Potential and Influencing Factors of Urban Spatial Development under Natural Constraints: A Case Study of the Guangdong-Hong Kong-Macao Greater Bay Area
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Data Sources
2.3. Methods
2.3.1. Construction of a Land-Carrying Capacity and Suitability Evaluation System under Natural Constraints
Evaluation Index Selection
Evaluation Metrics Quantification and Grading
Assessment of the Indices
2.3.2. Evaluation of Urban Spatial Development Potential
2.3.3. Optimal Parameters-Based Geographical Detector
3. Results
3.1. Distribution of Suitability and Carrying Capacity for Development Land under Natural Constraints
3.2. Analysis of Urban Spatial Development Potential under Natural Constraints
3.3. Analysis of Urban Development Area Driving Forces under Natural Constraints
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Dong, G.L.; Ge, Y.B.; Jia, H.W.; Sun, C.Z.; Pan, S.Y. Land Use Multi-Suitability, Land Resource Scarcity and Diversity of Human Needs: A New Framework for Land Use Conflict Identification. Land 2021, 10, 1003. [Google Scholar] [CrossRef]
- Xiong, J.X.; Wang, X.B.; Zhao, D.; Zhao, Y.Y. Spatiotemporal pattern and driving forces of ecological carrying capacity during urbanization process in the Dongting Lake area, China. Ecol. Indic. 2022, 144, 109486. [Google Scholar] [CrossRef]
- Jin, X.X.; Wei, L.Y.; Wang, Y.; Lu, Y.Q. Construction of ecological security pattern based on the importance of ecosystem service functions and ecological sensitivity assessment: A case study in Fengxian County of Jiangsu Province, China. Environ. Dev. Sustain. 2021, 23, 563–590. [Google Scholar] [CrossRef]
- Xiong, G.; Cao, X.; Hamm, N.A.S.; Lin, T.; Zhang, G.; Chen, B.J.S. Unbalanced Development Characteristics and Driving Mechanisms of Regional Urban Spatial form: A Case Study of Jiangsu Province, China. Sustainability 2021, 13, 3121. [Google Scholar] [CrossRef]
- Cao, X.; Zhou, Y.J. Comprehensive Carrying Capacity of the Inland Node Cities along the Belt and Road. Environ. Eng. Sci. 2022, 39, 39–47. [Google Scholar] [CrossRef]
- Shao, J.; Li, F.J.L. Multi-Function Tradeoffs of Land System in Urbanized Areas—A Case Study of Xi’an, China. Land 2021, 10, 640. [Google Scholar] [CrossRef]
- Cao, X.; Shi, Y.; Zhou, L.; Tao, T.; Yang, Q.J.L. Analysis of Factors Influencing the Urban Carrying Capacity of the Shanghai Metropolis Based on a Multiscale Geographically Weighted Regression (MGWR) Model. Land 2021, 10, 578. [Google Scholar] [CrossRef]
- Li, K.; Jin, X.; Ma, D.; Jiang, P.J.L. Evaluation of Resource and Environmental Carrying Capacity of China’s Rapid-Urbanization Areas—A Case Study of Xinbei District, Changzhou. Land 2019, 8, 69. [Google Scholar] [CrossRef]
- Wu, Y.; Zong, T.; Shuai, C.; Liao, S.; Jiao, L.; Shen, L. Does resource environment carrying capacity have a coercive effect on urbanization quality? Evidence from the Yangtze River Economic Belt, China. J. Clean. Prod. 2022, 365, 132612. [Google Scholar] [CrossRef]
- Bao, K.; He, G.; Ruan, J.; Zhu, Y.; Hou, X. Analysis on the resource and environmental carrying capacity of coal city based on improved system dynamics model: A case study of Huainan, China. Environ. Sci. Pollut. Res. 2023, 30, 36728–36743. [Google Scholar] [CrossRef]
- Świąder, M.; Lin, D.; Szewrański, S.; Kazak, J.K.; Iha, K.; Van Hoof, J.; Belčáková, I.; Altiok, S. The application of ecological footprint and biocapacity for environmental carrying capacity assessment: A new approach for European cities. Environ. Sci. Policy 2020, 105, 56–74. [Google Scholar] [CrossRef]
- Bai, J.; Liu, S.; Wang, H.; Zhao, Y. Management, Evaluation of Urban Water Environment Carrying Capacity based on a Fuzzy Comprehensive Evaluation Model. J. Environ. Account. Manag. 2022, 12, 006. [Google Scholar]
- Cui, Y. The coordinated relationship among industrialization, environmental carrying capacity and green infrastructure: A comparative research of Beijing-Tianjin-Hebei region, China. Environ. Dev. 2022, 44, 10075. [Google Scholar] [CrossRef]
- Oezdemir, M.; Ayatac, H.; Ince, E.C. Proposed method for determining the population carrying capacity of cities: The city-mass index. Proc. Inst. Civ. Eng.-Urban Des. Plan. 2022, 175, 122–137. [Google Scholar]
- Yang, Z.; Song, J.; Cheng, D.; Xia, J.; Li, Q.; Ahamad, M.I. Comprehensive evaluation and scenario simulation for the water resources carrying capacity in Xi’an city, China. J. Environ. Manag. 2019, 230, 221–233. [Google Scholar] [CrossRef] [PubMed]
- De las Rivas Sanz, J.L.; Fernández-Maroto, M. Planning for Growth: Contradictions in the Framework of Economic and Urban Development from the “Spanish Miracle” (1959–1973). J. Urban Hist. 2023, 49, 41–59. [Google Scholar] [CrossRef]
- Micheli, L.; Talavera, D.L.; Tina, G.M.; Almonacid, F.; Fernandez, E.F. Techno-economic potential and perspectives of floating photovoltaics in Europe. Sol. Energy 2022, 243, 203–214. [Google Scholar] [CrossRef]
- Popescu, R.I. Study Regarding the Ways of Measuring Cities Competitiveness. Econ. Ser. Manag. 2011, 14, 288–303. [Google Scholar]
- Kudelko, J.; Musial-Malago, M.J.C. The diversity of demographic potential and socioeconomic development of urban functional areas—Evidence from Poland. Cities 2022, 123, 103516. [Google Scholar] [CrossRef]
- Cheng, H.-H.; Hsu, Y.-Y. Integrating spatial multi-criteria evaluation into the potential analysis of culture-led urban development €” A case study of Tainan. Environ. Plan B-Urban Anal. City Sci. 2021, 49, 335–357. [Google Scholar] [CrossRef]
- Köstepen, A.; Öter, Z. Medical Tourism Potential in Turkey: The Case of Izmir City. In Proceedings of the 8th Silk Road International Conference “Development of Tourism in Black and Caspian Seas Regions”, Tbilisi-Batumi, Georgia, 24–26 May 2013; Academic Publishers: Cambridge, MA, USA, 2016. Available online: https://www.researchgate.net/publication/309418800 (accessed on 10 March 2024).
- Lin, B.; Ma, R. How does digital finance influence green technology innovation in China? Evidence from the financing constraints perspective. J. Environ. Manag. 2022, 320, 115833. [Google Scholar] [CrossRef]
- Pan, D.; Bai, Y.; Chang, M.; Wang, X.; Wang, W.J.E. The technical and economic potential of urban rooftop photovoltaic systems for power generation in Guangzhou, China. Energy Build. 2022, 277, 112591. [Google Scholar] [CrossRef]
- Koch, F.; Beyer, S.; Chen, C.Y. Monitoring the Sustainable Development Goals in cities: Potentials and pitfalls of using smart city data. GAIA 2023, 32, 47–53. [Google Scholar] [CrossRef]
- Tan, F.; Gong, C.; Niu, Z.; Zhao, Y.J. An inquiry into urban carrying capacity of sustainable development demonstration belt of China: Multiscale evaluation and multidimensional interaction. Sustain. Dev. 2023, 31, 2892–2907. [Google Scholar] [CrossRef]
- Lin, T.; Xue, X.Z.; Shi, L.Y.; Gao, L.J. Urban spatial expansion and its impacts on island ecosystem services and landscape pattern: A case study of the island city of Xiamen, Southeast China. Ocean Coast. Manag. 2013, 81, 90–96. [Google Scholar] [CrossRef]
- Xu, J.; Zhao, X.; Liu, B.; Yi, L. Spatial-Temporal Characteristics and Driving Forces of Urban Sprawl for Major Cities of the Pearl River Delta Region in Recent 40 Year. Acta Sci. Nat. Univ. Pekin. 2015, 51, 1086–1131. (In Chinese) [Google Scholar]
- Ju, H.; Zhang, S.; Yan, Y. Spatial pattern changes of urban expansion and multi-dimensional analysis of driving forces in the Guangdong-Hong Kong-Macao Greater Bay Area in 1980–2020. Acta Geogr. Sin. 2022, 77, 1086–1101. (In Chinese) [Google Scholar]
- Department of Natural Resources of Guangdong Province, People’s Republic of China (PRC). Technical Guidelines for Evaluation of Resource and Environmental Carrying Capacity and Suitability of Territorial Spatial Development of Guangdong Province (for Trial Implementation). Available online: https://nr.gd.gov.cn/zwgknew/tzgg/tz/content/post_3162101.html (accessed on 24 December 2020). (In Chinese)
- Wang, A.G.; Ma, W.; Shi, Y.C. Study on the Potential Earthquake Deformation of Active Fault and the Safe Distance of Important Project Site to Active Fault. J. Seismol. Res. 2005, 4, 55–60+121. (In Chinese) [Google Scholar]
- GB/T 27963-2011; Climatic Suitability Evaluating on Human Settlement. National Standard of the People’s Republic of China: Beijing, China, 2011. (In Chinese)
- Song, Y.; Wang, J.; Ge, Y.; Xu, C. An optimal parameters-based geographical detector model enhances geographic characteristics of explanatory variables for spatial heterogeneity analysis: Cases with different types of spatial data. GISci. Remote Sens. 2020, 57, 593–610. [Google Scholar] [CrossRef]
- Hui, E.C.M.; Lam, M.C.M.; Ho, V.S. Development, Market Disequilibrium and Urban Land Shortages: Analysis of Policy and Patterns in Hong Kong. J. Urban Plan. Dev. 2006, 132, 80–88. [Google Scholar] [CrossRef]
- Li, L.H.; Wong, S.K.; Cheung, K.S. Land supply and housing prices in Hong Kong: The political economy of urban land policy. Environ. Plan. C-Gov. Policy 2016, 34, 981–998. [Google Scholar] [CrossRef]
- Ye, S. The land resource and landuse of Hong Kong. Chin. Geogr. Sci. 1998, 8, 12–24. [Google Scholar] [CrossRef]
- Sobolewski, A.; Młynarczyk, M.; Konarska, M.; Bugajska, J. The influence of air humidity on the human heat stress in a hot environment. Int. J. Occup. Saf. Ergon. 2019, 27, 226–236. [Google Scholar] [CrossRef] [PubMed]
- Curriero, F.C.; Heiner, K.S.; Samet, J.M.; Zeger, S.L.; Lisa, S.; Patz, J.A. Temperature and Mortality in 11 Cities of the Eastern United States. Am. J. Epidemiol. 2002, 155, 80–87. [Google Scholar] [CrossRef] [PubMed]
- Guo, Y.J. The Role of Humidity in Associations of High Temperature with Mortality: A Multicountry, Multicity Study. Environ. Health Perspect. 2019, 127, 109001. [Google Scholar]
- Ao, Z.; Hu, X.; Tao, S.; Hu, X.; Wang, G.; Li, M.; Wang, F.; Hu, L.; Liang, X.; Xiao, J.; et al. A national-scale assessment of land subsidence in China’s major cities. Science 2024, 384, 301–306. [Google Scholar] [CrossRef] [PubMed]
- Huang, J.; Shen, G.Q.; Zheng, H.W. Is insufficient land supply the root cause of housing shortage? Empirical evidence from Hong Kong. Habitat Int. 2015, 49, 538–546. [Google Scholar] [CrossRef]
- Hui, E.C.M.; Ho, V.S.-M. Relationship between the land-use planning system, land supply and housing prices in Hong Kong. Int. J. Strateg. Prop. Manag. 2003, 7, 119–128. [Google Scholar]
- Lin, T.; Li, X.H.; Zhang, G.Q.; Zhao, Q.J.; Cui, S.H. Dynamic analysis of island urban spatial expansionand its determinants: A case study of xiamen island. Acta Geogr. Sin. 2010, 65, 715–726. [Google Scholar]
- De Roo, G. Being or becoming? That is the question! Confronting complexity with contemporary planning theory. In A Planner’s Encounter with Complexity; De Roo, G., Silva, E.A., Eds.; Ashgate Publishing: Farnham, UK, 2010; pp. 19–40. [Google Scholar]
- Mannucci, S.; Kwakkel, J.H.; Morganti, M.; Ferrero, M. Exploring potential futures: Evaluating the influence of deep uncertainties in urban planning through scenario planning: A case study in Rome, Italy. Futures 2023, 154, 103265. [Google Scholar] [CrossRef]
- Rauws, W. Embracing Uncertainty without Abandoning Planning: Exploring an Adaptive Planning Approach for Guiding Urban Transformations. DisP-Plan. Rev. 2017, 53, 32–45. [Google Scholar] [CrossRef]
- Carter, I.; Moroni, S. Adaptive and anti-adaptive neighbourhoods: Investigating the relationship between individual choice and systemic adaptability. Environ. Plan. B Urban Anal. City Sci. 2022, 49, 722–736. [Google Scholar] [CrossRef]
Dataset | Sources | Type of Dataset | Spatial Resolution | Time of Dataset | Note |
---|---|---|---|---|---|
Elevation data | Geospatial Data Cloud site, Computer Network Information Center, Chinese Academy of Sciences. (http://www.gscloud.cn, accessed on 15 November 2023) | tif | 30 m | 2009 | Extraction of elevation, slope, and aspect data. |
Soil data | Harmonized World Soil Database, HWSD (https://data.tpdc.ac.cn/en/data/, accessed on 15 November 2023) | tif | 1:4 million | 2009 | Extraction of silty sand content |
Drainage data | OpenStreetMap (https://www.openstreetmap.org, accessed on 15 November 2023) | shp | —— | 2020 | —— |
Climatic zoning data | Resource and Environmental Science Data Platform of Chinese Academy of Sciences (https://www.resdc.cn/, accessed on 21 November 2023) | shp | —— | 1978 | —— |
Active accumulated temperature | Swiss Federal Institute for Forest, Snow and Landscape Research (https://chelsa-climate.org/downloads/, accessed on 15 November 2023) | tif | 1 km | 1981–2010 | For extracting data on active cumulative temperatures greater than 0 °C |
Meteorology data | Resource and Environmental Science Data Platform of Chinese Academy of Sciences (https://www.resdc.cn/, accessed on 21 November 2023) | tif | 1 km | 1960–2010 | Extraction of mean annual wind speed, mean annual air temperature, mean annual sunshine hours, mean annual relative humidity, and annual precipitation data |
Fault data | National Earthquake Data Center (https://data.earthquake.cn/index.html, accessed on 15 November 2023) | shp | —— | —— | —— |
Built-up area data | Science Data Bank (https://www.scidb.cn/en, accessed on 15 November 2023) | shp | —— | 2020 | —— |
Administrative division data | Resource and Environmental Science Data Platform of Chinese Academy of Sciences (https://www.resdc.cn/, accessed on 15 November 2023) | shp | —— | 2022 | —— |
Evaluation Factor | Indicators for Grading the Carrying Capacity of Development Land | ||||
---|---|---|---|---|---|
High (9 Points) | Middle-High (7 Points) | Middle (5 Points) | Middle-Low (3 Points) | Low (1 Point) | |
Slope | ≤3° | 3 to 8° | 8 to 15° | 15 to 25° | >25° |
Corrected elevation and relief 1 | |||||
Aspect | Southern slope | Southwest-facing slope, Southeast-facing slope | West slope, East slope | Northeast slope, Northwest slope | Northern slope |
Silty sand content | <60% | —— | 60% to 80% | —— | ≥80% |
Precipitation | >1400 mm | 800 to 1400 mm | 400 to 800 mm | 200 to 400 mm | <200 mm |
Distance to rivers and lakes 2 | ≤1 km | 1 to 2 km | 2 to 5 km | —— | >5 km |
Climatic zone | Boreal zone, Temperate zone, Subtropical zone | Northern subtropical zone, Central subtropical zone, Southern subtropical zone | Plateau climate, Subtropical climate | —— | —— |
Accumulated temperature above 0 °C | ≥7600 °C | 5800 to 7600 °C | 4000 to 5800 °C | 1500 to 4000 °C | ≤1500 °C |
Wind efficiency index | −299 to −100 | —— | −99 to −10, −400 to −300 | —— | >−10, <−400 |
Distance to fault lines | >36,000 m | 8300–36,000 m | 1600–8300 m | <1600 m | —— |
Value | Carrying Capacity Grade | Suitability Grade |
---|---|---|
49–70 | Low | Unsuitable |
70–76 | Middle-low | Middle Suitability |
77–82 | Middle | |
83–87 | Middle-high | High Suitability |
88–97 | High |
Carrying Capacity Grade | Area/km2 | Proportion/% | Suitability Grade | Area/km2 | Proportion/% |
---|---|---|---|---|---|
Low | 3694.99 | 6.61 | Unsuitable | 3694.99 | 6.61 |
Middle-low | 5515.54 | 9.87 | Middle Suitable | 17,927.64 | 32.09 |
Middle | 12,412.10 | 22.22 | |||
Middle-high | 20,871.65 | 37.36 | High Suitable | 34,241.13 | 61.29 |
High | 13,369.48 | 23.93 |
Area | Built-Up Area | Administrative Division | ||
---|---|---|---|---|
Area of Suitable Area/km2 | % of Suitable Areas | Remaining Suitable Area/km2 | % of Suitable Areas | |
GBA | 5137.15 | 9.85 | 47,031.62 | 90.15 |
Guangzhou | 1235.37 | 18.07 | 5602.84 | 81.93 |
Shenzhen | 1026.34 | 54.72 | 849.29 | 45.28 |
Zhuhai | 162.91 | 11.04 | 1312.70 | 88.96 |
Foshan | 826.95 | 23.28 | 2725.43 | 76.72 |
Huizhou | 107.47 | 1.01 | 10,513.77 | 98.99 |
Dongguan | 1159.19 | 50.91 | 1117.92 | 49.09 |
Zhongshan | 222.07 | 13.59 | 1412.51 | 86.41 |
Jiangmen | 171.05 | 1.96 | 8535.81 | 98.04 |
Zhaoqing | 61.41 | 0.44 | 14,047.08 | 99.56 |
Hong Kong | 141.57 | 13.52 | 905.89 | 86.48 |
Macao | 22.82 | 73.17 | 8.37 | 26.83 |
X1 | X2 | X3 | X4 | X5 | X6 | X7 | X8 | X9 | X10 | X11 | X12 | X13 | X14 | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
GBA | 0.1043 * | 0.0621 * | 0.0001 | 0.1073 * | 0.5669 * | 0.0485 * | 0.0858 * | 0.1442 * | 0.1125 * | 0.0523 * | 0.2208 * | 0.1642 * | 0.1137 * | 0.0319 * |
Guangzhou | 0.1992 * | 0.0651 * | 0.0005 * | 0.1458 * | 0.1206 * | 0.0534 * | 0.3453 * | 0.3600 * | 0.2256 * | 0.0845 * | 0.2053 * | 0.3799 * | 0.3253 * | 0.0813 * |
Shenzhen | 0.2582 * | 0.2239 * | 0.0008 | 0.3838 * | 0.1605 * | 0.0180 * | 0.1175 * | 0.2684 * | 0.2269 * | 0.2152 * | 0.1410 * | 0.3135 * | 0.2259 * | 0.1294 * |
Zhuhai | 0.0547 * | 0.0233 * | 0.0010 | 0.0535 * | 0.0213 * | 0.0098 * | 0.1381 * | 0.0599 * | 0.0943 * | 0.1386 * | 0.2282 * | 0.1598 * | 0.0893 * | 0.0207 * |
Foshan | 0.0511 * | 0.0303 * | 0.0019 * | 0.0622 * | 0.6427 * | 0.0643 * | 0.1229 * | 0.2020 * | 0.3473 * | 0.3125 * | 0.4642 * | 0.2857 * | 0.2706 * | 0.0274 * |
Huizhou | 0.0407 * | 0.0208 * | 0.0001 * | 0.0350 * | 0.4618 * | 0.0111 * | 0.1137 * | 0.0758 * | 0.0362 * | 0.0293 * | 0.2106 * | 0.0755 * | 0.0796 * | 0.0036 * |
Dongguan | 0.2237 * | 0.1454 * | 0.0012 * | 0.2278 * | 0.1137 * | 0.0428 * | 0.0794 * | 0.1637 * | 0.2324 * | 0.2185 * | 0.1579 * | 0.2519 * | 0.1081 * | 0.0453 * |
Zhongshan | 0.0573 * | 0.0257 * | 0.0018 | 0.0704 * | 0.0654 * | 0.0043 * | 0.1869 * | 0.0509 * | 0.1867 * | 0.1211 * | 0.2021 * | 0.0715 * | 0.1482 * | 0.0153 * |
Jiangmen | 0.0122 * | 0.0063 * | 0.0001 | 0.0123 * | 0.5258 * | 0.0042 * | 0.0538 * | 0.0234 * | 0.0871 * | 0.0622 * | 0.1369 * | 0.1143 * | 0.0376 * | 0.0143 * |
Zhaoqing | 0.0266 * | 0.0068 * | 0.0000 | 0.0171 * | 0.0069 * | 0.0071 * | 0.0169 * | 0.0443 * | 0.0186 * | 0.0177 * | 0.0264 * | 0.0265 * | 0.0350 * | 0.0183 * |
Hong Kong | 0.1512 * | 0.0912 * | 0.0009 * | 0.1408 * | 0.0304 * | 0.0368 * | 0.1315 * | 0.1392 * | 0.0483 * | 0.0897 * | 0.1720 * | 0.2036 * | 0.1620 * | 0.0325 * |
Macao | 0.3710 * | 0.1335 * | 0.0363 * | 0.2750 * | 0.0958 * | 0.0971 * | 0.2406 * | 0.1860 * | 0.2687 * | 0.2412 * | 0.2704 * | 0.2117 * | 0.1145 * | 0.2254 * |
Factor | X11 | X12 | X8 | X1 | X4 |
Frequency | 6 | 6 | 4 | 3 | 3 |
Factor | X5 | X9 | X7 | X13 | X10 |
Frequency | 3 | 3 | 2 | 2 | 1 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, Y.; Lin, T.; Zhang, J.; Lin, M.; Chen, Y.; Zheng, Y.; Wang, X.; Liu, Y.; Ye, H.; Zhang, G. Potential and Influencing Factors of Urban Spatial Development under Natural Constraints: A Case Study of the Guangdong-Hong Kong-Macao Greater Bay Area. Land 2024, 13, 783. https://doi.org/10.3390/land13060783
Zhang Y, Lin T, Zhang J, Lin M, Chen Y, Zheng Y, Wang X, Liu Y, Ye H, Zhang G. Potential and Influencing Factors of Urban Spatial Development under Natural Constraints: A Case Study of the Guangdong-Hong Kong-Macao Greater Bay Area. Land. 2024; 13(6):783. https://doi.org/10.3390/land13060783
Chicago/Turabian StyleZhang, Yukui, Tao Lin, Junmao Zhang, Meixia Lin, Yuan Chen, Yicheng Zheng, Xiaotong Wang, Yuqin Liu, Hong Ye, and Guoqin Zhang. 2024. "Potential and Influencing Factors of Urban Spatial Development under Natural Constraints: A Case Study of the Guangdong-Hong Kong-Macao Greater Bay Area" Land 13, no. 6: 783. https://doi.org/10.3390/land13060783
APA StyleZhang, Y., Lin, T., Zhang, J., Lin, M., Chen, Y., Zheng, Y., Wang, X., Liu, Y., Ye, H., & Zhang, G. (2024). Potential and Influencing Factors of Urban Spatial Development under Natural Constraints: A Case Study of the Guangdong-Hong Kong-Macao Greater Bay Area. Land, 13(6), 783. https://doi.org/10.3390/land13060783