Identification of Potential Land Use Conflicts in Shandong Province: A New Framework
Abstract
:1. Introduction
2. Study Area and Data Sources
2.1. Study Area
2.2. Data Sources
3. Research Process and Methods
3.1. Conceptual Framework
3.2. Identification of Potential LUC
3.2.1. Developing Multi-Criteria Evaluation System
Evaluation of LUMS
- (1)
- Construction suitability
- (2)
- Evaluation of cultivation suitability
- (3)
- Evaluation of ecological suitability
Evaluation of LRS
Evaluation of DD
3.2.2. Indicator Grading Assignment, Weight Determination, and Multi-Objective Evaluation Model
3.2.3. Classification of Potential LUC
4. Results
4.1. Spatial Distribution Characteristics of LUMS
4.1.1. Construction Suitability
4.1.2. Cultivation Suitability
4.1.3. Ecological Suitability
4.1.4. LUMS
4.2. Spatial Distribution Characteristics of LRS
4.2.1. Construction Land Scarcity
4.2.2. Cultivated Land Scarcity
4.2.3. Ecological Land Scarcity
4.2.4. LRS
4.3. Spatial Distribution Characteristics of DD
4.3.1. Diversity of Human Demands
4.3.2. Diversity of Wildlife Demands
4.3.3. DD
4.4. Results of Potential LUC Identification
4.4.1. Spatial Distribution of Potential LUC
4.4.2. Current Land Use Types under Different Potential LUC Intensities
4.5. Governance Strategy of LUC Based on Inducement
5. Discussion
5.1. Land Use Implications
- (1)
- Pay attention to tapping potential reserves and improve the efficiency of construction land
- (2)
- Strengthen cultivated land “quantity, quality, and ecology” trinity protection
- (3)
- Adhere to “bottom line” thinking and protect ecological land
5.2. Advantages, Application Scope, and Limitations of the Proposed New Framework and Future Work
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Parveen, S.; Basheer, J.; Praveen, B. A literature review on land use land cover changes. Int. J. Adv. Res. 2018, 6, 1–6. [Google Scholar] [CrossRef]
- Ma, W.Q.; Jiang, G.H.; Wang, D.Q.; Li, W.Q.; Guo, H.Q.; Zheng, Q.Y. Rural settlements transition (RST) in a suburban area of metropolis: Internal structure perspectives. Sci. Total Environ. 2018, 615, 672–680. [Google Scholar] [CrossRef] [PubMed]
- Zhang, R.; Jiang, G.; Zhang, Q. Does urbanization always lead to rural hollowing? Assessing the spatio-temporal variations in this relationship at the county level in China 2000–2015. J. Clean. Prod. 2019, 220, 9–22. [Google Scholar] [CrossRef]
- Kuang, W.H. National urban land-use/cover change since the beginning of the 21st century and its policy implications in China. Land Use Policy 2020, 97, 104747. [Google Scholar] [CrossRef]
- Long, H.; Ma, L.; Zhang, Y.; Qu, L. Multifunctional rural development in China: Pattern, process and mechanism. Habitat Int. 2022, 121, 102530. [Google Scholar] [CrossRef]
- Jiang, S.; Meng, J.; Zhu, L. Spatial and temporal analyses of potential land use conflict under the constraints of water resources in the middle reaches of the Heihe River. Land Use Policy 2020, 97, 104773. [Google Scholar] [CrossRef]
- Jiang, S.; Meng, J.; Zhu, L.; Cheng, H. Spatial-temporal pattern of land use conflict in China and its multilevel driving mechanisms. Sci. Total Environ. 2021, 801, 149697. [Google Scholar] [CrossRef] [PubMed]
- Zou, L.; Liu, Y.; Wang, J.; Yang, Y.; Wang, Y. Land use conflict identification and sustainable development scenario simulation on China’s southeast coast. J. Clean. Prod. 2019, 238, 117899. [Google Scholar] [CrossRef]
- Zong, S.; Hu, Y.; Zhang, Y.; Wang, W. Identification of land use conflicts in China’s coastal zones: From the perspective of ecological security. Ocean. Coast. Manag. 2021, 213, 105841. [Google Scholar] [CrossRef]
- Cieślak, I. Identification of areas exposed to land use conflict with the use of multiple-criteria decision-making methods. Land Use Policy 2019, 89, 104225. [Google Scholar] [CrossRef]
- Dadashpoor, H.; Ahani, S. Land tenure-related conflicts in peri-urban areas: A review. Land Use Policy 2019, 85, 218–229. [Google Scholar] [CrossRef]
- Campbell, D.J.; Gichohi, H.; Mwangi, A.; Chege, L. Land use conflict in Kajiado District, Kenya. Land Use Policy 2000, 17, 337–348. [Google Scholar] [CrossRef]
- von der Dunk, A.; Grêt-Regamey, A.; Dalang, T.; Hersperger, A.M. Defining a typology of peri-urban land-use conflicts—A case study from Switzerland. Landsc. Urban Plan. 2011, 101, 149–156. [Google Scholar] [CrossRef]
- Valle Junior, R.F.; Varandas, S.G.P.; Sanches Fernandes, L.F.; Pacheco, F.A.L. Environmental land use conflicts: A threat to soil conservation. Land Use Policy 2014, 41, 172–185. [Google Scholar] [CrossRef]
- Karimi, A.; Brown, G. Assessing multiple approaches for modelling land-use conflict potential from participatory mapping data. Land Use Policy 2017, 67, 253–267. [Google Scholar] [CrossRef]
- Punzo, G.; Castellano, R.; Bruno, E. Using geographically weighted regressions to explore spatial heterogeneity of land use influencing factors in Campania (Southern Italy). Land Use Policy 2022, 112, 105853. [Google Scholar] [CrossRef]
- Bai, X.M.; Shi, P.J.; Liu, Y.S. Realizing China’s urban dream. Nature 2014, 509, 158–160. [Google Scholar] [CrossRef] [PubMed]
- Lin, Q.; Tan, S.; Zhang, L.; Wang, S.; Wei, C.; Li, Y. Conflicts of land expropriation in China during 2006–2016: An overview and its spatio-temporal characteristics. Land Use Policy 2018, 76, 246–251. [Google Scholar] [CrossRef]
- Wan, J.; Liu, Y.; Zhang, X. Conflict in informal rural construction land transfer practices in China: A case of Hubei. Land Use Policy 2021, 109, 105573. [Google Scholar]
- Song, W.; Pijanowski, B.C.; Tayyebi, A. Urban expansion and its consumption of high-quality farmland in Beijing, China. Ecol. Indic. 2015, 54, 60–70. [Google Scholar] [CrossRef]
- Tan, M.H.; Li, X.B.; Xie, H.; Lu, C.H. Urban land expansion and arable land loss in China—A case study of Beijing-Tianjin-Hebei region. Land Use Policy 2005, 22, 187–196. [Google Scholar] [CrossRef]
- Zhu, F.; Zhang, F.; Li, C.; Zhu, T. Functional transition of the rural settlement: Analysis of land-use differentiation in a transect of Beijing, China. Habitat Int. 2014, 41, 262–271. [Google Scholar] [CrossRef]
- Lin, G.; Fu, J.; Jiang, D. Production–Living–Ecological Conflict Identification Using a Multiscale Integration Model Based on Spatial Suitability Analysis and Sustainable Development Evaluation: A Case Study of Ningbo, China. Land 2021, 10, 383. [Google Scholar] [CrossRef]
- Sun, C.; Xu, S.; Qi, W.; Chen, C.; Deng, Y.; Pei, N.; Knig, H.J. Biodiversity constraint indicator establishment and its optimization for urban growth: Framework and application. Environ. Res. Lett. 2019, 14, 125006. [Google Scholar] [CrossRef]
- Bao, W.; Yang, Y.; Zou, L. How to reconcile land use conflicts in mega urban agglomeration? A scenario-based study in the Beijing-Tianjin-Hebei region, China. J. Environ. Manag. 2021, 296, 113168. [Google Scholar] [CrossRef]
- Bax, V.; Francesconi, W.; Delgado, A. Land-use conflicts between biodiversity conservation and extractive industries in the Peruvian Andes. J. Environ. Manag. 2019, 232, 1028–1036. [Google Scholar] [CrossRef]
- Iojă, C.I.; Niţă, M.R.; Vânău, G.O.; Onose, D.A.; Gavrilidis, A.A. Using multi-criteria analysis for the identification of spatial land-use conflicts in the Bucharest Metropolitan Area. Ecol. Indic. 2014, 42, 112–121. [Google Scholar] [CrossRef]
- Kim, I.; Arnhold, S. Mapping environmental land use conflict potentials and ecosystem services in agricultural watersheds. Sci. Total Environ. 2018, 630, 827–838. [Google Scholar] [CrossRef]
- Li, S.; Zhu, C.; Lin, Y.; Dong, B.; Chen, B.; Si, B.; Li, Y.; Deng, X.; Gan, M.; Zhang, J.; et al. Conflicts between agricultural and ecological functions and their driving mechanisms in agroforestry ecotone areas from the perspective of land use functions. J. Clean. Prod. 2021, 317, 128453. [Google Scholar] [CrossRef]
- Dong, G.; Ge, Y.; Jia, H.; Sun, C.; Pan, S. Land Use Multi-Suitability, Land Resource Scarcity and Diversity of Human Needs: A New Framework for Land Use Conflict Identification. Land 2021, 10, 1003. [Google Scholar] [CrossRef]
- Zhou, D.; Lin, Z.; Lim, S.H. Spatial characteristics and risk factor identification for land use spatial conflicts in a rapid urbanization region in China. Environ. Monit. Assess. 2019, 191, 677.1–677.22. [Google Scholar] [CrossRef] [PubMed]
- Gao, Y.; Wang, J.; Zhang, M.; Li, S. Measurement and prediction of land use conflict in an opencast mining area. Resour. Policy 2021, 71, 101999. [Google Scholar] [CrossRef]
- Ma, W.Q.; Jiang, G.H.; Chen, Y.H.; Qu, Y.B.; Zhou, T.; Li, W.Q. How feasible is regional integration for reconciling land use conflicts across the urban-rural interface? Evidence from Beijing-Tianjin-Hebei metropolitan region in China. Land Use Policy 2020, 92, 104433. [Google Scholar] [CrossRef]
- Zuo, Q.; Zhou, Y.; Wang, L.; Li, Q.; Liu, J. Impacts of future land use changes on land use conflicts based on multiple scenarios in the central mountain region, China. Ecol. Indic. 2022, 137, 108743. [Google Scholar] [CrossRef]
- Brown, G.; Raymond, C.M. Methods for identifying land use conflict potential using participatory mapping. Landsc. Urban Plan. 2014, 122, 196–208. [Google Scholar] [CrossRef]
- Zou, L.; Liu, Y.; Wang, J.; Yang, Y. An analysis of land use conflict potentials based on ecological-production-living function in the southeast coastal area of China. Ecol. Indic. 2021, 122, 107297. [Google Scholar] [CrossRef]
- Dong, G.; Ge, Y.; Zhu, W.; Qu, Y.; Zhang, W. Coupling Coordination and Spatiotemporal Dynamic Evolution Between Green Urbanization and Green Finance: A Case Study in China. Front. Environ. Sci. 2021, 8, 621846. [Google Scholar] [CrossRef]
- Liu, Y.S.; Li, Y.H. Revitalize the world’s countryside. Nature 2017, 548, 275–277. [Google Scholar] [CrossRef]
- Yang, P.; Peng, S.; Benani, N.; Dong, L.; Li, X.; Liu, R.; Mao, G. An integrated evaluation on China’s provincial carbon peak and carbon neutrality. J. Clean. Prod. 2022, 377, 134497. [Google Scholar] [CrossRef]
- Maslow, A.H. A theory of human motivation. Psychol. Rev. 1943, 50, 370–396. [Google Scholar] [CrossRef]
- Dong, G.; Zhang, W.; Xu, X.; Jia, K. Multi-Dimensional Feature Recognition and Policy Implications of Rural Human–Land Relationships in China. Land 2021, 10, 1086. [Google Scholar] [CrossRef]
- Li, X.; Zhou, W.; Ouyang, Z. Forty years of urban expansion in Beijing: What is the relative importance of physical, socioeconomic, and neighborhood factors? Appl. Geogr. 2013, 38, 1–10. [Google Scholar] [CrossRef]
- Dong, G.L.; Xu, E.Q.; Zhang, H.Q. Spatiotemporal Variation of Driving Forces for Settlement Expansion in Different Types of Counties. Sustainability 2016, 8, 39. [Google Scholar] [CrossRef]
- Li, G.D.; Sun, S.A.; Fang, C.L. The varying driving forces of urban expansion in China: Insights from a spatial-temporal analysis. Landsc. Urban Plan. 2018, 174, 63–77. [Google Scholar] [CrossRef]
- Ren, Y.; Qian, X.U.; Xuanfang, X.U.; Yanchun, C. Rural settlement spatial patterns and effects: Road traffic accessibility and geographic factors in Guangdong Province, China. J. Geogr. Sci. 2019, 29, 213–230. [Google Scholar]
- Zhang, Q.W.; Su, S.L. Determinants of urban expansion and their relative importance: A comparative analysis of 30 major metropolitans in China. Habitat Int. 2016, 58, 89–107. [Google Scholar] [CrossRef]
- Zhu, X.; Xiao, G.; Wang, S. Suitability evaluation of potential arable land in the Mediterranean region. J. Environ. Manag. 2022, 313, 115011. [Google Scholar] [CrossRef] [PubMed]
- Moisa, M.B.; Tiye, F.S.; Dejene, I.N.; Gemeda, D.O. Land suitability analysis for maize production using geospatial technologies in the Didessa watershed, Ethiopia. Artif. Intell. Agric. 2022, 6, 34–46. [Google Scholar] [CrossRef]
- Andersen, P.S.; Vejre, H.; Dalgaard, T.; Brandt, J. An indicator-based method for quantifying farm multifunctionality. Ecol. Indic. 2013, 25, 166–179. [Google Scholar] [CrossRef]
- Lai, Z.H.; Chen, M.Q.; Liu, T.J. Changes in and prospects for cultivated land use since the reform and opening up in China. Land Use Policy 2020, 97, 9. [Google Scholar] [CrossRef]
- Jiang, G.; Wang, M.; Qu, Y.; Zhou, D.; Ma, W. Towards cultivated land multifunction assessment in China: Applying the “influencing factors-functions-products-demands” integrated framework. Land Use Policy 2020, 99, 104982. [Google Scholar] [CrossRef]
- Wang, X.; Song, X.; Wang, Y.; Xu, H.; Ma, Z. Understanding the distribution patterns and underlying mechanisms of non-grain use of cultivated land in rural China. J. Rural. Stud. 2024, 106, 103223. [Google Scholar] [CrossRef]
- Lu, D.; Wang, Z.; Su, K.; Zhou, Y.; Li, X.; Lin, A. Understanding the impact of cultivated land-use changes on China’s grain production potential and policy implications: A perspective of non-agriculturalization, non-grainization, and marginalization. J. Clean. Prod. 2024, 436, 140647. [Google Scholar] [CrossRef]
- Jiang, Y.; Long, H.; Ives, C.D.; Deng, W.; Chen, K.; Zhang, Y. Modes and practices of rural vitalisation promoted by land consolidation in a rapidly urbanising China: A perspective of multifunctionality. Habitat Int. 2022, 121, 102514. [Google Scholar] [CrossRef]
- Ma, W.Q.; Jiang, G.H.; Li, W.Q.; Zhou, T.; Zhang, R.J. Multifunctionality assessment of the land use system in rural residential areas: Confronting land use supply with rural sustainability demand. J. Environ. Manag. 2019, 231, 73–85. [Google Scholar] [CrossRef] [PubMed]
- Liu, C.; Song, Y.; Chang, L.; Dong, G. Tripartite Coordinated Regulation of New Energy Vehicles Based on Dynamic Bayesian Game. Front. Environ. Sci. 2021, 9, 649008. [Google Scholar] [CrossRef]
- Xie, H.; Jin, S. Evolutionary Game Analysis of Fallow Farmland Behaviors of Different Types of Farmers and Local Governments. Land Use Policy 2019, 88, 104122. [Google Scholar] [CrossRef]
- Xie, H.; Wang, W.; Zhang, X. Evolutionary game and simulation of management strategies of fallow cultivated land: A case study in Hunan province, China. Land Use Policy 2018, 71, 86–97. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions, and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions, or products referred to in the content. |
Category | Datasets | Resolution | Data Sources |
---|---|---|---|
Geospatial data | DEM | 90 × 90 m | Geospatial data Cloud (http://www.gscloud.cn, accessed on 9 April 2022) |
Geological hazard susceptibility map | Vector | Shandong provincial geological environment monitoring station | |
Land use data of 2020 | 1000 × 1000 m | Resources and Environmental Science and Data Center (https://www.resdc.cn, accessed on 2 May 2022) | |
Rainfall of 2020 | 1000 × 1000 m | Resources and Environmental Science and Data Center (https://www.resdc.cn, accessed on 2 May 2022) | |
Surface soil texture | 1000 × 1000 m | Resources and Environmental Science and Data Center (https://www.resdc.cn, accessed on 2 May 2022) | |
Soil thickness | 1000 × 1000 m | National Earth System Science Data Center (http://www.geodata.cn/index.html, accessed on 3 May 2022) | |
NDVI of 2020 | 100 × 100 m | Resources and Environmental Science and Data Center (https://www.resdc.cn, accessed on2 May 2022) | |
NPP of 2020 | 1000 × 1000 m | Resources and Environmental Science and Data Center (https://www.resdc.cn, accessed on 2 May 2022) | |
Social and economic statistics | Total population, urban population, rural population, GDP, per capita disposable income of urban residents, and that of rural residents of each district and county in 2020 | County level | Statistical yearbook of prefecture-level cities of Shandong Province in 2021 |
Factor (Weights) | Indicator | Weights | Indicator Classification and Score | ||||
---|---|---|---|---|---|---|---|
100 | 80 | 60 | 40 | 20 | |||
Natural conditions (0.6) | DEM (m) | 0.40 | <50 | 50–70 | 70–163 | 163–291 | >291 |
Slope (°) | 0.15 | <2 | 2–6 | 6–15 | 15–25 | >25 | |
Susceptibility to geological hazards | 0.45 | None | — | Low | Medium | High | |
Location conditions (0.4) | Distance to town (km) | 0.75 | <1.5 | 1.5–3.0 | 3.0–5.0 | 5.0–8.0 | >8.0 |
Distance to main road (km) | 0.25 | <1 | 1–2 | 2–4 | 4–6 | >6 |
Factor (Weight) | Indicator | Weight | Indicator Classification and Score | ||||
---|---|---|---|---|---|---|---|
100 | 80 | 60 | 40 | 20 | |||
Natural endowment (0.75) | DME (m) | 0.3473 | <50 | 50–70 | 70–163 | 163–291 | >291 |
Slope (°) | 0.1213 | <2 | 2–6 | 6–15 | 15–25 | >25 | |
Rainfall | 0.1285 | >679.89 | 609.75–679.89 | 535.35–609.75 | 454.57–535.35 | <454.57 | |
Surface soil texture | 0.2427 | Silt loam | Loam | Silty clay loam | Clay loam; sandy loam | Silt | |
Soil thickness | 0.1601 | >162 | 140–162 | 115–140 | 90–115 | <90 | |
Cultivation convenience (0.25) | Distance to rural settlement (km) | 0.6667 | <1 | 1–2 | 2–3 | 3–4 | >4 |
Distance to road of town and village | 0.3333 | <1 | 1–2 | 2–3 | 3–4 | >4 |
Factor (Weight) | Indicator | Weight | Indicator Classification and Score | ||||
---|---|---|---|---|---|---|---|
100 | 80 | 60 | 40 | 20 | |||
Natural endowment (0.3) | NDVI | 0.6667 | >0.76 | 0.65–0.76 | 0.49–0.65 | 0.23–0.49 | <0.23 |
Rainfall (mm) | 0.3333 | >679.89 | 609.75–679.89 | 535.35–609.75 | 454.57–535.35 | <454.57 | |
Human disturbance (0.7) | Distance to town | 0.2761 | >10 | 8–10 | 5–8 | 3–5 | <3 |
Distance to rural settlement | 0.1953 | >4 | 3–4 | 2–3 | 1–2 | <1 | |
Distance to road | 0.1381 | >5 | 3–5 | 2–3 | 1–2 | <1 | |
Land use type | 0.3905 | Water; forest; grassland; wetland | Cultivated land; unused land | Construction land |
Factor | Indicator | Indicator Classification and Score | ||||
---|---|---|---|---|---|---|
100 | 80 | 60 | 40 | 20 | ||
Construction land scarcity (0.2) | Per capita urban land area (0.6667) | <90.06 | 90.06–151.82 | 151.82–245.12 | 245.12–383.20 | >383.20 |
Per capita rural settlement area (0.3333) | <125.5 | 125.5–234.9 | 234.9–347.4 | 234.9–520 | >520 | |
Cultivated land scarcity (0.4) | Per capita cultivated land area | <333.95 | 333.95–930.24 | 930.24–1468.03 | 1468.03–2845.16 | >2845.16 |
Ecological land scarcity (0.4) | Per capita forest land area (0.3333) | <45.52 | 45.52–172.11 | 172.11–320.42 | 320.42–533.27 | >533.27 |
Per capita grassland area (0.3333) | <38.15 | 38.15–119.48 | 119.48–249.06 | 249.06–419.51 | >419.51 | |
Per capita water area (0.3333) | <41.52 | 41.52–110.19 | 110.19–296.19 | 296.19–625.94 | >625.94 |
Factor | Indicator | Indicator Classification and Score | ||||
---|---|---|---|---|---|---|
100 | 80 | 60 | 40 | 20 | ||
Human demands (0.5) | Total population (0.2310) | >111.2 | 74.00–111.2 | 58.50–74.00 | 40.40–58.50 | <40.40 |
GDP (0.4901) | >1100.89 | 640.17–1100.89 | 432.70–640.17 | 268.96–432.70 | <268.96 | |
Per capita disposable income of urban residents (0.1634) | >37,118 | 32,032–37,118 | 26,529–32,032 | 21,920–26,529 | <21,920 | |
Per capita disposable income of farmers (0.1155) | >16,447 | 14,297–16,447 | 12,209–14,297 | 10,721–12,209 | <10,721 | |
Wildlife demands (0.5) | Biodiversity index |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Dong, G.; Sun, Z.; Li, W.; Wang, K.; Yuan, C. Identification of Potential Land Use Conflicts in Shandong Province: A New Framework. Land 2024, 13, 1203. https://doi.org/10.3390/land13081203
Dong G, Sun Z, Li W, Wang K, Yuan C. Identification of Potential Land Use Conflicts in Shandong Province: A New Framework. Land. 2024; 13(8):1203. https://doi.org/10.3390/land13081203
Chicago/Turabian StyleDong, Guanglong, Zengyu Sun, Wei Li, Keqiang Wang, and Chenzhao Yuan. 2024. "Identification of Potential Land Use Conflicts in Shandong Province: A New Framework" Land 13, no. 8: 1203. https://doi.org/10.3390/land13081203
APA StyleDong, G., Sun, Z., Li, W., Wang, K., & Yuan, C. (2024). Identification of Potential Land Use Conflicts in Shandong Province: A New Framework. Land, 13(8), 1203. https://doi.org/10.3390/land13081203