Distribution Characteristics, Risk Assessment, and Source Analysis of Heavy Metals in Farmland Soil of a Karst Area in Southwest China
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area and Samping
2.1.1. Study Area
2.1.2. Sample Collection and Analysis
2.1.3. Laboratory Analysis
2.2. Pollution and Risk Assessment Methods
2.2.1. The Single-Factor Index Method
2.2.2. Geocumulative Index (Igeo)
2.3. Source Analysis Method
3. Results
3.1. Heavy Metals in Soil Profiles
3.2. Pollution and Risk Assessment
3.2.1. Evaluation Results of Single-Factor Index Method
3.2.2. Evaluation Results of Geoaccumulation Index
3.3. Characterization of Elements in Groundwater and Soil Water
3.4. Source Analysis of Heavy Metals
3.4.1. Correlation Analysis
3.4.2. Principal Component Analysis (PCA)
3.4.3. Positive Matrix Factorization (PMF)
4. Discussion
4.1. Spatial Distribution and Pollution Analysis of Heavy Metals in Soil
4.2. Sources of Heavy Metals in Soil
5. Conclusions
- (1)
- Heavy metals in the study area all showed accumulation characteristics in the surface 0–30 cm soil layer with the contents of Cd, Cu, Cr, Ni, Pb, and Zn all being higher than the background values of soil elements in Guangxi. Both Cd in the soil profile and Zn and Ni in the agricultural activity area showed an accumulation trend compared to the background values of the C layer soil in Guangxi. The content of available elements gradually decreases from surface to deeper layers, the deep layer heavy metal showed high background and low mobility characteristics.
- (2)
- The Cd elements were contaminated in all groups of profiles, with a moderate to heavy degree of pollution. Zn and Ni elements had mild to moderate pollution in areas with frequent agricultural activities, while non-agricultural activities were in a safe state. The enrichment of Cd, Zn, and Ni in agricultural activity areas increased the risk of soil pollution.
- (3)
- The PCA-PMF analysis showed that there were three sources of heavy metals in the soils: natural sources and anthropogenic sources, including agricultural sources, natural geological background sources, and transportation atmospheric sedimentation sources. Among them, the Cd, Ni, Zn, and Cu in soils were mainly affected by agricultural activities. The Hg, As, Cr, and Cd contents in soil were closely related to the natural geological background. The Pb and Zn were mainly affected by atmospheric sedimentation during transportation. On the whole, agricultural activities and natural geological background were the main contributors of heavy metals in soil, while human activities were the main factors causing heavy metal accumulation and enhanced heavy metal activity in soil.
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Liu, J.W.; Kang, H.; Tao, W.B.; Li, H.Y.; He, D.; Ma, L.X.; Tang, H.J.; Wu, S.Q.; Yang, K.X.; Li, X.X. A spatial distribution—Principal component analysis (SD-PCA) model to assess pollution of heavy metals in soil. Sci. Total Environ. 2023, 859, 160112. [Google Scholar] [CrossRef] [PubMed]
- Feng, Z.G.; Zhou, B.J.; Ma, Q.; Han, S.L. Enrichment Mechanism and Environmental Impact of Heavy Metals in Soil of Karst Area: A Case Study on Pingba Profile in Central Guizhou. J. Univ. South China Sci. Technol. 2020, 34, 1–8. (In Chinese) [Google Scholar]
- He, L.; Wu, C.; Zeng, D.M.; Cheng, X.M.; Sun, B.B. Distribution of Heavy Metals and Ecological Risk of Soils in the Typical Geological Background Region of Southwest China. Rock Miner. Anal. 2021, 40, 395–407. (In Chinese) [Google Scholar]
- Chen, H.M. Environmental Pedology; Science Press: Beijing, China, 2020. (In Chinese) [Google Scholar]
- Han, Q.; Liu, Y.; Feng, X.; Mao, P.; Sun, A.; Wang, M.; Wang, M. Pollution effect assessment of industrial activities on potentially toxic metal distribution in windowsill dust and surface soil in central China. Sci. Total Environ. 2021, 759, 144023. (In Chinese) [Google Scholar] [CrossRef] [PubMed]
- Liu, N.T.; Liu, H.Y.; Wu, P.; Luo, G.F.; Li, X.X. Accumulation characteristics and environmental risk assessment of heavy metals in typical karst soils. J. Agric. Resour. Environ. 2021, 38, 797–809. (In Chinese) [Google Scholar]
- Zhang, J.R.; Li, H.Z.; Zhou, Y.Z.; Dou, L.; Cai, L.M.; Mo, L.P.; You, J. Bioavailability and soil-to-crop transfer of heavy metals in farmland soils: A case study in the Pearl River Delta, South China. Environ. Pollut. 2018, 235, 710–719. [Google Scholar] [CrossRef] [PubMed]
- Rezapour, S.; Atashpaz, B.; Moghaddam, S.S.; Kalavrouziotis, I.K.; Damalas, C.A. Cadmium accumulation, translocation factor, and health risk potential in a wastewater-irrigated soil-wheat (Triticum aestivum L.) system. Chemosphere 2019, 231, 579–587. [Google Scholar] [CrossRef] [PubMed]
- Wang, C.X.; Mo, Z.; Wang, H.; Wang, Z.J.; Cao, Z.H. The transportation, time-dependent distribution of heavy metals in paddy crops. Chemosphere 2003, 50, 717–723. [Google Scholar] [CrossRef]
- Guo, X.D.; Sun, Q.F.; Zhao, Y.S.; Cai, H. Distribution and sources of heavy metals in the farmland soil of the Hunchun basin of Jilin province, China. J. Agro-Environ. Sci. 2018, 37, 1875–1883. (In Chinese) [Google Scholar]
- Li, C.F.; Cao, J.F.; Lv, J.S.; Yao, L.; Wu, Q.Y. Ecological risk assessment of soil heavy metals for different types of land use and evaluation of human health. Environ. Sci. 2018, 39, 5628–5638. (In Chinese) [Google Scholar]
- Liu, S.R.; Wang, T.Y.; Tang, J.; Meng, J.; He, B.; Zhao, H.; Xiao, R.B. Source apportionment methods of soil heavy metals in typical urban units: An empirical study. Acta Ecol. Sin. 2019, 39, 1278–1289. (In Chinese) [Google Scholar]
- Tang, R.L.; Wang, H.Y.; Lv, X.P.; Xu, J.L.; Xu, R.T.; Zhang, F.G. Ecological risk assessment of heavy metals in farmland system from an area with high background of heavy metals, southwestern China. Geoscience 2020, 34, 917–927. (In Chinese) [Google Scholar]
- Sun, Z.Y.; Wen, X.F.; Wu, P.; Liu, H.Y.; Liu, Y.S.; Pan, Q.Z.; Wei, X.; Wu, S.S. Excessive degrees and migration characteristics of heavy metals in typical weathering profiles in karst areas. Earth Environ. 2019, 47, 50–56. (In Chinese) [Google Scholar]
- Luo, H.; Liu, X.M.; Wang, S.J.; Liu, F.; Li, Y. Pollution characteristics and sources of cadmium in soils of the karst area in South China. Chin. J. Ecol. 2018, 37, 1538–1544. (In Chinese) [Google Scholar]
- Tang, S.Q.; Liu, X.J.; Yang, K.; Guo, F.; Yang, Z.; Ma, H.H.; Liu, F.; Peng, M.; Li, K. Migration, Transformation characteristics, and ecological risk evaluation of heavy metal fractions in cultivated soil profiles in a typical carbonate-covered area. Environ. Sci. 2021, 42, 3913–3923. (In Chinese) [Google Scholar]
- Liu, F.; Lan, C.L.; Huang, K.R.; Zhu, Z.J. Contamination and source identification of soil heavy metals in different functional zones at Baise, Guangxi. Earth Environ. 2012, 40, 232–237. (In Chinese) [Google Scholar]
- Song, B.; Zhang, Y.X.; Pang, R.; Yang, Z.J.; Bin, J.; Zhou, Z.Y.; Chen, T.B. Analysis of characteristics and sources of heavy metals in farmland soils in the Xijiang river draining of Guangxi. Environ. Sci. 2018, 39, 4317–4326. (In Chinese) [Google Scholar]
- Song, S.Q.; Hu, W. Cadmium content of soil in karst basin of Guangxi district: Distribution and source recognition. Sci. Technol. Eng. 2015, 15, 237–241. (In Chinese) [Google Scholar]
- Ruan, Y.L.; Li, X.D.; Li, T.Y.; Chen, P.; Lian, B. Heavy metal pollution in agricultural soils of the Karst areas and its harm to human health. Earth Environ. 2015, 43, 92–97. (In Chinese) [Google Scholar]
- Zhang, F.G.; Peng, M.; Wang, H.Y.; Ma, H.H.; Xu, R.T.; Cheng, X.M.; Hou, Z.L.; Chen, Z.W.; Li, K.; Cheng, H.X. Ecological risk assessment of heavy metals at township scale in the high background of heavy metals, southwestern, China. Environ. Sci. 2020, 41, 4197–4209. (In Chinese) [Google Scholar]
- Bao, S.D. Soil and Agricultural Chemistry Analysis; China Agriculture Press: Beijing, China, 2000. (In Chinese) [Google Scholar]
- Zhang, A.G.; Wei, X.P. Pollution and source analysis of heavy metals in soils of typical karst troughs in southwestern China. Environ. Sci. Technol. 2020, 43, 166–176. (In Chinese) [Google Scholar]
- Zhao, H.A.; Zang, L.; Zhang, G.J.; Zhu, Y.M. Soil Heavy Metal Pollution Characteristics and Source Apportionment at County Scale—Take Zhaoxian County as an Example. Chin. J. Soil Sci. 2018, 49, 710–719. (In Chinese) [Google Scholar]
- GB 15618-2018; Soil Environmental Quality Risk Control Standard for Soil Contamination of Agricultural Land. Ministry of Ecology and Environment & State Administration for Market Regulation: Beijing, China, 2018. (In Chinese)
- Müller, G. Index of geoaccumulation in sediments of the Rhine River. Geol. J. 1969, 2, 108–118. [Google Scholar]
- Chen, H.Y.; Teng, Y.G.; Lu, S.J.; Wang, Y.Y.; Wang, J.S. Contamination features and health risk of soil heavy metals in China. Sci. Total Environ. 2015, 512–513, 143–153. [Google Scholar] [CrossRef] [PubMed]
- China National Environmental Monitoring Center. The Background Concentrations of Soil Elements in China; Chinese Environment Science Press: Beijing, China, 1990; pp. 330–382. (In Chinese) [Google Scholar]
- Zheng, W. Study on background values of some heavy metals in agricultural soils in Northeast Guangxi Province. Rural Eco-Environ. 1993, 4, 39–42. (In Chinese) [Google Scholar]
- Wen, Y.B.; Li, W.; Yang, Z.F.; Zhang, Q.Z.; Ji, J.F. Enrichment and source identification of Cd and other heavy metals in soils with high geochemical background in the karst region, Southwestern China. Chemosphere 2020, 245, 125620. (In Chinese) [Google Scholar] [CrossRef] [PubMed]
- Wang, R.; Deng, H.; Yan, M.S.; He, Z.X.; Zhou, J.; Liang, S.B.; Zeng, Q.Q. Assessment and source analysis of heavy metal pollution in farmland soils insouthern Youyang County, Chongqing. Environ. Sci. 2020, 41, 4749–4756. (In Chinese) [Google Scholar]
- Luo, L.; Ma, Y.B.; Zhang, S.Z.; Wei, D.P.; Zhu, Y.G. An inventory of trace element inputs to agricultural soils in China. J. Environ. Manag. 2009, 90, 2524–2530. [Google Scholar] [CrossRef] [PubMed]
- Hao, Y.B. Effects of Biogas Fertilizer on the Crop Quality and Element Content. Master’s Thesis, Nanchang University, Nanchang, China, 2012. (In Chinese). [Google Scholar]
- Wang, J.; Wang, S.J. The sources and crops effect of heavy metal elements of contamination in soil. J. Guizhou Norm. Univ. Nat. Sci. 2005, 23, 113–120. (In Chinese) [Google Scholar]
- Wang, Z.T. The Remediation Study about Humus on Contaminated Soil by Cu and Zn; Kunming University of Science and Technology: Kunming, China, 2017. (In Chinese) [Google Scholar]
- Yu, Y.H.; Lv, J.S.; Wang, Y.M. Source identification and spatial distribution of heavy metals in soils in typical areas around the downstream of Yellow River. Environ. Sci. 2018, 39, 2865–2874. (In Chinese) [Google Scholar]
- Chen, H.X.; Peng, M.; Zhao, C.D.; Han, W.; Wang, H.Y.; Wang, Q.L.; Yang, F.; Zhang, F.G.; Wang, C.W.; Liu, F.; et al. Epigenetic geochemical dynamics and driving mechanisms of distribution patterns of chemical elements in soil, southwest China. Earth Sci. Front. 2019, 26, 159–191. (In Chinese) [Google Scholar]
- Guo, C. Ecological Geochemistry of Cadmium in Soils from a Typical High Geogenic Background Karst Area; Nanjing University: Nanjing, China, 2019. (In Chinese) [Google Scholar]
- Gasiorek, M.; Kowalska, J.; Mazurek, R.; Pajak, M. Comprehensive assessment of heavy metal pollution in topsoil of historical urban park on an example of the Planty Park in Krakow (Poland). Chemosphere 2017, 179, 148–158. [Google Scholar] [CrossRef]
- Xu, T.; Wang, F.; Guo, Q.; Nie, X.Q.; Huang, Y.P.; Chen, J. Transfer characteristic and source identification of soil heavy metals from water-level-fluctuating zone along Xiangxi river, Three-Gorges reservoir Area. Environ. Sci. 2014, 35, 1502–1508. (In Chinese) [Google Scholar]
- Wang, Y.; Xin, C.L.; Yu, S.; Xue, H.L.; Zeng, P.; Sun, P.A.; Liu, F. Evaluation of Heavy Metal Content, Sources, and Potential Ecological Risks in Soils of Southern Hilly Areas. Environ. Sci. 2022, 43, 4756–4766. (In Chinese) [Google Scholar]
- Li, J.; Teng, Y.G.; Wu, J.; Chen, H.Y.; Jiang, J.Y. Uncertainty analysis of soil heavy metal source apportionment by PMF model. China Environ. Sci. 2020, 40, 716–725. (In Chinese) [Google Scholar]
- Reff, A.; Eberly, S.I.; Bhave, P.V. Receptor modeling of ambient particulate matter data using positive matrix factorization: Review of existing methods. J. Air Waste Manag. Assoc. 2007, 57, 146–154. [Google Scholar] [CrossRef]
- Jiang, Y.L.; Yu, J.; Wang, R.; Wang, J.B.; Li, Y.; Yu, F.; Zhang, Y.Y. Source analysis and pollution assessment of soil heavy metals in typical geological high background area in southeastern Chongqing. Environ. Sci. 2023, 44, 4017–4026. (In Chinese) [Google Scholar] [CrossRef]
- Song, B.; Wang, F.P.; Zhou, L.; Wu, Y.; Pang, R.; Chen, T.B. Cd content characteristics and ecological risk assessment of paddy soil in high cadmium anomaly area of Guangxi. Environ. Sci. 2019, 40, 2443–2452. (In Chinese) [Google Scholar]
- Ai, J.C.; Wang, N.; Yang, J. Source apportionment of soil heavy metals in Jiapigou goldmine based on the UNMIX model. Environ. Sci. 2014, 35, 3530–3536. (In Chinese) [Google Scholar]
- Chen, Z.F.; Hua, Y.X.; Xu, W.; Pei, J.C. Analysis of heavy metal pollution sources in suburban farmland based on positive definite matrix factor model. Acta Sci. Circumstantiae 2020, 40, 276–283. (In Chinese) [Google Scholar]
- Dong, L.R.; Hu, W.Y.; Huang, B.; Liu, G.; Qu, M.K.; Kuang, R.X. Source appointment of heavy metals in suburban farmland soils based on positive matrix factorization. China Environ. Sci. 2015, 35, 2103–2111. (In Chinese) [Google Scholar]
- Guo, G.H.; Zhang, H.C. Spatial distribution and pollution assessment of Zn in urban soils of Yibin, Sichuan Province. Geogr. Res. 2011, 30, 125–133. (In Chinese) [Google Scholar]
- Yang, Y.L.; Li, Q.; Ma, T.; Li, C.X.; Teng, Y.J.; Yin, J.M.; Gao, X.X.; Jia, L.Y. Heavy metal pollution in soil and its effect on plants on the main roads of Lanzhou City. J. Lanzhou Univ. Nat. Sci. 2017, 53, 664–670. (In Chinese) [Google Scholar]
- Huang, F.; Wei, X.M.; Zhu, T.B.; Luo, Z.X.; Cao, J.H. Insights into Distribution of Soil Available Heavy Metals in Karst Area and Its Influencing Factors in Guilin, Southwest China. Forests 2021, 12, 609. [Google Scholar] [CrossRef]
- Liu, Y.Z.; Xiao, T.F.; Ning, Z.P.; Li, H.J.; Tang, J.; Zhou, G.Z. High cadmium concentration in soil in the Three Gorges region:Geogenic source and potential bioavailability. Appl. Geochem. 2013, 37, 147–156. [Google Scholar] [CrossRef]
- Liu, Y.Z.; Xiao, T.F.; Zhu, Z.J.; Ma, L.; Li, H.; Ning, Z.P. Geogenic pollution, fractionation and potential risks of Cd and Znin soils from a mountainous region underlain by black shale. Sci. Total Environ. 2020, 760, 143426. [Google Scholar] [CrossRef]
- Shi, J.D.; Zhao, D.; Ren, F.T.; Huang, L. Spatiotemporal variation of soil heavy metals in China: The pollution status and risk assessment. Sci. Total Environ. 2023, 871, 161768. [Google Scholar] [CrossRef]
- Yang, Q.Q.; Li, Z.Y.; Lu, X.N.; Duan, Q.N.; Huang, L.; Bi, J. A review of soil heavy metal pollution from industrial and agricultural regions in China: Pollution and risk assessment. Sci. Total Environ. 2018, 642, 690–700. [Google Scholar] [CrossRef]
- Yu, E.J.; Liu, H.Y.; Dinis, F.; Zhang, Q.Y.; Jing, Y.; Liu, F.; Ju, X.H. Contamination Evaluation and Source Analysis of Heavy Metals in Karst Soil Using UNMIX Model and Pb-Cd Isotopes. Int. J. Environ. Res. Public Health 2022, 19, 12478. [Google Scholar] [CrossRef]
- Yang, Q.; Yang, Z.F.; Filippelli, G.M.; Ji, J.F.; Ji, W.B.; Liu, X.; Wang, l.; Yu, T.; Wu, T.S.; Zhuo, X.X.; et al. Distribution and secondary enrichment of heavy metal elements in karstic soils with high geochemical background in Guangxi, China. Chem. Geol. 2021, 567, 120081. [Google Scholar] [CrossRef]
- Zhang, Z.M.; Wu, X.L.; Tu, C.L.; Huang, X.F.; Zhang, J.C.; Fang, H.; Huo, H.H.; Lin, C.H. Relationships between soil properties and the accumulation of heavy metals in different Brassica campestris L. growth stages in a Karst mountainous area. Ecotoxicol. Environ. Saf. 2020, 206, 111150. [Google Scholar] [CrossRef]
- Qin, Y.L.; Zhang, F.G.; Xue, S.D.; Ma, T.; Yu, L.S. Heavy Metal Pollution and Source Contributions in Agricultural Soils Developed from Karst Landform in the Southwestern Region of China. Toxics 2022, 10, 568. [Google Scholar] [CrossRef]
- Sun, Z.X.; Jiang, Y.Y.; Wang, Q.B.; Owens, P.R. Fe-Mn nodules in a southern Indiana loess with a fragipan and their soil forming signifcance. Geoderma 2018, 313, 92–111. [Google Scholar] [CrossRef]
- Dijkstra, E.F. A micromorphological study on the development of humus profiles in heavy metal polluted and non-polluted forest soils under Scots pine. Geoderma 1998, 82, 341–358. [Google Scholar] [CrossRef]
- Xiao, J.; Chen, W.; Wang, L.; Zhang, X.K.; Wen, Y.B.; Bostick, B.C.; Wen, Y.L.; He, X.H.; Zhang, L.Y.; Zhuo, X.X.; et al. New strategy for exploring the accumulation of heavy metals in soils derived from different parent materials in the karst region of southwestern China. Geoderma 2022, 417, 115806. [Google Scholar] [CrossRef]
Profile | Parent Material | Location | Land Use Type | Depth (cm) |
---|---|---|---|---|
HS-O | limestone | hill foot | orchard land | 100 |
HS-CK | limestone | hillside | secondary forest land | 40 |
HS-HD | limestone | hill foot | abandoned land | 100 |
Profile | Cd | As | Cr | Pb | Hg | Zn | Cu | Ni |
---|---|---|---|---|---|---|---|---|
HS-O | 1.31 | 24.25 | 115.63 | 49.53 | 0.03 | 464.33 | 58.89 | 122.47 |
HS-CK | 1.45 | 18.96 | 101.40 | 36.54 | 0.03 | 254.54 | 32.47 | 74.87 |
HS-HD | 1.07 | 25.83 | 118.41 | 101.76 | 0.03 | 528.74 | 61.72 | 121.58 |
Guangxi topsoil [27] | 1.05 | 23.70 | 112.90 | 42.40 | 0.23 | 110.50 | 29.30 | 37.70 |
Background values of soil elements in Guangxi [28] | 0.18 | 24.80 | 86.30 | 23.60 | 0.18 | 83.30 | 31.80 | 30.30 |
A layer of limestone soil in northeastern Guangxi [29] | 3.25 | 32.92 | 135.77 | 49.63 | 0.23 | 324.87 | 55.80 | 78.86 |
Profile | Cd | As | Cr | Pb | Hg | Zn | Cu | Ni |
---|---|---|---|---|---|---|---|---|
HS-O | 2.28 | −0.62 | −0.16 | 0.48 | −3.17 | 1.89 | 0.30 | 1.43 |
HS-CK | 2.43 | −0.98 | −0.35 | 0.04 | −3.18 | 1.02 | −0.56 | 0.72 |
HS-HD | 1.98 | −0.54 | −0.13 | 1.51 | −3.32 | 2.08 | 0.37 | 1.42 |
Sample | Cu | Pb | Zn | Cr | Ni | Cd | As | Hg | Location |
---|---|---|---|---|---|---|---|---|---|
HS-1 | <0.09 | <0.07 | <0.8 | 1.52 | 1.08 | <0.06 | 0.14 | <0.07 | foothill spring |
HS-2 | 0.58 | <0.07 | <0.8 | 1.74 | 1.46 | <0.06 | 0.14 | 0.076 | orchard spring |
25 cm | 198.60 | 21.06 | 245.20 | 14.56 | 43.46 | <0.06 | 1.67 | 10.81 | soil water |
50 cm | 106.80 | 10.45 | 243.00 | 4.17 | 15.28 | <0.06 | 0.44 | 0.76 |
Heavy Metal | F1 | F2 | F3 | F4 |
---|---|---|---|---|
Cd | 0.310 | −0.120 | 0.923 | −0.064 |
As | 0.183 | 0.766 | −0.438 | 0.234 |
Cr | 0.726 | 0.571 | −0.041 | 0.056 |
Pb | 0.311 | 0.240 | −0.098 | 0.908 |
Hg | −0.079 | 0.964 | 0.030 | 0.103 |
Zn | 0.886 | −0.044 | 0.255 | 0.365 |
Cu | 0.965 | 0.081 | 0.031 | 0.198 |
Ni | 0.928 | −0.030 | 0.298 | 0.092 |
Eigenvalue | 3.34 | 1.92 | 1.21 | 1.08 |
Contribution | 41.70 | 24.03 | 15.15 | 13.47 |
Total Contribution | 41.70 | 65.73 | 80.87 | 94.35 |
Analysis Method | Source Number | Heavy Metal | Pollution Source | Contribution/% |
---|---|---|---|---|
PCA | Source 1 | Cr, Cu, Ni, Zn | agricultural sources | 41.69 |
Source 2 | As, Cr, Hg | natural sources | 21.03 | |
Source 3 | Cd | agricultural and natural sources | 15.15 | |
Source 4 | Pb | traffic atmospheric sedimentation | 13.47 | |
PMF model | Source 1 | Cd, Cu, Ni, Zn | agricultural sources | 39.93 |
Source 2 | As, Cd, Cr, Cu, Hg, Ni | natural sources | 26.93 | |
Source 3 | Cu, Ni, Pb, Zn | traffic atmospheric sedimentation | 33.14 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ma, Y.; Ning, J.; Yang, H.; Zhang, L.; Xu, C.; Huang, C.; Liang, J. Distribution Characteristics, Risk Assessment, and Source Analysis of Heavy Metals in Farmland Soil of a Karst Area in Southwest China. Land 2024, 13, 979. https://doi.org/10.3390/land13070979
Ma Y, Ning J, Yang H, Zhang L, Xu C, Huang C, Liang J. Distribution Characteristics, Risk Assessment, and Source Analysis of Heavy Metals in Farmland Soil of a Karst Area in Southwest China. Land. 2024; 13(7):979. https://doi.org/10.3390/land13070979
Chicago/Turabian StyleMa, Yiqi, Jing Ning, Hui Yang, Liankai Zhang, Can Xu, Chao Huang, and Jianhong Liang. 2024. "Distribution Characteristics, Risk Assessment, and Source Analysis of Heavy Metals in Farmland Soil of a Karst Area in Southwest China" Land 13, no. 7: 979. https://doi.org/10.3390/land13070979
APA StyleMa, Y., Ning, J., Yang, H., Zhang, L., Xu, C., Huang, C., & Liang, J. (2024). Distribution Characteristics, Risk Assessment, and Source Analysis of Heavy Metals in Farmland Soil of a Karst Area in Southwest China. Land, 13(7), 979. https://doi.org/10.3390/land13070979