Digital Economy, Factor Allocation, and Resilience of Food Production
Abstract
:1. Introduction
2. Literature Review
2.1. Relevant Studies on the Digital Economy
2.2. Relevant Studies on the Agricultural Resilience and Food Production Resilience
2.3. Relevant Studies on the Impact of the Digital Economy on the Resilience of Food Production
3. Theoretical Analysis and Research Hypotheses
3.1. Direct Effects of the Digital Economy on Food Production Resilience
3.2. Indirect Effects of the Digital Economy on Food Production Resilience
4. Research Design
4.1. Variable Selection
4.1.1. Dependent Variable
4.1.2. Core Explanatory Variable
4.1.3. Mechanism Variables
4.1.4. Control Variables
4.2. Model Specification
4.3. Data Sources
5. Empirical Analysis
5.1. Trends in the Level of the Digital Economy and the Resilience of Food Production
5.2. Baseline Regression
5.3. Robustness Tests
5.4. Endogeneity Test
5.5. Mechanism of Action Tests
5.6. Heterogeneity Analysis
6. Conclusions
7. Recommendations and Discussion
7.1. Recommendations
7.2. Discussion
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Rasul, G. A framework for addressing the twin challenges of COVID-19 and climate change for sustainable agriculture and food security in South Asia. Front. Sustain. Food Syst. 2021, 5, 679037. [Google Scholar] [CrossRef]
- Benabderrazik, K.; Jeangros, L.; Kopainsky, B.; Dawoe, E.; Joerin, J.; Six, J. Addressing the resilience of tomato farmers in Ghana facing a double exposure from climate and market. Ecol. Soc. 2022, 27, 26. [Google Scholar] [CrossRef]
- Jung, J.; Maeda, M.; Chang, A.; Bhandari, M.; Ashapure, A.; Landivar-Bowles, J. The potential of remote sensing and artificial intelligence as tools to improve the resilience of agriculture production systems. Curr. Opin. Biotechnol. 2021, 70, 15–22. [Google Scholar] [CrossRef]
- Chen, Y.; Hu, S.; Wu, H. The digital economy, green technology innovation, and agricultural green total factor productivity. Agriculture 2023, 13, 1961. [Google Scholar] [CrossRef]
- Hoontrakul, P. Asia’s Digital Economy. In The Asian Century; Springer: Cham, Switzerland, 2018; pp. 269–312. [Google Scholar]
- Sutherland, W.; Jarrahi, M.H. The sharing economy and digital platforms: A review and research agenda. International. J. Inf. Manag. 2018, 43, 328–341. [Google Scholar] [CrossRef]
- Chen, Y. Improving market performance in the digital economy. China Econ. Rev. 2020, 62, 101482. [Google Scholar] [CrossRef]
- Kim, T.Y.; Heshmati, A.; Kim, T.Y.; Kim, E.; Park, J.; Hwang, J. The faster-accelerating digital economy. Econ. Growth New Perspect. Theory Policy 2014, 163–191. [Google Scholar]
- Sachs, J.D. Some brief reflections on digital technologies and economic development. Ethics Int. Aff. 2019, 33, 159–167. [Google Scholar] [CrossRef]
- Tatarinov, A. Measuring Digital Economy in National Accounts. Vopr. Stat. 2019, 26, 5–17. [Google Scholar] [CrossRef]
- Jagannathan, U.K.; Kumar, K.M.S. Application for Stochastic Net Present Value (NPV) Estimation and Sensitivity Analysis. In Proceedings of the 2nd Indian International Conference on Industrial Engineering and Operations Management, Warangal, India, 16–18 August 2022. [Google Scholar] [CrossRef]
- Xu, Y.; Li, T. Measuring digital economy in China. Natl. Account. Rev. 2022, 4, 251–272. [Google Scholar] [CrossRef]
- Liu, H. Research on measurement of digital economy based on Data Mining. In Proceedings of the 7th International Conference on Intelligent Information Processing, New York, NY, USA, 29–30 September 2022; pp. 1–5. [Google Scholar]
- Golinski, M. Measuring the digital economy in the European Union research. In Proceedings of the 2019 4th International Conference on Financial Innovation and Economic Development, Sanya, China, 18–20 January 2019; pp. 155–170. [Google Scholar] [CrossRef]
- Tendall, D.; Joerin, J.; Kopainsky, B.; Edwards, P.; Shreck, A.; Le, Q.; Kruetli, P.; Grant, M.; Six, J. Food system resilience: Defining the concept. Glob. Food Secur. 2015, 6, 17–23. [Google Scholar] [CrossRef]
- Stone, J.; Rahimifard, S. Resilience in agri-food supply chains: A critical analysis of the literature and synthesis of a novel framework. Supply Chain. Manag. 2018, 23, 207–238. [Google Scholar] [CrossRef]
- Meuwissen, M.P.M.; Feindt, P.H.; Spiegel, A.; Termeer, C.J.A.M.; Mathijs, E.; De Mey, Y.; Finger, R.; Balmann, A.; Wauters, E.; Urquhart, J.; et al. A framework to assess the resilience of farming systems. Agric. Syst. 2019, 176, 102656. [Google Scholar] [CrossRef]
- Bullock, J.M.; Dhanjal-Adams, K.L.; Milne, A.; Oliver, T.H.; Todman, L.C.; Whitmore, A.P.; Pywell, R.F. Resilience and food security: Rethinking an ecological concept. J. Ecol. 2017, 105, 880–884. [Google Scholar] [CrossRef]
- Hodbod, J.; Eakin, H. Adapting a social-ecological resilience framework for food systems. J. Environ. Stud. Sci. 2015, 5, 474–484. [Google Scholar] [CrossRef]
- Bizikova, L.; Tyler, S.; Moench, M.; Keller, M.; Echeverria, D. Climate resilience and food security in Central America: A practical framework. Clim. Dev. 2016, 8, 397–412. [Google Scholar] [CrossRef]
- Suweis, S.; Carr, J.A.; Maritan, A.; Rinaldo, A.; D’odorico, P. Resilience and reactivity of global food security. Proc. Natl. Acad. Sci. USA 2015, 112, 6902–6907. [Google Scholar] [CrossRef]
- Hendrickson, M. Resilience in a concentrated and consolidated food system. J. Environ. Stud. Sci. 2015, 5, 418–431. [Google Scholar] [CrossRef]
- Jacobi, J.; Mukhovi, S.; Llanque, A.; Augstburger, H.; Käser, F.; Pozo, C.; Peter, M.N.; Delgado, J.M.F.; Kiteme, B.P.; Rist, S.; et al. Operationalizing food system resilience: An indicator-based assessment in agroindustrial, smallholder farming, and agroecological contexts in Bolivia and Kenya. Land Use Policy 2018, 79, 433–446. [Google Scholar] [CrossRef]
- Karakoc, D.B.; Konar, M. A complex network framework for the efficiency and resilience trade-off in global food trade. Environ. Res. Lett. 2021, 16, 105003. [Google Scholar] [CrossRef]
- Bharadiya, J.P.; Tzenios, N.T.; Reddy, M. Forecasting of crop yield using remote sensing data, agrarian factors and machine learning approaches. J. Eng. Res. Rep. 2023, 24, 29–44. [Google Scholar] [CrossRef]
- Deichmann, U.; Goyal, A.; Mishra, D. Will digital technologies transform agriculture in developing countries? Agric. Econ. 2016, 47, 21–33. [Google Scholar] [CrossRef]
- Finger, R. Digital innovations for sustainable and resilient agricultural systems. Eur. Rev. Agric. Econ. 2023, 50, 1277–1309. [Google Scholar] [CrossRef]
- Zhong, R.; He, Q.; Qi, Y. Digital economy, agricultural technological progress, and agricultural carbon intensity: Evidence from China. Int. J. Environ. Res. Public Health 2022, 19, 6488. [Google Scholar] [CrossRef] [PubMed]
- Bökle, S.; Koenn, L.; Reiser, D.; Paraforos, D.S.; Griepentrog, H.W. 1. Consideration of resilience for digital farming systems. In Precision Agriculture’21; Wageningen Academic: Wageningen, The Netherlands, 2021; pp. 25–31. [Google Scholar]
- Zhang, Y.; Ji, M.; Zheng, X. Digital economy, agricultural technology innovation, and agricultural green total factor productivity. Sage Open 2023, 13, 21582440231194388. [Google Scholar] [CrossRef]
- Solow, R.M. A contribution to the theory of economic growth. Q. J. Econ. 1956, 70, 65–94. [Google Scholar] [CrossRef]
- Basso, B.; Antle, J. Digital agriculture to design sustainable agricultural systems. Nat. Sustain. 2020, 3, 254–256. [Google Scholar] [CrossRef]
- Zilberman, D.; Lu, L.; Reardon, T. Innovation-induced food supply chain design. Food Policy 2019, 83, 289–297. [Google Scholar] [CrossRef]
- Reardon, T.; Echeverria, R.; Berdegué, J.; Minten, B.; Liverpool-Tasie, S.; Tschirley, D.; Zilberman, D. Rapid transformation of food systems in developing regions: Highlighting the role of agricultural research & innovations. Agric. Syst. 2019, 172, 47–59. [Google Scholar]
- Xiao, L. Research on Supply Chain Management Models from the Perspective of Cross Border E-commerce. Ind. Eng. Innov. Manag. 2023, 6, 54–59. [Google Scholar]
- Pingali, P.L. Green revolution: Impacts, limits, and the path ahead. Proc. Natl. Acad. Sci. USA 2012, 109, 12302–12308. [Google Scholar] [CrossRef] [PubMed]
- Du, Y.; Zhao, Z.; Liu, S.; Li, Z. The impact of agricultural labor migration on the urban–rural dual economic structure: The case of liaoning province, China. Land 2023, 12, 622. [Google Scholar] [CrossRef]
- Romer, P.M. Endogenous technological change. J. Political Econ. 1990, 98, S71–S102. [Google Scholar] [CrossRef]
- Farjoun, E.D.; Machover, M. Laws of Chaos: A Probabilistic Approach to Political Economy; Verso Books: Brooklyn, NY, USA, 2020. [Google Scholar]
- Flaschel, P.; Franke, R.; Veneziani, R. Labour productivity and the law of decreasing labour content. Camb. J. Econ. 2013, 37, 379–402. [Google Scholar] [CrossRef]
- Zhang, B.; Dong, W.; Yao, J.; Cheng, X. Digital economy, factor allocation efficiency of dual-economy and urban-rural income gap. Sustainability 2023, 15, 13514. [Google Scholar] [CrossRef]
- Frank, M.R.; Autor, D.; Bessen, J.E.; Brynjolfsson, E.; Cebrian, M.; Deming, D.J.; Feldman, M.; Groh, M.; Lobo, J.; Moro, E.; et al. Toward understanding the impact of artificial intelligence on labor. Proc. Natl. Acad. Sci. USA 2019, 116, 6531–6539. [Google Scholar] [CrossRef]
- Jia, X. Digital Economy, Factor Allocation, and Sustainable Agricultural Development. Sustainability 2023, 15, 54418. [Google Scholar] [CrossRef]
- Wu, H.; Noé, F. Variational approach for learning Markov processes from time series data. J. Nonlinear Sci. 2020, 30, 23–66. [Google Scholar] [CrossRef]
- Dawson, N.; Martin, A.; Sikor, T. Green revolution in sub-Saharan Africa: Implications of imposed innovation for the wellbeing of rural smallholders. World Dev. 2016, 78, 204–218. [Google Scholar] [CrossRef]
- Mentz, R.P.; Morettin, P.A.; Toloi, C. On residual variance estimation in autoregressive models. J. Time Ser. Anal. 1998, 19, 187–208. [Google Scholar] [CrossRef]
- Guo, F.; Wang, J.; Wang, F.; Kong, T.; Zhang, X.; Cheng, Z. Measuring China’s Digital Financial Inclusion: Index Compilation and Spatial Characteristics. China Econ. Q. 2020, 19, 1401–1418. [Google Scholar]
- Junhong, B.; Yuying, L. Can Outward Foreign Direct Investment Improve the Resource Misallocation of China? China Ind. Econ. 2018, 1, 60–78. [Google Scholar]
- Lijuan, S.; Xiaoxiao, T. The Impact of Digital Financial Inclusion on Farmer‘s Income Inequality: An Empirical Analysis Based on CFPS Data. Econ. Rev. 2022, 5, 100–116. [Google Scholar]
Primary Indicators | Secondary Indicators | Tertiary Indicators | Indicator Attribute |
---|---|---|---|
Digital Economy Level | Digital Infrastructure | Number of domain names (10,000) | + |
Number of IPv4 addresses (10,000) | + | ||
Number of internet broadband access ports (10,000) | + | ||
Mobile phone penetration rate (per 100 people) | + | ||
Length of optical cable per unit area (km/km²) | + | ||
Digital Industry Development | Number of information technology companies | + | |
Number of companies with websites (per 100 companies) | + | ||
Proportion of companies engaged in e-commerce activities (%) | + | ||
E-commerce sales (billion yuan) | + | ||
Software business revenue (billion yuan) | + | ||
Digital Inclusive Finance | Breadth of coverage index | + | |
Depth of use index | + | ||
Digitalization index | + |
Variable | Observations | Mean | Standard Deviation | Minimum Value | Maximum Value |
---|---|---|---|---|---|
Fpr | 360 | 0.460 | 0.470 | 0.000 | 1.000 |
Dig | 360 | 0.000 | 0.700 | −1.040 | 3.370 |
Is | 360 | 0.100 | 0.050 | 0.000 | 0.260 |
Aml | 360 | 3.340 | 0.490 | 1.970 | 4.130 |
Fsa | 360 | 0.110 | 0.030 | 0.040 | 0.200 |
Ur | 360 | 0.600 | 0.120 | 0.350 | 0.900 |
Sab | 360 | 0.800 | 0.410 | 0.210 | 2.940 |
Lmi | 360 | 0.370 | 0.340 | 0.000 | 2.550 |
Kmi | 360 | 0.690 | 0.910 | 0.000 | 5.700 |
(1) | (2) | (3) | |
---|---|---|---|
Fpr | Fpr | Fpr | |
Dig | 0.2142 *** | 0.0592 *** | 0.0827 *** |
(0.0331) | (0.0190) | (0.0292) | |
Is | −0.2753 | ||
(0.3557) | |||
Aml | 0.3419 *** | ||
(0.1048) | |||
Fsa | −0.4024 | ||
(0.5424) | |||
Ur | −0.5532 | ||
(0.3902) | |||
Sab | 0.1128 ** | ||
(0.0455) | |||
Time Fixed Effects | NO | YES | YES |
Province Fixed Effects | NO | YES | YES |
_cons | 0.4582 *** | 0.9762 *** | 0.6425 |
(0.0232) | (0.0395) | (0.4184) | |
N | 360 | 360 | 360 |
R2 | 0.105 | 0.966 | 0.969 |
(1) | (2) | (3) | |
---|---|---|---|
Fpr Change in Estimation Method | Fpr Adjustment of Calculation Method | Fpr Adjustment of Time Window | |
Dig | 0.0864 ** | 0.4554 *** | 0.0710 ** |
(0.0359) | (0.1519) | (0.0325) | |
Is | −0.3503 | −0.0865 | −0.1001 |
(0.5119) | (0.3433) | (0.3938) | |
Aml | 0.3578 *** | 0.3419 *** | 0.2494 ** |
(0.0883) | (0.1051) | (0.1025) | |
Fsa | −0.4317 | −0.2796 | −0.6033 |
(0.4910) | (0.5515) | (0.5223) | |
Ur | −0.3855 | −0.4309 | −0.6651 |
(0.3938) | (0.3893) | (0.4630) | |
Sab | 0.1452 *** | 0.0998 ** | 0.1238 ** |
(0.0473) | (0.0452) | (0.0553) | |
Time Fixed Effects | YES | YES | YES |
Province Fixed Effects | YES | YES | YES |
_cons | 0.5576 | 0.5245 | 0.9638 ** |
(0.3664) | (0.4211) | (0.4780) | |
N | 360 | 360 | 300 |
R2 | / | 0.969 | 0.970 |
(1) | (2) | |
---|---|---|
Fpr Lagged 1-Period Dig | Fpr IV | |
L.Dig | 0.0776 *** | 0.4298 *** |
(0.0264) | (0.1609) | |
Is | 0.0022 | −0.2754 |
(0.2966) | (0.4152) | |
Aml | 0.3704 *** | 0.4189 *** |
(0.1178) | (0.1092) | |
Fsa | −0.1371 | 0.2060 |
(0.3617) | (0.6265) | |
Ur | −0.3402 | 0.8510 |
(0.2882) | (0.7658) | |
Sab | 0.0582 * | 0.1933 *** |
(0.0340) | (0.0657) | |
Time Fixed Effects | YES | YES |
Province Fixed Effects | YES | YES |
_cons | 0.3930 | −1.2564 |
(0.3171) | (0.9565) | |
K-P rk LM | 10.169 *** | |
K-P rk Wald F | 19.139 > 16.38 | |
N | 330 | 360 |
R2 | 0.981 | 0.957 |
(1) | (2) | |
---|---|---|
Lmi | Kmi | |
Dig | −0.2754 ** | −0.8103 ** |
(0.1178) | (0.3328) | |
Is | −0.9997 | −3.0626 |
(1.6542) | (5.7581) | |
Aml | −0.1567 | 0.0583 |
(0.3503) | (0.6949) | |
Fsa | −1.1941 | −0.3810 |
(1.7267) | (4.9216) | |
Ur | −3.1394 * | −6.0703 |
(1.6636) | (3.6975) | |
Sab | 0.0216 | −0.1296 |
(0.1780) | (0.4363) | |
Time Fixed Effects | YES | YES |
Province Fixed Effects | YES | YES |
_cons | 3.6678 ** | 6.8496 ** |
(1.7955) | (3.3668) | |
N | 360 | 360 |
R2 | 0.136 | 0.107 |
(1) | (2) | (3) | (4) | (5) | |
---|---|---|---|---|---|
Fpr Major Grain-Producing Areas | Fpr Non-Major Grain-Producing Areas | Fpr Eastern Region | Fpr Central Region | Fpr Western Region | |
Dig | 0.1726 *** | 0.0932 ** | 0.0084 | 0.5312 ** | 0.1755 |
(0.0256) | (0.0418) | (0.0172) | (0.2616) | (0.1486) | |
Is | 0.9868 *** | 0.3900 | −0.3666 | −4.5557 *** | 0.0455 |
(0.1996) | (0.5677) | (0.3850) | (1.6358) | (1.0057) | |
Aml | −0.1455 *** | 0.7437 *** | 0.0085 | 0.1520 | 0.4751 * |
(0.0337) | (0.1413) | (0.0662) | (0.1704) | (0.2405) | |
Fsa | 1.1945 *** | −1.0962 | 0.3417 | 1.6775 | −1.4742 |
(0.3306) | (0.7846) | (0.4173) | (1.2769) | (1.1307) | |
Ur | −0.0809 | −1.2744 ** | −0.5558 * | 9.0499 *** | 0.8353 |
(0.1769) | (0.5508) | (0.3027) | (1.8262) | (0.8866) | |
Sab | −0.0696 *** | 0.2260 *** | 0.0405 | 0.0815 | 0.3507 ** |
(0.0189) | (0.0851) | (0.0365) | (0.0986) | (0.1493) | |
Time Fixed Effects | YES | YES | YES | YES | YES |
Province Fixed Effects | YES | YES | YES | YES | YES |
_cons | 0.6114 *** | 0.3039 | 1.4416 *** | −3.5832 *** | −2.1831 ** |
(0.1923) | (0.5454) | (0.2248) | (1.0192) | (1.0303) | |
N | 156 | 204 | 156 | 72 | 132 |
R2 | 0.958 | 0.936 | 0.993 | 0.961 | 0.948 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Xie, Y.; Yao, R.; Wu, H.; Li, M. Digital Economy, Factor Allocation, and Resilience of Food Production. Land 2025, 14, 139. https://doi.org/10.3390/land14010139
Xie Y, Yao R, Wu H, Li M. Digital Economy, Factor Allocation, and Resilience of Food Production. Land. 2025; 14(1):139. https://doi.org/10.3390/land14010139
Chicago/Turabian StyleXie, Yue, Ruikuan Yao, Haitao Wu, and Mengding Li. 2025. "Digital Economy, Factor Allocation, and Resilience of Food Production" Land 14, no. 1: 139. https://doi.org/10.3390/land14010139
APA StyleXie, Y., Yao, R., Wu, H., & Li, M. (2025). Digital Economy, Factor Allocation, and Resilience of Food Production. Land, 14(1), 139. https://doi.org/10.3390/land14010139