How Land Transfer Affects Agricultural Carbon Emissions: Evidence from China
Abstract
:1. Introduction
2. Analysis of Mechanisms and Research Hypotheses
2.1. Mechanism of the “Direct Effect” of Land Transfer on Agricultural Carbon Emissions
2.2. The Mechanism Underlying the “Moderating Effect” of Land Transfer on Agricultural Carbon Emissions
2.3. The Mechanism of the “Spatial Effect” of Land Transfer on Agricultural Carbon Emissions
3. Materials and Methods
3.1. Model Design
3.1.1. Benchmark Regression Model
3.1.2. Moderation Effect Model
3.1.3. Spatial Econometric Model
3.2. Variable Selection
3.2.1. Explained Variable
3.2.2. Core Explanatory Variable
3.2.3. Moderating Variable
3.2.4. Control Variables
3.3. Data Sources and Descriptive Statistics
4. Results and Discussion
4.1. Analysis of Spatio-Temporal Evolution
4.2. Benchmark Regression and Robustness Tests
4.3. Heterogeneity Analysis Based on Functional Areas
4.4. Analysis of the Moderating Effect
4.5. Spatial Effects
4.5.1. Spatial Autocorrelation Test
4.5.2. Spatial Econometric Model Validation
4.5.3. Analysis of Regression Test Results
4.5.4. Spatial Effect Decomposition
5. Conclusions and Policy Recommendations
5.1. Research Conclusions
5.2. Policy Recommendations
5.2.1. Improve the Rural Land Transfer System
5.2.2. Enhance Agricultural Socialized Services
5.2.3. Promote Coordinated Regional Development
5.3. Limitations and Future Prospects
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Shen, M.; Huang, W.; Chen, M.; Song, B.; Zeng, G.; Zhang, Y. (Micro) plastic crisis: Un-ignorable contribution to global greenhouse gas emissions and climate change. J. Clean. Prod. 2020, 254, 120138. [Google Scholar] [CrossRef]
- Hoegh-Guldberg, O.; Jacob, D.; Taylor, M.; Guillén Bolaños, T.; Bindi, M.; Brown, S.; Camilloni, I.A.; Diedhiou, A.; Djalante, R.; Ebi, K.; et al. The human imperative of stabilizing global climate change at 1.5 C. Science 2019, 365, w6974. [Google Scholar] [CrossRef] [PubMed]
- Aguilera, E.; Reyes-Palomo, C.; Díaz-Gaona, C.; Sanz-Cobena, A.; Smith, P.; García-Laureano, R.; Rodríguez-Estévez, V. Greenhouse gas emissions from Mediterranean agriculture: Evidence of unbalanced research efforts and knowledge gaps. Glob. Environ. Chang. 2021, 69, 102319. [Google Scholar] [CrossRef]
- Sun, D.; Cai, S.; Yuan, X.; Zhao, C.; Gu, J.; Chen, Z.; Sun, H. Decomposition and decoupling analysis of carbon emissions from agricultural economic growth in China’s Yangtze River economic belt. Environ. Geochem. Health 2022, 44, 2987–3006. [Google Scholar] [CrossRef] [PubMed]
- Laborde, D.; Mamun, A.; Martin, W.; Piñeiro, V.; Vos, R. Agricultural subsidies and global greenhouse gas emissions. Nat. Commun. 2021, 12, 2601. [Google Scholar] [CrossRef] [PubMed]
- Verge, X.P.; De Kimpe, C.; Desjardins, R.L. Agricultural production, greenhouse gas emissions and mitigation potential. Agric. For. Meteorol. 2007, 142, 255–269. [Google Scholar] [CrossRef]
- Carlson, K.M.; Gerber, J.S.; Mueller, N.D.; Herrero, M.; MacDonald, G.K.; Brauman, K.A.; Havlik, P.; O’Connell, C.S.; Johnson, J.A.; Saatchi, S.; et al. Greenhouse gas emissions intensity of global croplands. Nat. Clim. Chang. 2017, 7, 63–68. [Google Scholar] [CrossRef]
- Hong, C.; Burney, J.A.; Pongratz, J.; Nabel, J.E.; Mueller, N.D.; Jackson, R.B.; Davis, S.J. Global and regional drivers of land-use emissions in 1961–2017. Nature 2021, 589, 554–561. [Google Scholar] [CrossRef]
- Nguyen, T.H.; Elmagrhi, M.H.; Ntim, C.G.; Wu, Y. Environmental performance, sustainability, governance and financial performance: Evidence from heavily polluting industries in China. Bus. Strategy Environ. 2021, 30, 2313–2331. [Google Scholar] [CrossRef]
- Liu, Y.; Zhou, Y. Reflections on China’s food security and land use policy under rapid urbanization. Land Use Policy 2021, 109, 105699. [Google Scholar] [CrossRef]
- Yang, H.; Wang, X.; Bin, P. Agriculture carbon-emission reduction and changing factors behind agricultural eco-efficiency growth in China. J. Clean. Prod. 2022, 334, 130193. [Google Scholar] [CrossRef]
- Zhang, J.; Tian, H.; Shi, H.; Zhang, J.; Wang, X.; Pan, S.; Yang, J. Increased greenhouse gas emissions intensity of major croplands in China: Implications for food security and climate change mitigation. Glob. Chang. Biol. 2020, 26, 6116–6133. [Google Scholar] [CrossRef]
- Yun, T.; Zhang, J.; He, Y. Research on spatial-temporal characteristics and driving factor of agricultural carbon emissions in China. J. Integr. Agric. 2014, 13, 1393–1403. [Google Scholar]
- Shan, T.; Xia, Y.; Hu, C.; Zhang, S.; Zhang, J.; Xiao, Y.; Dan, F. Analysis of regional agricultural carbon emission efficiency and influencing factors: Case study of Hubei Province in China. PLoS ONE 2022, 17, e266172. [Google Scholar] [CrossRef] [PubMed]
- Li, Z.; Wang, D.; Sui, P.; Long, P.; Yan, L.; Wang, X.; Yan, P.; Shen, Y.; Dai, H.; Yang, X.; et al. Effects of different agricultural organic wastes on soil GHG emissions: During a 4-year field measurement in the North China Plain. Waste Manag. 2018, 81, 202–210. [Google Scholar] [CrossRef] [PubMed]
- Alam, M.K.; Bell, R.W.; Biswas, W.K. Increases in soil sequestered carbon under conservation agriculture cropping decrease the estimated greenhouse gas emissions of wetland rice using life cycle assessment. J. Clean. Prod. 2019, 224, 72–87. [Google Scholar] [CrossRef]
- Rebolledo-Leiva, R.; Angulo-Meza, L.; Iriarte, A.; González-Araya, M.C. Joint carbon footprint assessment and data envelopment analysis for the reduction of greenhouse gas emissions in agriculture production. Sci. Total Environ. 2017, 593, 36–46. [Google Scholar] [CrossRef] [PubMed]
- Yang, X.; Gao, W.; Zhang, M.; Chen, Y.; Sui, P. Reducing agricultural carbon footprint through diversified crop rotation systems in the North China Plain. J. Clean. Prod. 2014, 76, 131–139. [Google Scholar] [CrossRef]
- Jiang, J.; Zhao, T.; Wang, J. Decoupling analysis and scenario prediction of agricultural CO2 emissions: An empirical analysis of 30 provinces in China. J. Clean. Prod. 2021, 320, 128798. [Google Scholar] [CrossRef]
- Su, L.; Wang, Y.; Yu, F. Analysis of regional differences and spatial spillover effects of agricultural carbon emissions in China. Heliyon 2023, 9, E16752. [Google Scholar] [CrossRef]
- Ma, W.; Ma, R.; Bo, N.; Gao, Y. Spatial-Temporal Pattern Evolution and Influencing Factors of Agricultural Carbon Emissions in the Process of Rapid Urbanization: A Case Study of the Yangtze River Delta, China. Pol. J. Environ. Stud. 2023, 32, 183–198. [Google Scholar] [CrossRef]
- Chen, Q.; Mao, Y.; Cheng, J. Temporal and spatial evolution of agricultural carbon emissions and their impact on functional zoning: Evidence from Hubei Province. Front. Sustain. Food Syst. 2023, 7, 1286567. [Google Scholar] [CrossRef]
- Wojewodzki, M.; Wei, Y.; Cheong, T.S.; Shi, X. Urbanisation, agriculture and convergence of carbon emissions nexus: Global distribution dynamics analysis. J. Clean. Prod. 2023, 385, 135697. [Google Scholar] [CrossRef]
- Guan, N.; Liu, L.; Dong, K.; Xie, M.; Du, Y. Agricultural mechanization, large-scale operation and agricultural carbon emissions. Cogent Food Agric. 2023, 9, 2238430. [Google Scholar] [CrossRef]
- Carauta, M.; Troost, C.; Guzman-Bustamante, I.; Hampf, A.; Libera, A.; Meurer, K.; Bönecke, E.; Franko, U.; de Aragão Ribeiro Rodrigues, R.; Berger, T. Climate-related land use policies in Brazil: How much has been achieved with economic incentives in agriculture? Land Use Policy 2021, 109, 105618. [Google Scholar] [CrossRef]
- Jin, M.; Feng, Y.; Wang, S.; Chen, N.; Cao, F. Can the development of the rural digital economy reduce agricultural carbon emissions? A spatiotemporal empirical study based on China’s provinces. Sci. Total Environ. 2024, 939, 173437. [Google Scholar] [CrossRef] [PubMed]
- Liu, J.; Ren, Y. Can digital inclusive finance ensure food security while achieving low-carbon transformation in agricultural development? Evidence from China. J. Clean. Prod. 2023, 418, 138016. [Google Scholar] [CrossRef]
- Li, H. Digital inclusive finance, agricultural green technology innovation and agricultural carbon emissions: Impact mechanism and empirical test. PLoS ONE 2023, 18, e288072. [Google Scholar] [CrossRef]
- Zhu, M.; Wang, G.; Xiang, W.; Shang, J. Effects and its spatial characteristics of socialized agriculture services on agricultural carbon emissions. Chin. J. Eco-Agric. 2024, 32, 1288–1301. [Google Scholar]
- Xu, L.; Dong, D.; Zhang, J.F.; Li, L. System simulation and policy optimization of agricultural carbon emissions in Hubei province based on SD model. Resour. Dev. Mark 2017, 33, 1031–1035. [Google Scholar]
- Han, Y.; Tan, Q.; Zhang, T.; Wang, S.; Zhang, T.; Zhang, S. Development of an assessment-based planting structure optimization model for mitigating agricultural greenhouse gas emissions. J. Environ. Manag. 2024, 349, 119322. [Google Scholar] [CrossRef] [PubMed]
- Ye, J. Land Transfer and the Pursuit of Agricultural Modernization in China. J. Agrar. Chang. 2015, 15, 314–337. [Google Scholar] [CrossRef]
- Zhang, M.; Tan, S.; Zhang, Y.; He, J.; Ni, Q. Does land transfer promote the development of new-type urbanization? New evidence from urban agglomerations in the middle reaches of the Yangtze River. Ecol. Indic. 2022, 136, 108705. [Google Scholar] [CrossRef]
- Abman, R.; Carney, C. Land rights, agricultural productivity, and deforestation. Food Policy 2020, 94, 101841. [Google Scholar] [CrossRef]
- Fan, X.; Qiu, S.; Sun, Y. Land finance dependence and urban land marketization in China: The perspective of strategic choice of local governments on land transfer. Land Use Policy 2020, 99, 105023. [Google Scholar] [CrossRef]
- Fei, R.; Lin, Z.; Chunga, J. How land transfer affects agricultural land use efficiency: Evidence from China’s agricultural sector. Land Use Policy 2021, 103, 105300. [Google Scholar] [CrossRef]
- Jiang, X.; Lu, X.; Gong, M. Assessing the effects of land transfer marketization on green total factor productivity from the perspective of resource allocation: Evidence from China. Front. Environ. Sci. 2022, 10, 975282. [Google Scholar] [CrossRef]
- Zhou, Y.; Li, X.; Liu, Y. Rural land system reforms in China: History, issues, measures and prospects. Land Use Policy 2020, 91, 104330. [Google Scholar] [CrossRef]
- Long, H.; Qu, Y. Land use transitions and land management: A mutual feedback perspective. Land Use Policy 2018, 74, 111–120. [Google Scholar] [CrossRef]
- Liu, Z. Rural population decline, cultivated land expansion, and the role of land transfers in the farming-pastoral ecotone: A case study of Taibus, China. Land 2022, 11, 256. [Google Scholar] [CrossRef]
- Wu, J.; Wen, X.; Qi, X.; Fang, S.; Xu, C. More land, less pollution? How land transfer affects fertilizer application. Int. J. Environ. Res. Public Health 2021, 18, 11268. [Google Scholar] [CrossRef]
- Zang, L.; Wang, Y.; Ke, J.; Su, Y. What drives smallholders to utilize socialized agricultural services for farmland scale management? Insights from the perspective of collective action. Land 2022, 11, 930. [Google Scholar] [CrossRef]
- Xi, Q.; Mei, L. How did development zones affect China’s land transfers? The scale, marketization, and resource allocation effect. Land Use Policy 2022, 119, 106181. [Google Scholar] [CrossRef]
- Wang, H.; Lu, S.; Lu, B.; Nie, X. Overt and covert: The relationship between the transfer of land development rights and carbon emissions. Land Use Policy 2021, 108, 105665. [Google Scholar] [CrossRef]
- Zhou, Y.; Guo, Y.; Liu, Y.; Wu, W.; Li, Y. Targeted poverty alleviation and land policy innovation: Some practice and policy implications from China. Land Use Policy 2018, 74, 53–65. [Google Scholar] [CrossRef]
- Jin, S.; Jayne, T.S. Land rental markets in Kenya: Implications for efficiency, equity, household income, and poverty. Land Econ. 2013, 89, 246–271. [Google Scholar] [CrossRef]
- Manjunatha, A.V.; Anik, A.R.; Speelman, S.; Nuppenau, E.A. Impact of land fragmentation, farm size, land ownership and crop diversity on profit and efficiency of irrigated farms in India. Land Use Policy 2013, 31, 397–405. [Google Scholar] [CrossRef]
- Chen, Z.; Tang, C.; Liu, B.; Liu, P.; Zhang, X. Can socialized services reduce agricultural carbon emissions in the context of appropriate scale land management? Front. Environ. Sci. 2022, 10, 1039760. [Google Scholar] [CrossRef]
- Yang, C.; Zeng, H.; Zhang, Y. Are socialized services of agricultural green production conducive to the reduction in fertilizer input? Empirical evidence from rural China. Int. J. Environ. Res. Public Health 2022, 19, 14856. [Google Scholar] [CrossRef]
- Li, P.; He, L.; Zhang, J.; Han, H.; Song, Y. Research on the Impact of Agricultural Socialization Services on the Ecological Efficiency of Agricultural Land Use. Land 2024, 13, 853. [Google Scholar] [CrossRef]
- Wang, Y.; Huan, M. The effects of socialized agricultural services on rural collective action in the irrigation commons: Evidence from China. Agric. Water Manag. 2023, 289, 108519. [Google Scholar] [CrossRef]
- He, P.; Zhang, J.; Li, W. The role of agricultural green production technologies in improving low-carbon efficiency in China: Necessary but not effective. J. Environ. Manag. 2021, 293, 112837. [Google Scholar] [CrossRef] [PubMed]
- Mattes, J. Dimensions of proximity and knowledge bases: Innovation between spatial and non-spatial factors. Reg. Stud. 2012, 46, 1085–1099. [Google Scholar] [CrossRef]
- Jin, Q.; Guo, Y.; Dang, H.; Zhu, J.; Abula, K. The Second-Round Effects of the Agriculture Value Chain on Farmers’ Land Transfer-In: Evidence from the 2019 Land Economy Survey Data of Eleven Provinces in China. Land 2024, 13, 490. [Google Scholar] [CrossRef]
- Peng, K.; Chen, Y.; Chen, Y. Land transfer in rural China: Incentives, influencing factors and income effects. Appl. Econ. 2020, 52, 5477–5490. [Google Scholar] [CrossRef]
- Wang, D.; Ren, C.; Tao, Z. Understanding the impact of land finance on industrial structure change in China: Insights from a spatial econometric analysis. Land Use Policy 2021, 103, 105323. [Google Scholar] [CrossRef]
- Yang, Y.; Lian, D.; Zhang, Y.; Wang, D.; Wang, J. Empirical Analysis of the Impact of Land Transfer and Socialized Services on Agricultural Total Factor Productivity. Econ. Geogr. 2024, 44, 181–189. [Google Scholar]
- Yang, B.; Chen, X.; Wang, Z.; Li, W.; Zhang, C.; Yao, X. Analyzing land use structure efficiency with carbon emissions: A case study in the Middle Reaches of the Yangtze River, China. J. Clean. Prod. 2020, 274, 123076. [Google Scholar] [CrossRef]
- Cui, N.; Ba, X.; Dong, J.; Fan, X. Does farmland transfer contribute to reduction of chemical fertilizer use? evidence from Heilongjiang Province, China. Sustainability 2022, 14, 11514. [Google Scholar] [CrossRef]
- Song, H.; Jiang, H.; Zhang, S.; Luan, J. Land circulation, scale operation, and agricultural carbon reduction efficiency: Evidence from China. Discret. Dyn. Nat. Soc. 2021, 2021, 9288895. [Google Scholar] [CrossRef]
- Lu, X.; Jiang, X.; Gong, M. How land transfer marketization influence on green total factor productivity from the approach of industrial structure? Evidence from China. Land Use Policy 2020, 95, 104610. [Google Scholar] [CrossRef]
Source of Agricultural Carbon Emissions | Emission Coefficient |
---|---|
Agricultural Fertilizer | 0.8956 kg/kg |
Agricultural Pesticides | 4.9341 kg/kg |
Agricultural Plastic Mulch | 5.1800 kg/kg |
Agricultural Diesel | 0.5927 kg/kg |
Agricultural Irrigation Area | 25.0000 kg/m² |
Agricultural Sown Area | 3.1260 kg/m² |
Agricultural Fertilizer | 0.8956 kg/kg |
Variable | Number of Observations | Mean | Standard Deviation |
---|---|---|---|
lnAGC | 390 | 5.4693 | 1.0352 |
LT | 390 | 0.3603 | 0.2444 |
SE | 390 | 390 | 0.8313 |
lnST | 390 | −0.6459 | 0.1610 |
lnML | 390 | 7.6818 | 1.1204 |
lnTR | 390 | 4.4370 | 0.4316 |
lnPL | 390 | −0.4548 | 0.2250 |
lnFS | 390 | −2.227 | 0.3338 |
Variable | VIF | 1/VIF |
---|---|---|
LT | 1.12 | 0.891 |
ST | 1.13 | 0.882 |
lnML | 1.73 | 0.579 |
lnTR | 1.42 | 0.702 |
lnPL | 1.33 | 0.752 |
lnFS | 1.88 | 0.531 |
Mean VIF | 1.44 |
Variable | (1) | (2) | (3) | (4) | (5) |
---|---|---|---|---|---|
FE | FE | 2011–2021 | Change Model | Adjusted Region | |
LT | −0.205 *** | −0.154 *** | −0.096 * | −0.049 * | −0.054 * |
(0.072) | (0.057) | (0.054) | (0.029) | (0.030) | |
lnST | −0.099 | −0.071 | 0.110 | 0.124 | |
(0.080) | (0.078) | (0.107) | (0.110) | ||
lnML | 0.287 *** | 0.247 *** | 0.505 *** | 0.505 *** | |
(0.028) | (0.027) | (0.032) | (0.033) | ||
lnTR | 0.379 *** | 0.262 *** | −0.057 * | −0.063 * | |
(0.054) | (0.055) | (0.032) | (0.032) | ||
lnPL | −0.002 | 0.006 | 0.168 | 0.234 ** | |
(0.081) | (0.078) | (0.104) | (0.109) | ||
lnFS | 0.100 ** | 0.046 | 0.057 | 0.044 | |
(0.041) | (0.039) | (0.053) | (0.055) | ||
Constant | 5.480 *** | 1.878 *** | 2.560 *** | 2.132 *** | 2.145 *** |
(0.021) | (0.293) | (0.294) | (0.328) | (0.338) | |
Region | YES | YES | YES | NO | YES |
Year | YES | YES | YES | NO | YES |
Observations | 390 | 390 | 330 | 390 | 377 |
Number of ids | 30 | 30 | 30 | 30 | 29 |
R-squared | 0.331 | 0.610 | 0.594 | 0.260 | 0.245 |
Variable | (1) | (2) | (3) | (4) | (5) |
---|---|---|---|---|---|
Yangtze River Basin | Yellow River Basin | Songhua River Basin Areas | Major Grain-Producing Areas | Non-Major Grain-Producing Areas | |
LT | −0.043 | −0.232 * | −0.100 | −0.311 ** | −0.141 |
(0.067) | (0.132) | (0.103) | (0.147) | (0.093) | |
lnST | −0.202 * | 0.312 | 0.123 | 0.156 * | −0.408 *** |
(0.119) | (0.297) | (0.142) | (0.079) | (0.127) | |
lnML | 0.017 | 0.657 *** | 0.353 *** | 0.172 *** | 0.325 *** |
(0.034) | (0.109) | (0.117) | (0.029) | (0.045) | |
lnTR | −0.020 | 0.119 | −0.282 | 0.001 | 0.486 *** |
(0.079) | (0.193) | (0.215) | (0.068) | (0.080) | |
lnPL | −0.456 ** | 0.621 | 1.089 | −0.064 | 0.065 |
(0.175) | (0.417) | (0.680) | (0.058) | (0.124) | |
lnFS | 0.076 | 0.319 ** | 0.297 * | 0.248 *** | 0.026 |
(0.058) | (0.118) | (0.146) | (0.046) | (0.060) | |
Constant | 5.848 *** | 1.234 | 5.146 *** | 5.239 *** | 0.463 |
(0.531) | (1.161) | (1.736) | (0.434) | (0.403) | |
Region | YES | YES | YES | YES | YES |
Year | YES | YES | YES | YES | YES |
Observations | 78 | 52 | 39 | 169 | 221 |
Number of ids | 6 | 4 | 3 | 13 | 17 |
R-squared | 0.842 | 0.912 | 0.951 | 0.768 | 0.629 |
Variable | All of China | Grain-Producing Areas | Non-Major Grain-Producing Areas | |||
---|---|---|---|---|---|---|
(1) | (2) | (3) | (4) | (5) | (6) | |
LT | −0.178 *** | −0.134 ** | −0.904 *** | −0.411 *** | −0.177 ** | −0.132 |
(0.054) | (0.061) | (0.122) | (0.062) | (0.088) | (0.093) | |
SE | −0.146 *** | −0.126 *** | −0.082 * | −0.393 *** | −0.134 *** | −0.112 *** |
(0.022) | (0.025) | (0.050) | (0.073) | (0.026) | (0.031) | |
LT&SE | −0.454 *** | −0.193 ** | −0.051 | |||
(0.161) | (0.097) | (0.037) | ||||
Control variables | YES | YES | YES | YES | YES | YES |
Constant | 1.767 *** | 1.823 *** | 5.148 *** | 4.852 *** | 0.298 | 0.372 |
(0.277) | (0.279) | (0.369) | (0.377) | (0.380) | (0.383) | |
Region | YES | YES | YES | YES | YES | YES |
Year | YES | YES | YES | YES | YES | YES |
Observations | 390 | 390 | 169 | 169 | 221 | 221 |
Number of ids | 30 | 30 | 13 | 13 | 17 | 17 |
R-squared | 0.654 | 0.657 | 0.834 | 0.832 | 0.674 | 0.678 |
Year | Agricultural Carbon Emissions | Land Transfer | ||
---|---|---|---|---|
Moran’s I | p-Value | Moran’s I | p-Value | |
2010 | 0.203 | 0.048 | 0.255 | 0.014 |
2011 | 0.193 | 0.059 | 0.250 | 0.017 |
2012 | 0.183 | 0.072 | 0.270 | 0.011 |
2013 | 0.174 | 0.085 | 0.303 | 0.005 |
2014 | 0.151 | 0.026 | 0.366 | 0.001 |
2015 | 0.141 | 0.047 | 0.355 | 0.001 |
2016 | 0.138 | 0.054 | 0.431 | 0.000 |
2017 | 0.135 | 0.063 | 0.388 | 0.001 |
2018 | 0.134 | 0.166 | 0.599 | 0.000 |
2019 | 0.128 | 0.080 | 0.411 | 0.000 |
2020 | 0.135 | 0.062 | 0.410 | 0.000 |
2021 | 0.131 | 0.074 | 0.341 | 0.002 |
2022 | 0.137 | 0.059 | 0.289 | 0.008 |
Test Method | 0-1 Matrix | Economic Geography Weight | Economic Matrix | |||
---|---|---|---|---|---|---|
Statistic | p-Value | Statistic | p-Value | Statistic | p-Value | |
LM-error | 10.818 | 0.001 | 0.890 | 0.019 | 0.970 | 0.001 |
Robust LM-error | 18.594 | 0.000 | 12.114 | 0.001 | 3.014 | 0.083 |
LM-lag | 0.495 | 0.482 | 48.093 | 0.000 | 8.743 | 0.003 |
Robust LM-lag | 8.271 | 0.004 | 60.187 | 0.000 | 11.756 | 0.000 |
LR-SDM-SAR | 69.91 | 0.000 | 106.72 | 0.000 | 112.23 | 0.000 |
LR-SDM-SEM | 120.96 | 0000 | 125.81 | 0000 | 127.89 | 0000 |
Hausman | 104.50 | 0000 | 104.50 | 0000 | 57.52 | 0000 |
Variable | (1) | (2) | (3) |
---|---|---|---|
0–1 Matrix | Economic Geography Weight | Economic Matrix | |
LT | −0.114 ** | −0.090 * | −0.120 *** |
(0.048) | (0.049) | (0.047) | |
W × LT | −0.137 * | −0.168 * | −1.013 *** |
(0.083) | (0.089) | (0.200) | |
Control | YES | YES | YES |
Region | YES | YES | YES |
Year | YES | YES | YES |
Rho | 0.384 *** | 0.123 | 0.179 ** |
(0.062) | (0.077) | (0.091) | |
Sigma2_e | 0.003 *** | 0.003 *** | 0.003 *** |
(0.000) | (0.000) | (0.000) | |
Observations | 390 | 390 | 390 |
Number of id | 0.225 | 0.225 | 0.225 |
R-squared | 30 | 30 | 30 |
Variable | Direct Effect | Indirect Effect | Total Effect |
---|---|---|---|
LT | −0.023 | −0.212 * | −0.235 * |
(0.048) | (0.123) | (0.136) | |
Control | YES | YES | YES |
Region | YES | YES | YES |
Year | YES | YES | YES |
Observations | 390 | 390 | 390 |
Number of id | 0.225 | 0.225 | 0.225 |
R-squared | 30 | 30 | 30 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, J.; Jiang, L.; Zhang, S. How Land Transfer Affects Agricultural Carbon Emissions: Evidence from China. Land 2024, 13, 1358. https://doi.org/10.3390/land13091358
Li J, Jiang L, Zhang S. How Land Transfer Affects Agricultural Carbon Emissions: Evidence from China. Land. 2024; 13(9):1358. https://doi.org/10.3390/land13091358
Chicago/Turabian StyleLi, Jian, Lingyan Jiang, and Shuhua Zhang. 2024. "How Land Transfer Affects Agricultural Carbon Emissions: Evidence from China" Land 13, no. 9: 1358. https://doi.org/10.3390/land13091358
APA StyleLi, J., Jiang, L., & Zhang, S. (2024). How Land Transfer Affects Agricultural Carbon Emissions: Evidence from China. Land, 13(9), 1358. https://doi.org/10.3390/land13091358