Scenario Analysis of Green Infrastructure to Adapt Medium-Size Cities to Climate Change: The Case of Zaragoza, Spain
Abstract
:1. Introduction
2. Materials and Methods
2.1. Data Preparation
2.1.1. Study Area and UGI Types
2.1.2. Land Use Categorization
2.1.3. Naturalness and Functioning of UGI Sites
2.1.4. Stakeholders Engagement
2.1.5. Regulating Ecosystem Services
2.2. Scenario Development
2.2.1. Scenario Design
2.2.2. Data Analysis
3. Results
3.1. Study Area and UGI Types
3.2. Regulating Ecosystem Services
3.3. Scenario Design and Data Analysis
4. Discussion
4.1. Typology of the UGI
4.2. Insights into Carbon Sequestration and Temperature Regulation at City and Municipality Scales
4.3. The Importance of Peri-Urban Areas
4.4. Priority Analysis
4.5. Contribution to a Climate Neutral Municipality
4.6. Value and Limitations of the Approach
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
- Questionnaire on criteria for improving and creating green infrastructure in the city of Zaragoza to adapt to climate change (Translated from Spanish).
Criteria | Definition | Ranking (0–10) | Rating (0–100%) |
Naturalness and functioning | Naturalness: percentage of surface covered with natural components (soil, vegetation, water). Functioning: percentage of surface subject to natural processes (water flows, accumulation and decomposition of leaf litter contributing to soil formation). | ||
Cultural use | Contribution of the site to recreational functions (games, concerts, shows, entertainment) enjoyed by the population. | ||
Economic cost | Expenses associated with maintaining or building a green space | ||
Biodiversity | Capacity to harbor biodiversity | ||
Potential users | Population density around the green space | ||
Connectivity | Degree of connectivity between the different green spaces | ||
Size | Surface area occupied by the green space |
- Question 1: Review the list of criteria from the previous table and add or remove criteria as you consider them interesting or important for planning and building green spaces that form the green infrastructure network of the city of Zaragoza.
- Question 2: Rate from 0 to 10 the importance of each green infrastructure criterion for mitigating the effects of climate change or adapting to them in the city of Zaragoza, with 10 being the highest value and 0 being the lowest.
- Question 3: In the fourth column (Rating), distribute 100 points among the criteria in the table so that the total adds up to 100%. That is, if one criterion is assigned 100%, the other criteria should be assigned 0%; or if one criterion is assigned 50%, then the remaining 50% will be distributed among the other criteria.
- Question 4: Which option from the following list do you consider most suitable for mitigating the effects of climate change in Zaragoza? Mark with a cross your preferred option (only one response)
- ○
- Leave the green spaces as they are because they are already sufficient in number and extent;
- ○
- Improve existing green spaces;
- ○
- Create new green areas;
- ○
- Both improve existing ones and create new ones;
- ○
- Other:
- Question 5: In your opinion, how can existing green spaces be improved? Assign an order of importance to each of the following options, with 1st being the most important. If you consider it appropriate, you can assign the same order of importance to more than one option, as well as add new options.
Expanding their size | |
Improving their naturalness and functioning | |
Increasing connectivity with other green spaces | |
Adding recreational and entertainment elements | |
Facilitating access to green spaces | |
Increasing investment in maintenance | |
Other: | |
Other: |
- Question 6: Where would you establish new green spaces in different areas of Zaragoza? Assign a preference order to each of the following options, with number 1 being the most important. If you consider it appropriate, you can assign the same preference order to more than one option, as well as add other options.
In the consolidated urban area: from the old town to the third belt (Z-30) | |
In the non-consolidated urban area: areas between the third (Z-30) and fourth (Z-40) belt, where buildings are being constructed or planned | |
In the peri-urban area: areas beyond the fourth belt (Z-40) and also some non-built areas or orchards between Z-30 and Z-40. | |
In the consolidated urban area: from the old town to the third belt (Z-30) | |
Other: | |
Other: |
- Question 7: Mark on these maps some locations where you suggest new green areas could be created to improve Zaragoza’s green infrastructure and adapt to climate change. (You can move the star with the cursor to the right of each map to the suggested position and copy it to as many locations as you believe are appropriate to establish new green areas)
References
- United Nations, Department of Economic and Social Affairs, Population Division. World Urbanization Prospects: The 2014 Revision; (ST/ESA/SER.A/366); United Nations: New York, NY, USA, 2015.
- Chai, K.-C.; Ma, X.-R.; Yang, Y.; Lu, Y.-J.; Chang, K.-C. The impact of climate change on population urbanization: Evidence from China. Front. Environ. Sci. 2022, 10, 945968. [Google Scholar] [CrossRef]
- Ren, Z.; Fu, Y.; Dong, Y.; Zhang, P.; He, X. Rapid urbanization and climate change significantly contribute to worsening urban human thermal comfort: A national 183-city, 26-year study in China. Urban Clim. 2022, 43, 101154. [Google Scholar] [CrossRef]
- Church, J.A.; White, N.J.; Aarup, T.; Wilson, W.S.; Woodworth, P.L.; Domingues, C.M.; Hunter, J.R.; Lambeck, K. Understanding global sea levels: Past, present and future. Sustain. Sci. 2008, 3, 9–22. [Google Scholar] [CrossRef]
- Zell, R. Global climate change and the emergence/re-emergence of infectious diseases. Int. J. Med. Microbiol. Suppl. 2004, 293, 16–26. [Google Scholar] [CrossRef]
- Hobbie, S.E.; Grimm, N.B. Nature-based approaches to managing climate change impacts in cities. Philos. Trans. R. Soc. B Biol. Sci. 2020, 375, 20190124. [Google Scholar] [CrossRef]
- Bolund, P.; Hunhammar, S. Ecosystem services in urban areas. Ecol. Econ. 1999, 29, 293–301. [Google Scholar] [CrossRef]
- Mell, I. Green Infrastructure: Reflections on Past, Present and Future Praxis; Routledge: London, UK, 2018; pp. 1–11. [Google Scholar] [CrossRef]
- Hanna, E.; Bruno, D.; Comín, F.A. The ecosystem services supplied by urban green infrastructure depend on their naturalness, functionality and imperviousness. Urban Ecosyst. 2023, 27, 187–202. [Google Scholar] [CrossRef]
- Hanna, E.; Comín, F.A. Urban Green Infrastructure and Sustainable Development: A Review. Sustainability 2021, 13, 11498. [Google Scholar] [CrossRef]
- Pauleit, S.; Zölch, T.; Hansen, R.; Randrup, T.B.; Konijnendijk van den Bosch, C. Nature-based solutions and climate change—Four shades of green. In Nature-Based Solutions to Climate Change Adaptation in Urban Areas: Linkages between Science, Policy and Practice; Springer: Cham, Switzerland, 2017; pp. 29–49. [Google Scholar]
- EEA. The European Environment. State and Outlook; European Environment Agency: Copenhagen, Denmark, 2010. [Google Scholar]
- Lafortezza, R.; Davies, C.; Sanesi, G.; Konijnendijk, C. Green Infrastructure as a tool to support spatial planning in European urban regions. iForest-Biogeosci. For. 2013, 6, 102–108. [Google Scholar] [CrossRef]
- De Zeeuw, H.; Drechsel, P. Cities and agriculture. In Developing Resilient Urban Food Systems; RUAF Foundation: The Hague, The Netherlands, 2015. [Google Scholar]
- Salata, K.D.; Yiannakou, A. Green Infrastructure and climate change adaptation. TeMA J. Land Use Mobil. Environ. 2016, 9, 7–24. [Google Scholar] [CrossRef]
- Reid, W.; Mooney, H.; Cropper, A.; Capistrano, D.; Carpenter, S.; Chopra, K.; Dasgupta, P.; Dietz, T.; Duraiappah, A.; Hassan, R.; et al. Millenium Ecosystem Assessment Synthesis Report; Island Press: Washington, DC, USA, 2005. [Google Scholar]
- Dominati, E.; Patterson, M.; Mackay, A. A framework for classifying and quantifying the natural capital and ecosystem services of soils. Ecol. Econ. 2010, 69, 1858–1868. [Google Scholar] [CrossRef]
- Holt, A.R.; Alix, A.; Thompson, A.; Maltby, L. Food production, ecosystem services and biodiversity: We can’t have it all everywhere. Sci. Total. Environ. 2016, 573, 1422–1429. [Google Scholar] [CrossRef]
- Milcu, A.I.; Hanspach, J.; Abson, D.; Fischer, J. Cultural Ecosystem Services. Ecol. Soc. 2013, 18, 44. Available online: http://www.jstor.org/stable/26269377 (accessed on 1 November 2023). [CrossRef]
- Nair, R.; Mehta, C.R.; Sharma, S. Carbon sequestration in soils—A Review. Agric. Rev. 2015, 36, 81–99. [Google Scholar] [CrossRef]
- Townsend-Small, A.; Czimczik, C.I. Carbon sequestration and greenhouse gas emissions in urban turf. Geophys. Res. Lett. 2010, 37, L02707. [Google Scholar] [CrossRef]
- Bellet, C.; Llop, J. Ciudades Intermedias, Perfiles y Pautas. In Segunda Fase del Programa CIMES: Ciudades Intermedias y Urbanización Mundial; Municipality of Lleida: Lleida, Spain, 2003. [Google Scholar]
- Amorim-Maia, A.T.; Anguelovski, I.; Connolly, J.; Chu, E. Seeking refuge? The potential of urban climate shelters to address intersecting vulnerabilities. Landsc. Urban Plan. 2023, 238, 104836. [Google Scholar] [CrossRef]
- Lumeng, L.; Jianguo, W. Scenario analysis in urban ecosystem services research: Progress, prospects, and implications for urban planning and management. Landsc. Urban Plan. 2022, 224, 104433. [Google Scholar]
- Millenium Ecosystem Assessment, Living Beyond our Means: Natural Assets and Human Well-Being. Statement from the Board. 2008. Available online: https://www.sysecol2.ethz.ch/AR4_Ch04/Ch4-GreyLit/Mi112.pdf (accessed on 17 November 2023).
- Felipe-Lucia, M.R.; de Frutos, A.; Comín, F.A. Modelling landscape management scenarios for equitable and sustainable futures in rural areas based on ecosystem services. Ecosyst. People 2022, 18, 76–94. [Google Scholar] [CrossRef]
- Alcamo, J.; van Vuuren, D.; Ringler, C. Methodology for developing the MA scenarios. In Ecosystems and Human Well-Being: Scenarios; Island Press: Washington, DC, USA, 2005; Volume 2, pp. 145–172. [Google Scholar]
- Peterson, G.D.; Cumming, G.S.; Carpenter, S.R. Scenario planning: A tool for conservation in an uncertain world. Conserv. Biol. 2003, 17, 358–366. [Google Scholar] [CrossRef]
- Van Oijstaeijen, W.; Van Passel, S.; Cools, J. Urban green infrastructure: A review on valuation toolkits from an urban planning perspective. J. Environ. Manag. 2020, 267, 110603. [Google Scholar] [CrossRef] [PubMed]
- Berg, C.; Rogers, S.; Mineau, M. Building scenarios for ecosystem services tools: Developing a methodology for efficient engagement with expert stakeholders. Futures 2016, 81, 68–80. [Google Scholar] [CrossRef]
- Tejedor, E.; Cuadrat, J.; Saz, M.; Serrano-Notivoli, R.; López, N.; Aladrén, M. Islas de Calor y Confort Térmico en Zaragoza Durante la ola de Calor de Julio de 2015; Universidad de Alicante: San Vicente del Raspeig, Spain, 2016; pp. 141–151. [Google Scholar] [CrossRef]
- Berg, L.V.D.; Pol, P.M.; Van Winden, W.; Woets, P. European Cities in the Knowledge Economy: The Cases of Amsterdam, Dortmund, Eindhoven, Helsinki, Manchester, Munich, Münster, Rotterdam and Zaragoza; Routledge: London, UK, 2017. [Google Scholar] [CrossRef]
- Hanna, E.; Bruno, D.; Comín, F.A. Evaluating naturalness and functioning of urban green infrastructure. Urban For. Urban Green. 2023, 80, 127825. [Google Scholar] [CrossRef]
- Daba, M.H.; Dejene, S.W. The role of biodiversity and ecosystem services in carbon sequestration and its implication for climate change mitigation. Environ. Sci. Nat. Resour. 2018, 11, 1–10. [Google Scholar]
- Smith, P. Soils as carbon sinks: The global context. Soil Use Manag. 2004, 20, 212–218. [Google Scholar] [CrossRef]
- Stoycheva, V.; Geneletti, D. A review of regulating ecosystem services in the context of urban planning. J. Bulg. Geogr. Soc. 2023, 48, 27–42. [Google Scholar] [CrossRef]
- Kraemer, R.; Kabisch, N. Parks under stress: Air temperature regulation of urban green spaces under conditions of drought and summer heat. Front. Environ. Sci. 2022, 10, 318. [Google Scholar] [CrossRef]
- Trabucchi, M.; O’Farrell, P.J.; Notivol, E.; Comín, F.A. Mapping ecological processes and ecosystem services for prioritizing restoration efforts in a semi-arid Mediterranean river basin. Environ. Manag. 2014, 53, 1132–1145. [Google Scholar] [CrossRef] [PubMed]
- Kothencz, G.; Kolcsár, R.; Cabrera-Barona, P.; Szilassi, P. Urban green space perception and its contribution to well-being. Int. J. Environ. Res. Public Health 2017, 14, 766. [Google Scholar] [CrossRef] [PubMed]
- Francis, R.A.; Hoggart, S.P. Urban river wall habitat and vegetation: Observations from the River Thames through central London. Urban Ecosyst. 2009, 12, 465–485. [Google Scholar] [CrossRef]
- National Research Council. Riparian Areas: Functions and Strategies for Management; National Academies Press: Washington, DC, USA, 2002. [Google Scholar]
- Muslih, A.M.; Nisa, A.; Sugianto; Arlita, T. The Role of Urban Forests as Carbon Sink: A Case Study in the Urban Forest of Banda Aceh, Indonesia. J. Sylva Lestari 2022, 10, 417–425. [Google Scholar] [CrossRef]
- Yao, X.; Yu, K.; Zeng, X.; Lin, Y.; Ye, B.; Shen, X.; Liu, J. How can urban parks be planned to mitigate urban heat island effect in ‘Furnace cities’? An accumulation perspective. J. Clean. Prod. 2021, 330, 129852. [Google Scholar] [CrossRef]
- Yang, P.; Xiao, Z.-N.; Ye, M.-S. Cooling effect of urban parks and their relationship with urban heat islands. Atmospheric Ocean. Sci. Lett. 2016, 9, 298–305. [Google Scholar] [CrossRef]
- Armson, D.; Rahman, M.A.; Ennos, A.R. A comparison of the shading effectiveness of five different street tree species in Manchester, UK. Arboric. Urban For. 2013, 39, 157–164. [Google Scholar] [CrossRef]
- Bellassen, V.; Luyssaert, S. Carbon sequestration: Managing forests in uncertain times. Nature 2014, 506, 153–155. [Google Scholar] [CrossRef] [PubMed]
- Jindal, R.; Swallow, B.; Kerr, J. Forestry-based carbon sequestration projects in Africa: Potential benefits and challenges. Nat. Resour. Forum 2008, 32, 116–130. [Google Scholar] [CrossRef]
- Peng, J.; Cheng, X.; Hu, Y.; Corcoran, J. A landscape connectivity approach to mitigating the urban heat island effect. Landsc. Ecol. 2022, 37, 1707–1719. [Google Scholar] [CrossRef]
- White, W.A. Biosequestration and Ecological Diversity: Mitigating and Adapting to Climate Change and Environmental Degradation; CRC Press: Boca Raton, FL, USA, 2012. [Google Scholar]
- Ramyar, R.; Zarghami, E. Green infrastructure contribution for climate change adaptation in urban landscape context. Appl. Ecol. Environ. Res. 2017, 15, 1193–1209. [Google Scholar] [CrossRef]
- Mngumi, L.E. Ecosystem services potential for climate change resilience in peri-urban areas in Sub-Saharan Africa. Landsc. Ecol. Eng. 2020, 16, 187–198. [Google Scholar] [CrossRef]
- Davidson, E.A.; Nepstad, D.C.; Klink, C.; Trumbore, S.E. Pasture soils as carbon sink. Nature 1995, 376, 472–473. [Google Scholar] [CrossRef]
- Eyles, A.; Coghlan, G.; Hardie, M.; Hovenden, M.; Bridle, K. Soil carbon sequestration in cool-temperate dryland pastures: Mechanisms and management options. Soil Res. 2015, 53, 349–365. [Google Scholar] [CrossRef]
- Sedjo, R.; Sohngen, B. Carbon sequestration in forests and soils. Annu. Rev. Resour. Econ. 2012, 4, 127–144. [Google Scholar] [CrossRef]
- Lal, R. Forest soils and carbon sequestration. For. Ecol. Manag. 2005, 220, 242–258. [Google Scholar] [CrossRef]
- Wiesmeier, M.; Munro, S.; Barthold, F.; Steffens, M.; Schad, P.; Kögel-Knabner, I. Carbon storage capacity of semi-arid grassland soils and sequestration potentials in northern China. Glob. Chang. Biol. 2015, 21, 3836–3845. [Google Scholar] [CrossRef]
- Araújo, L.G.; de Sousa, D.M.G.; de Figueiredo, C.C.; Rein, T.A.; de Souza Nunes, R.; dos Santos, J.D.D.G.; Malaquias, J.V. How does gypsum increase the organic carbon stock of an Oxisol profile under sugarcane? Geoderma 2019, 343, 196–204. [Google Scholar] [CrossRef]
- Walia, M.K.; Dick, W.A. Gypsum and carbon amendments influence carbon fractions in two soils in Ohio, USA. PLoS ONE 2023, 18, e0283722. [Google Scholar] [CrossRef] [PubMed]
- Pitman, S.D.; Daniels, C.B.; Ely, M.E. Green infrastructure as life support: Urban nature and climate change. Trans. R. Soc. South Aust. 2015, 139, 97–112. [Google Scholar] [CrossRef]
- Cuadrat, J.M.; Vicente-Serrano, S.; Saz, M.A. Influence of different factors on relative air humidity in Zaragoza, Spain. Front. Earth Sci. 2015, 3, 10. [Google Scholar] [CrossRef]
- Dunford, R.; Su, Q.; Tamang, E. The Pareto Principle. Plymouth Stud. Sci. 2014, 7, 140–148. [Google Scholar]
- Biesbroek, G.R.; Swart, R.J.; Carter, T.R.; Cowan, C.; Henrichs, T.; Mela, H.; Morecroft, M.D.; Rey, D. Europe adapts to climate change: Comparing national adaptation strategies. Glob. Environ. Chang. 2010, 20, 440–450. [Google Scholar] [CrossRef]
- Xi, C.; Han, L.; Wang, J.; Feng, Z.; Kumar, P.; Cao, S.-J. How can greenery space mitigate urban heat island? An analysis of cooling effect, carbon sequestration, and nurturing cost at the street scale. J. Clean. Prod. 2023, 419, 138230. [Google Scholar] [CrossRef]
- Chen, R.; You, X.-Y. Reduction of urban heat island and associated greenhouse gas emissions. Mitig. Adapt. Strat. Glob. Chang. 2019, 25, 689–711. [Google Scholar] [CrossRef]
- Rahaman, Z.A.; Al Kafy, A.; Saha, M.; Rahim, A.A.; Almulhim, A.I.; Rahaman, S.N.; Fattah, A.; Rahman, M.T.; Kalaivani, S.; Faisal, A.-A.; et al. Assessing the impacts of vegetation cover loss on surface temperature, urban heat island and carbon emission in Penang city, Malaysia. Build. Environ. 2022, 222, 109335. [Google Scholar] [CrossRef]
- Gann, G.D.; McDonald, T.; Walder, B.; Aronson, J.; Nelson, C.R.; Jonson, J.; Hallett, J.G.; Eisenberg, C.; Guariguata, M.R.; Liu, J.; et al. Principios y estándares internacionales para la práctica de la restauración ecológica. Restor. Ecol. 2019, 27, S1. [Google Scholar]
- Ronchi, S. Ecosystem Services for Spatial Planning: Innovative Approaches and Challenges for Practical Applications; Springer: Cham, Switzerland, 2018. [Google Scholar]
- Demuzere, M.; Orru, K.; Heidrich, O.; Olazabal, E.; Geneletti, D.; Orru, H.; Bhave, A.G.; Mittal, N.; Feliu, E.; Faehnle, M. Mitigating and adapting to climate change: Multi-functional and multi-scale assessment of green urban infrastructure. J. Environ. Manag. 2014, 146, 107–115. [Google Scholar] [CrossRef] [PubMed]
- de Leeuw, E. Do healthy cities work? A logic of method for assessing impact and outcome of healthy cities. J. Urban Health 2011, 89, 217–231. [Google Scholar] [CrossRef] [PubMed]
- von Holle, B.; Yelenik, S.; Gornish, E.S. Restoration at the landscape scale as a means of mitigation and adaptation to climate change. Curr. Landsc. Ecol. Rep. 2020, 5, 85–97. [Google Scholar] [CrossRef]
- Ricart, S.; Villar-Navascués, R.A.; Hernández-Hernández, M.; Rico-Amorós, A.M.; Olcina-Cantos, J.; Moltó-Mantero, E. Extending Natural Limits to Address Water Scarcity? The Role of Non-Conventional Water Fluxes in Climate Change Adaptation Capacity: A Review. Sustainability 2021, 13, 2473. [Google Scholar] [CrossRef]
- Mooney, H.; Larigauderie, A.; Cesario, M.; Elmquist, T.; Hoegh-Guldberg, O.; Lavorel, S.; Mace, G.M.; Palmer, M.; Scholes, R.; Yahara, T. Biodiversity, climate change, and ecosystem services. Curr. Opin. Environ. Sustain. 2009, 1, 46–54. [Google Scholar] [CrossRef]
- Capotorti, G.; Del Vico, E.; Anzellotti, I.; Celesti-Grapow, L. Combining the Conservation of Biodiversity with the Provision of Ecosystem Services in Urban Green Infrastructure Planning: Critical Features Arising from a Case Study in the Metropolitan Area of Rome. Sustainability 2016, 9, 10. [Google Scholar] [CrossRef]
Type | Abbreviation | Functioning | CS | CS Improved | Diff | TR | TR Improved | Diff |
---|---|---|---|---|---|---|---|---|
Canal | C | Low | 0.011 | 0.018 | 0.007 | 0.579 | 2.514 | 1.935 |
Square | S | Low | 0.010 | 0.015 | 0.005 | 0.814 | 1.832 | 1.018 |
Pastures | P | High | 0.020 | 0.042 | 0.022 | 1.022 | 1.100 | 0.078 |
Meander | M | High | 0.025 | 0.032 | 0.007 | 1.155 | 1.492 | 0.337 |
Urban Park | UP | Low | 0.019 | 0.037 | 0.018 | 0.341 | 1.331 | 0.990 |
Street trees | ST | Low | 0.015 | 0.017 | 0.002 | 0.388 | 1.100 | 0.712 |
River | R | High | 0.009 | 0.012 | 0.003 | 0.618 | 1.100 | 0.482 |
Herbaceous vegetation association | H | High | 0.020 | 0.042 | 0.022 | 1.022 | 1.100 | 0.078 |
Cemetery | CE | Low | 0.010 | 0.012 | 0.002 | 0.254 | 0.950 | 0.696 |
Permanent crop | PC | Low | 0.012 | 0.015 | 0.003 | 0.400 | 0.660 | 0.260 |
Forest | F | High | 0.017 | 0.018 | 0.001 | 0.586 | 0.700 | 0.114 |
Community garden | CG | Low | 0.012 | 0.015 | 0.003 | 0.400 | 0.660 | 0.260 |
Roundabout | RB | Low | 0.005 | 0.010 | 0.005 | 0.398 | 0.511 | 0.113 |
Arable land | AR | Low | 0.012 | 0.015 | 0.003 | 0.425 | 0.500 | 0.075 |
Urban forest | UF | High | 0.048 | 0.058 | 0.010 | 0.275 | 0.468 | 0.193 |
Urban natural Park | UNP | High | 0.020 | 0.040 | 0.020 | 0.120 | 0.400 | 0.280 |
C I T Y | ANOVA | ES/ES × Area | CS | CS × Area | TR | TR × Area | ||||
p-value | 2.00 × 10−16 * | 0.498 | 2.00 × 10−16 * | 0.0149 * | ||||||
P O S T - H O C | Scenario comparison | Diff | p-value | Diff | p-value | Diff | p-value | Diff | p-value | |
IMHF-HF | 0.0158 | 2.00 × 10−16 * | N/A | N/A | 0.145 | 0.105 | 18,519.069 | 0.556 | ||
IMLF-HF | 0.0036 | 0.0172 * | N/A | N/A | 0.221 | 0.0007 * | 13,065.233 | 0.732 | ||
LF-HF | −0.0053 | 0.0001 * | N/A | N/A | −0.447 | 2.00 × 10−16 * | −16,962.728 | 0.540 | ||
IMLF-IMHF | −0.0122 | 2.00 × 10−16 * | N/A | N/A | 0.076 | 0.548 | −5453.836 | 0.973 | ||
LF-IMHF | −0.0211 | 2.00 × 10−16 * | N/A | N/A | −0.592 | 2.00 × 10−16 * | −35,481.797 | 0.027 * | ||
LF-IMLF | −0.0089 | 2.00 × 10−16 * | N/A | N/A | −0.668 | 2.00 × 10−16 * | −30,027.961 | 0.035 * | ||
M U N I C I P A L I T Y | ANOVA | ES/ES × Area | CS | CS × Area | TR | TR × Area | ||||
p-value | 2.00 × 10−16 * | 2 × 10−16 * | 2.00 × 10−16 * | 2 × 10−16 * | ||||||
P O S T - H O C | Scenario comparison | Diff | p−value | Diff | p−value | Diff | p−value | Diff | p−value | |
IMHF-HF | 0.020 | 2.00 × 10−16 * | 247.295 | 0.0000001 * | 0.085 | 2.00 × 10−16 * | 2745.848 | 0.152 | ||
IMLF-HF | −0.004 | 2.00 × 10−16 * | −249.110 | 0.0000082 * | −0.422 | 2.00 × 10−16 * | −10,681.095 | 2.00 × 10−16 * | ||
LF-HF | −0.008 | 2.00 × 10−16 * | −284.250 | 0.0000002 * | −0.562 | 2.00 × 10−16 * | −13,685.891 | 2.00 × 10−16 * | ||
IMLF-IMHF | −0.024 | 2.00 × 10−16 * | −496.404 | 2.00 × 10−16 * | −0.507 | 2.00 × 10−16 * | −13,426.944 | 2.00 × 10−16 * | ||
LF-IMHF | −0.028 | 2.00 × 10−16 * | −531.544 | 2.00 × 10−16 * | −0.647 | 2.00 × 10−16 * | −16,431.740 | 2.00 × 10−16 * | ||
LF-IMLF | −0.003 | 2.00 × 10−16 * | −35.140 | 0.930 | −0.140 | 2.00 × 10−16 * | −3004.796 | 0.298 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hanna, E.; Felipe-Lucia, M.R.; Comín, F.A. Scenario Analysis of Green Infrastructure to Adapt Medium-Size Cities to Climate Change: The Case of Zaragoza, Spain. Land 2024, 13, 280. https://doi.org/10.3390/land13030280
Hanna E, Felipe-Lucia MR, Comín FA. Scenario Analysis of Green Infrastructure to Adapt Medium-Size Cities to Climate Change: The Case of Zaragoza, Spain. Land. 2024; 13(3):280. https://doi.org/10.3390/land13030280
Chicago/Turabian StyleHanna, Elie, María R. Felipe-Lucia, and Francisco A. Comín. 2024. "Scenario Analysis of Green Infrastructure to Adapt Medium-Size Cities to Climate Change: The Case of Zaragoza, Spain" Land 13, no. 3: 280. https://doi.org/10.3390/land13030280
APA StyleHanna, E., Felipe-Lucia, M. R., & Comín, F. A. (2024). Scenario Analysis of Green Infrastructure to Adapt Medium-Size Cities to Climate Change: The Case of Zaragoza, Spain. Land, 13(3), 280. https://doi.org/10.3390/land13030280