086 | 0.911 | −0.148 | 0.398 | |
10 | 0.062 | 0.092 | 1.000 | −0.231 | 0.355 | |
9 | 1 | −0.714 * | 0.073 | 0.000 | −0.946 | −0.482 |
2 | −0.601 * | 0.078 | 0.000 | −0.848 | −0.354 | |
3 | −0.565 * | 0.081 | 0.000 | −0.822 | −0.308 | |
4 | −0.399 * | 0.083 | 0.000 | −0.662 | −0.136 | |
5 | −0.416 * | 0.089 | 0.000 | −0.699 | −0.134 | |
6 | −0.166 | 0.089 | 0.695 | −0.448 | 0.116 | |
7 | −0.161 | 0.095 | 0.797 | −0.460 | 0.139 | |
8 | −0.125 | 0.086 | 0.911 | −0.398 | 0.148 | |
10 | −0.063 | 0.094 | 1.000 | −0.362 | 0.236 | |
10 | 1 | −0.651 * | 0.080 | 0.000 | −0.906 | −0.396 |
2 | −0.538 * | 0.085 | 0.000 | −0.807 | −0.269 | |
3 | −0.502 * | 0.088 | 0.000 | −0.780 | −0.224 | |
4 | −0.336 * | 0.089 | 0.007 | −0.619 | −0.052 | |
5 | −0.353 * | 0.095 | 0.008 | −0.654 | −0.051 | |
6 | −0.102 | 0.095 | 0.987 | −0.403 | 0.199 | |
7 | −0.097 | 0.100 | 0.994 | −0.415 | 0.220 | |
8 | −0.062 | 0.092 | 1.000 | −0.355 | 0.231 | |
9 | 0.063 | 0.094 | 1.000 | −0.236 | 0.362 |
References
- Breuste, J.; Haase, D.; Elmqvist, T. Urban Landscapes and Ecosystem Services. In Ecosystem Services in Agricultural and Urban Landscapes; John Wiley & Sons, Ltd.: Hoboken, NJ, USA, 2013; pp. 83–104. Available online: https://onlinelibrary.wiley.com/doi/abs/10.1002/9781118506271.ch6 (accessed on 11 March 2024).
- Benedict, M.A.; McMahon, E.T. Green Infrastructure: Smart Conservation for the 21st Century. Renew. Resour. J. 2002, 20, 12–17. [Google Scholar]
- O’Sullivan, F.; Mell, I.; Clement, S. Novel Solutions or Rebranded Approaches: Evaluating the Use of Nature-Based Solutions (NBS) in Europe. Front. Sustain. Cities 2020, 2, 572527. [Google Scholar] [CrossRef]
- Frantzeskaki, N. Seven Lessons for Planning Nature-Based Solutions in Cities. Environ. Sci. Policy 2019, 93, 101–111. [Google Scholar] [CrossRef]
- Mell, I.; Scott, A. Definitions and Context of Blue-Green Infrastructure. In ICE Manual of Blue-Green Infrastructure; Washbourne, C.-L., Wansbury, C., Eds.; ICE Manuals; ICE Publishing: Leeds, UK, 2023; pp. 3–22. Available online: https://www.icevirtuallibrary.com/doi/abs/10.1680/icembgi.65420.003 (accessed on 1 February 2023).
- Kabisch, N.; Frantzeskaki, N.; Pauleit, S.; Naumann, S.; Davis, M.; Artmann, M.; Haase, D.; Knapp, S.; Korn, H.; Stadler, J.; et al. Nature-Based Solutions to Climate Change Mitigation and Adaptation in Urban Areas: Perspectives on Indicators, Knowledge Gaps, Barriers, and Opportunities for Action. Ecol. Soc. 2016, 21, 39. [Google Scholar] [CrossRef]
- Mell, I. Examining the Role of Green Infrastructure as an Advocate for Regeneration. Front. Sustain. Cities 2022, 4, 731975. [Google Scholar] [CrossRef]
- Keeler, B.L.; Hamel, P.; McPhearson, T.; Hamann, M.H.; Donahue, M.L.; Prado, K.A.M.; Arkema, K.K.; Bratman, G.N.; Brauman, K.A.; Finlay, J.C.; et al. Social-Ecological and Technological Factors Moderate the Value of Urban Nature. Nat. Sustain. 2019, 2, 29–38. [Google Scholar] [CrossRef]
- Sturiale, L.; Scuderi, A. The Role of Green Infrastructures in Urban Planning for Climate Change Adaptation. Climate 2019, 7, 119. [Google Scholar] [CrossRef]
- McPhearson, T.; Anderson, E.; Elmqvist, T.; Frantzeskaki, N. Resilience of and through Urban Ecosystem Services. Ecosyst. Serv. 2015, 12, 152–156. [Google Scholar] [CrossRef]
- Knight, P.J.; Prime, T.; Brown, J.M.; Morrissey, K.; Plater, A.J. Application of Flood Risk Modelling in a Web-Based Geospatial Decision Support Tool for Coastal Adaptation to Climate Change. Nat. Hazards Earth Syst. Sci. 2015, 15, 1457–1471. [Google Scholar] [CrossRef]
- Maes, J.; Liquete, C.; Teller, A.; Erhard, M.; Paracchini, M.L.; Barredo, J.I.; Grizzetti, B.; Cardoso, A.; Somma, F.; Petersen, J.-E.; et al. An indicator framework for assessing ecosystem services in support of the EU Biodiversity Strategy to 2020. Ecosyst. Serv. 2016, 17, 14–23. [Google Scholar] [CrossRef]
- Costanza, R.; D’Arge, R.; de Groot, R.; Farber, S.; Grasso, M.; Hannon, B.; Limburg, K.; Naeem, S.; O’Neill, R.; Paruelo, J.; et al. The value of the world’s ecosystem services and natural capital. Nature 1997, 387, 253–260. [Google Scholar] [CrossRef]
- Hansen, R.; Pauleit, S. From multifunctionality to multiple ecosystem services? A conceptual framework for multifunctionality in green infrastructure planning for urban areas. Ambio 2014, 43, 516–529. [Google Scholar] [CrossRef] [PubMed]
- Douglas, I.; James, P. Urban Ecology; Routledge: New York, NY, USA, 2014. [Google Scholar]
- European Council. European Council Directive 2008/114/EC on the identification and designation of European critical infrastructures and the assessment of the need to improve their protection. Off. J. Eur. Union 2008, L 345, 75–82. [Google Scholar]
- Sebesvari, Z.; Woelki, J.; Walz, Y.; Sudmeier-Rieux, K.; Sandholz, S.; Tol, S.; Ruíz García, V.; Blackwood, K.; Renaud, F. Opportunities for considering green infrastructure and ecosystems in the Sendai Framework Monitor. Prog. Disaster Sci. 2019, 2, 100021. [Google Scholar] [CrossRef]
- Washbourne, C.-L.; Wansbury, C. ICE Manual of Blue-Green Infrastructure; ICE Publishing: London, UK, 2023. [Google Scholar]
- Huddleston, P.; Smith, T.; White, I.; Elrick-Barr, C. Adapting critical infrastructure to climate change: A scoping review. Environ. Sci. Policy 2022, 135, 67–76. [Google Scholar] [CrossRef]
- Manchester City Council. Manchester’s Great Outdoors: A Green and Blue Infrastructure Strategy for Manchester; Manchester City Council: Manchester, UK, 2015. [Google Scholar]
- Melanidis, M.S.; Hagerman, S. Competing Narratives of Nature-Based Solutions: Leveraging the Power of Nature or Dangerous Distraction? Environ. Sci. Policy 2022, 132, 273–281. [Google Scholar] [CrossRef]
- Keesstra, S.; Nunes, J.; Novara, A.; Finger, D.; Avelar, D.; Kalantari, Z.; Cerdà, A. The Superior Effect of Nature Based Solutions in Land Management for Enhancing Ecosystem Services. Sci. Total Environ. 2018, 610–611, 997–1009. [Google Scholar] [CrossRef] [PubMed]
- Mell, I.C. Global Green Infrastructure: Lessons for Successful Policy-Making, Investment and Management; Routledge: Abingdon, UK, 2016. [Google Scholar]
- Byrne, J.A.; Lo, A.Y.; Jianjun, Y. Residents’ Understanding of the Role of Green Infrastructure for Climate Change Adaptation in Hangzhou, China. Landsc. Urban Plan. 2015, 138, 132–143. [Google Scholar] [CrossRef]
- Zimmerman, R.; Brenner, R.; Llopis Abella, J. Green Infrastructure Financing as an Imperative to Achieve Green Goals. Climate 2019, 7, 39. [Google Scholar] [CrossRef]
- Wang, Y.; Chang, Q.; Fan, P. A Framework to Integrate Multifunctionality Analyses into Green Infrastructure Planning. Landsc. Ecol. 2021, 36, 1951–1969. [Google Scholar] [CrossRef]
- Goodwin, S.; Olazabal, M.; Castro, A.J.; Pascual, U. Global mapping of urban nature-based solutions for climate change adaptation. Nat. Sustain. 2023, 6, 458–469. [Google Scholar] [CrossRef]
- Norton, M.R.; Malinowski, D.P.; Volaire, F. Plant drought survival under climate change and strategies to improve perennial grasses. A review. Agron. Sustain. Dev. 2016, 36, 29. [Google Scholar] [CrossRef]
- Cheung, P.; Livesley, S.; Nice, K. Estimating the cooling potential of irrigating green spaces in 100 global cities with arid, temperate or continental climates. Sustain. Cities Soc. 2021, 71, 102974. [Google Scholar] [CrossRef]
- Gill, S.; Rahman, M.; Handley, J.F.; Ennos, R. Modelling water stress to urban amenity grass in Manchester UK under climate change and its potential impacts in reducing urban cooling. Urban For. Urban Green. 2013, 12, 350–358. [Google Scholar] [CrossRef]
- Jacobs, C.; Elbers, J.; Brolsma, R.; Hartogensis, O.; Moors, E.; Márquez, M.; van Hove, B. Assessment of evaporative water loss from Dutch cities. Build. Environ. 2015, 83, 27–38. [Google Scholar] [CrossRef]
- Cheng, H.; Park, C.Y.; Cho, M.; Park, C. Water requirement of Urban Green Infrastructure under climate change. Sci. Total Environ. 2023, 893, 164887. [Google Scholar] [CrossRef] [PubMed]
- Zhang, B.; Brack, C.L. Urban forest responses to climate change: A case study of Canberra. Urban For. Urban Green. 2021, 57, 126910. [Google Scholar] [CrossRef]
- Reynolds, H.; Brandt, L.; Fischer, B.; Hardiman, B.; Moxley, D.; Sandweiss, E.; Speer, J.; Fei, S. Implications of climate change for managing urban green infrastructure: An Indiana, US case study. Clim. Change 2020, 163, 1967–1984. [Google Scholar] [CrossRef]
- Sanusi, R.; Livesley, S. London Plane trees (Platanus × acerifolia) before, during and after a heatwave: Losing leaves means less cooling benefit. Urban For. Urban Green. 2020, 54, 126746. [Google Scholar] [CrossRef]
- Dale, A.; Frank, S. Warming and drought combine to increase pest insect fitness on urban trees. PLoS ONE 2017, 12, 0173844. [Google Scholar] [CrossRef] [PubMed]
- Pretzsch, H.; Biber, P.; Uhl, E.; Dahlhausen, J.; Schütze, G.; Perkins, D.; Rötzer, T.; Caldentey, J.; Koike, T.; Con, T.; et al. Climate change accelerates growth of urban trees in metropolises worldwide. Sci. Rep. 2017, 7, 15403. [Google Scholar] [CrossRef]
- Intergovernmental Panel on Climate Change (IPCC). Summary for Policymakers. In Climate Change 2022: Impacts, Adaptation, and Vulnerability: Contribution of Working Group II to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change; Pörtner, H.-O., Roberts, D.C., Tignor, M., Poloczanska, E.S., Mintenbeck, K., Alegría, A., Craig, M., Langsdorf, S., Löschke, S., Möller, V., et al., Eds.; Cambridge University Press: Cambridge, UK; New York, NY, USA, 2022; pp. 3–33. [Google Scholar]
- Adger, W.N.; Brown, I.; Surminski, S. Advances in risk assessment for climate change adaptation policy. Philos. Trans. R. Soc. Math. Phys. Eng. Sci. 2018, 376, 20180106. [Google Scholar] [CrossRef] [PubMed]
- Dixon, E.; Baker, J.; Hoorweg, D.; Tiwari, A. Urban Risk Assessment—Understanding Disaster and Climate Risk in Cities; World Bank: Washington, DC, USA, 2012. [Google Scholar]
- European Environment Agency (EEA). National Climate Change Vulnerability and Risk Assessments in Europe; Publications Office of the European Union: Luxembourg, 2018. [Google Scholar]
- Lindley, S.J.; Handley, J.F.; Theuray, N.; Peet, E.; Mcevoy, D. Adaptation Strategies for Climate Change in the Urban Environment: Assessing Climate Change Related Risk in UK Urban Areas. J. Risk Res. 2006, 9, 543–568. [Google Scholar] [CrossRef]
- Dawson, R.; Thompson, D.; Johns, D.; Wood, R.; Darch, G.; Chapman, L.; Hughes, P.; Watson, G.; Paulson, K.; Bell, S.; et al. A systems framework for national assessment of climate risks to infrastructure. Philos. Trans. R. Soc. A 2018, 376, 20170298. [Google Scholar] [CrossRef] [PubMed]
- Yohe, G.; Leichenko, R. Adopting a risk-based approach. Ann. N. Y. Acad. Sci. 2010, 1196, 29–40. [Google Scholar] [CrossRef] [PubMed]
- Hawchar, L.; Naughton, O.; Nolan, P.; Stewart, N.; Ryan, P. A GIS-based framework for high-level climate change risk assessment of critical infrastructure. Clim. Risk Manag. 2020, 29, 100235. [Google Scholar] [CrossRef]
- Koks, E.; Rozenberg, J.; Zorn, C.; Tariverdi, M.; Vousdoukas, M.; Fraser, S.; Hall, J.; Hallegatte, S. A global multi-hazard risk analysis of road and railway infrastructure assets. Nat. Commun. 2019, 10, 2677. [Google Scholar] [CrossRef] [PubMed]
- Esperon-Rodriguez, M.; Tjoelker, M.G.; Lenoir, J.; Baumgartner, J.; Beaumont, L.; Nipperess, D.; Power, S.; Richard, B.; Rymer, P.; Gallagher, R. Climate change increases global risk to urban forests. Nat. Clim. Change 2022, 12, 950–955. [Google Scholar] [CrossRef]
- Dennis, M.; Cook, P.A.; James, P.; Wheater, C.P.; Lindley, S.J. Relationships between Health Outcomes in Older Populations and Urban Green Infrastructure Size, Quality and Proximity. BMC Public Health 2020, 20, 626. [Google Scholar] [CrossRef] [PubMed]
- Labib, S.M.; Lindley, S.; Huck, J.J. Scale effects in remotely sensed greenspace metrics and how to mitigate them for environmental health exposure assessment. Comput. Environ. Urban Syst. 2020, 82, 101501. [Google Scholar] [CrossRef]
- Farrell, C.; Livesley, S.J.; Arndt, S.K.; Beaumont, L.; Burley, H.; Ellsworth, D.; Esperon-Rodriguez, M.; Fletcher, T.D.; Gallagher, R.; Ossola, A.; et al. Can we integrate ecological approaches to improve plant selection for green infrastructure? Urban For. Urban Green. 2022, 76, 127732. [Google Scholar] [CrossRef]
- McPhearson, T.; Kabisch, N.; Frantzeskaki, N. (Eds.) Nature-Based Solutions for Cities; Edward Elgar Publishing: Cheltenham, UK, 2023. [Google Scholar]
- Ossola, A.; Lin, B.B. Making nature-based solutions climate-ready for the 50 °C world. Environ. Sci. Policy 2021, 123, 151–159. [Google Scholar] [CrossRef]
- Volder, A.; Tjoelker, M.G.; Briske, D.D. Contrasting physiological responsiveness of establishing trees and a C4 grass to rainfall events, intensified summer drought, and warming in oak savanna. Glob. Change Biol. 2010, 16, 3349–3362. [Google Scholar] [CrossRef]
- Coll, L.; Balandier, P.; Picon-Cochard, C. Morphological and physiological responses of beech (Fagus sylvatica) seedlings to grass-induced belowground competition. Tree Physiol. 2004, 24, 45–54. [Google Scholar] [CrossRef] [PubMed]
- Carter, J.G.; Handley, J.; Butlin, T.; Gill, S. Adapting cities to climate change: Exploring the flood risk management role of green infrastructure landscapes. J. Environ. Plan. Manag. 2018, 61, 1535–1552. [Google Scholar] [CrossRef]
- McCarthy, M.; Christidis, N.; Dunstone, N.; Fereday, D.; Kay, G.; Klein-Tank, A.; Lowe, J.; Petch, J.; Scaife, A.; Stott, P. Drivers of the UK summer heatwave of 2018. Weather 2019, 74, 390–396. [Google Scholar] [CrossRef]
- Nisbet, T. Water Use by Trees; Forestry Commission Information Note 065; Forestry Commission: Edinburgh, UK, 2005. [Google Scholar]
- Wang, S.; Fu, B.J.; Gao, G.Y.; Yao, X.L.; Zhou, J. Soil moisture and evapotranspiration of different land cover types in the Loess Plateau, China. Hydrol. Earth Syst. Sci. 2012, 16, 2883–2892. [Google Scholar] [CrossRef]
- Rowell, D.L. Soil Science: Methods and Applications; John Wiley & Sons, Inc.: New York, NY, USA, 1994. [Google Scholar]
- Adler, F.R.; Tanner, C.J. Urban Ecosystems: Ecological Principles for the Built Environment; Cambridge University Press: Cambridge, UK, 2013. [Google Scholar]
- Zambrano, L.; Aronson, M.F.; Fernandez, T. The consequences of landscape fragmentation on socio-ecological patterns in a rapidly developing urban area: A case study of the National Autonomous University of Mexico. Front. Environ. Sci. 2019, 7, 152. [Google Scholar] [CrossRef]
- Zha, Y.; Gao, J.; Ni, S. Use of normalized difference built-up index in automatically mapping urban areas from TM imagery. Int. J. Remote Sens. 2003, 24, 583–594. [Google Scholar] [CrossRef]
- Kuc, G.; Chormański, J. Sentinel-2 imagery for mapping and monitoring imperviousness in urban areas. Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci. 2019, 42, 43–47. [Google Scholar] [CrossRef]
- Cheung, P.; Nice, K.; Livesley, S. Irrigating urban greenspaces for cooling benefits: The mechanisms and management considerations. Environ. Res. Clim. 2022, 1, 015001. [Google Scholar]
- Hanzl, M.; Tofiluk, A.; Zinowiec-Cieplik, K.; Grochulska-Salak, M.; Nowak, A. The Role of Vegetation in Climate Adaptability: Case Studies of Lodz and Warsaw. Urban Plan. 2021, 6, 9–24. [Google Scholar] [CrossRef]
- Nouri, H.; Beecham, S.; Kazemi, F.; Hassanli, A.M. A review of ET measurement techniques for estimating the water requirements of urban landscape vegetation. Urban Water J. 2013, 10, 247–259. [Google Scholar] [CrossRef]
- McKenzie, A.A. User Guide for the British Geological Survey National Depth to Groundwater Dataset. British Geological Survey Internal Report; OR/15/006; British Geological Survey: Keyworth, UK, 2014; 16p. [Google Scholar]
- Department of Communities and Local Government (DCLG). The English Index of Multiple Deprivation (IMD) 2015—Guidance; HM Government: London, UK, 2015. [Google Scholar]
- Colmer, T.D.; Barton, L. A review of warm-season turfgrass evapotranspiration, responses to deficit irrigation, and drought resistance. Crop Sci. 2017, 57 (Suppl. S1), S-98–S-110. [Google Scholar] [CrossRef]
- Rahmati, M.; Groh, J.; Graf, A.; Pütz, T.; Vanderborght, J.; Vereecken, H. On the impact of increasing drought on the relationship between soil water content and evapotranspiration of a grassland. Vadose Zone J. 2020, 19, e20029. [Google Scholar] [CrossRef]
- Akter, A.; Uddin, A.M.H.; Wahid, K.B.; Ahmed, S. Predicting groundwater recharge potential zones using geospatial technique. Sustain. Water Resour. Manag. 2020, 6, 24. [Google Scholar] [CrossRef]
- Jacobson, C.R. Identification and quantification of the hydrological impacts of imperviousness in urban catchments: A review. J. Environ. Manag. 2011, 92, 1438–1448. [Google Scholar] [CrossRef] [PubMed]
- Siders, A. Adaptive capacity to climate change: A synthesis of concepts, methods, and findings in a fragmented field. Wiley Interdiscip. Rev. Clim. Change 2019, 10, e573. [Google Scholar] [CrossRef]
- Bunker, A.; Wildenhain, J.; Vandenbergh, A.; Henschke, N.; Rocklöv, J.; Hajat, S.; Sauerborn, R. Effects of air temperature on climate-sensitive mortality and morbidity outcomes in the elderly; a systematic review and meta-analysis of epidemiological evidence. eBioMedicine 2016, 6, 258–268. [Google Scholar] [CrossRef] [PubMed]
- Tapsell, S.M.; Penning-Rowsell, E.C.; Tunstall, S.M.; Wilson, T.L. Vulnerability to flooding: Health and social dimensions. Philos. Trans. R. Soc. Lond. A Math. Phys. Eng. Sci. 2002, 360, 1511–1525. [Google Scholar] [CrossRef]
- Brandt, L.; Derby Lewis, A.; Fahey, R.; Scott, L.; Darling, L.; Swanston, C. A framework for adapting urban forests to climate change. Environ. Sci. Policy 2016, 66, 393–402. [Google Scholar] [CrossRef]
- Ordóñez, C.; Duinker, P. Climate change vulnerability assessment of the urban forest in three Canadian cities. Clim. Change 2015, 131, 531–543. [Google Scholar] [CrossRef]
- Phillips, A.; Da Schio, N.; Canters, F.; Khan, A.Z. “A living street and not just green”: Exploring public preferences and concerns regarding nature-based solution implementation in urban streetscapes. Urban For. Urban Green. 2023, 86, 128034. [Google Scholar] [CrossRef]
- Vanuytrecht, E.; Van Mechelen, C.; Van Meerbeek, K.; Willems, P.; Hermy, M.; Raes, D. Runoff and vegetation stress of green roofs under different climate change scenarios. Landsc. Urban Plan. 2014, 122, 68–77. [Google Scholar] [CrossRef]
- Fowdar, H.; Payne, E.; Schang, C.; Zhang, F.; Deletic, A.; McCarthy, D. How well do stormwater green infrastructure respond to changing climatic conditions? J. Hydrol. 2021, 603, 126887. [Google Scholar] [CrossRef]
- Boogaard, F.C. Spatial and time variable long term infiltration rates of green infrastructure under extreme climate conditions, drought and highly intensive rainfall. Water 2022, 14, 840. [Google Scholar] [CrossRef]
- Hookway, D. Drought: Heavy Rain Now Might Be a Serious Problem for the UK’s Parched Landscape. [online] Connecting Research. 2022. Available online: https://research.reading.ac.uk/research-blog/drought-heavy-rain-serious-problem-for-uk/ (accessed on 27 March 2024).
- Huang, B.; Fry, J.D. Turfgrass evapotranspiration. J. Crop Prod. 2000, 2, 317–333. [Google Scholar] [CrossRef]
- Labib, S.M.; Lindley, S.; Huck, J.J. Estimating multiple greenspace exposure types and their associations with neighbourhood premature mortality: A socioecological study. Sci. Total Environ. 2021, 789, 147919. [Google Scholar] [CrossRef] [PubMed]
- Mell, I. But who’s going to pay for it?’ Contemporary approaches to green infrastructure financing, development and governance in London, UK. J. Environ. Policy Plan. 2021, 23, 628–645. [Google Scholar] [CrossRef]
- Kabano, P.; Lindley, S.; Harris, A. Evidence of urban heat island impacts on the vegetation growing season length in a tropical city. Landsc. Urban Plan. 2021, 206, 103989. [Google Scholar] [CrossRef]
- Matthews, T.; Lo, A.; Byrne, J. Reconceptualizing green infrastructure for climate change adaptation: Barriers to adoption and drivers for uptake by spatial planners. Landsc. Urban Plan. 2015, 138, 155–163. [Google Scholar] [CrossRef]
- Hu, R. Sustainability and competitiveness in Australian Cities. Sustainability 2015, 7, 1840–1860. [Google Scholar] [CrossRef]
- Young, R. Planting the living city: Best practices in planning green infrastructure—Results from major US cities. J. Am. Plan. Assoc. 2011, 77, 368–381. [Google Scholar] [CrossRef]
Sum of Squares | df | Mean Square | F | Sig. | |
---|---|---|---|---|---|
Between Groups | 105.040 | 9 | 11.671 | 22.86 | 0.000 |
Within Groups | 848.532 | 1662 | 0.511 | ||
Total | 953.571 | 1671 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Carter, J.; Labib, S.M.; Mell, I. Understanding and Assessing Climate Change Risk to Green Infrastructure: Experiences from Greater Manchester (UK). Land 2024, 13, 697. https://doi.org/10.3390/land13050697
Carter J, Labib SM, Mell I. Understanding and Assessing Climate Change Risk to Green Infrastructure: Experiences from Greater Manchester (UK). Land. 2024; 13(5):697. https://doi.org/10.3390/land13050697
Chicago/Turabian StyleCarter, Jeremy, S.M. Labib, and Ian Mell. 2024. "Understanding and Assessing Climate Change Risk to Green Infrastructure: Experiences from Greater Manchester (UK)" Land 13, no. 5: 697. https://doi.org/10.3390/land13050697
APA StyleCarter, J., Labib, S. M., & Mell, I. (2024). Understanding and Assessing Climate Change Risk to Green Infrastructure: Experiences from Greater Manchester (UK). Land, 13(5), 697. https://doi.org/10.3390/land13050697