Data-Driven Decision Support to Guide Sustainable Grazing Management
Abstract
:1. Introduction
2. Methods
2.1. Montgomery Pass Study Area
2.2. Eagle Creek Study Area
2.3. Grazing Capacity Model—Data Components
2.4. Vegetation Productivity and Fractional Cover
2.5. Vegetation Type
2.6. Water Sources and Slope Steepness
2.7. Land Ownership
2.8. Decision Support Model—Interaction of Model Components
2.9. Forage Estimation Under Forest Canopies
3. Results
3.1. Eagle Creek
3.2. Montgomery Pass
4. Discussion
Limitations and Future Work
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Society of Range Management (SRM). Glossary of Terms Used in Range Management; Glossary Update Task Group: Denver, CO, USA, 1998; 32p. [Google Scholar]
- Society for Range Management (SRM) Assessment and Monitoring Committee. Does Size Matter? Animal Units and Animal Unit Months. Rangelands 2017, 39, 17–19.
- Ren, Y.; Zhu, Y.; Baldan, D.; Fu, M.; Wang, B.; Li, J.; Chen, A. Optimizing livestock carrying capacity for wild ungulate-livestock coexistence in a Qinghai-Tibet Plateau grassland. Sci. Rep. 2021, 11, 3635. [Google Scholar] [CrossRef]
- John, A.C.; Rich, A.O.; Neil, E.W.; Jeffrey, C.M.; Michael, A.S.; Tom, D.W.; Richard, F.M.; Michael, A.G.; Chad, S.B. Ecology and management of sage-grouse and sage-grouse habitat. J. Range Manag. 2004, 57, 2–19. [Google Scholar]
- Doherty, K.E.; Naugle, D.E.; Tack, J.D.; Walker, B.L.; Graham, J.M.; Beck, J.L. Linking conservation actions to demography: Grass height explains variation in greater sage-grouse nest survival. Wild. Biol. 2014, 20, 320–325. [Google Scholar] [CrossRef]
- Smith, J.T.; Tack, J.D.; Doherty, K.E.; Allred, B.W.; Maestas, J.D.; Berkeley, L.I.; Dettenmaier, S.J.; Messmer, T.A.; Naugle, D.E. Phenology largely explains taller grass at successful nests in greater sage-grouse. Ecol. Evol. 2018, 8, 356–364. [Google Scholar] [CrossRef]
- Clark, P.E.; Porter, B.A.; Pellant, M.; Dyer, K.; Norton, T.P. Evaluating the Efficacy of Targeted Cattle Grazing for Fuel Break Creation and Maintenance. Rangel. Ecol. Manag. 2023, 89, 69–86. [Google Scholar] [CrossRef]
- Hudson, T.D.; Reeves, M.C.; Hall, S.A.; Yorgey, G.G.; Neibergs, J.S. Big landscapes meet big data: Informing grazing management in a variable and changing world. Rangelands 2021, 43, 17–28. [Google Scholar] [CrossRef]
- Smith, L.; Ruyle, G.; Meyer, W.; Dyess, J.; Maynard, J.; Barker, S.; Williams, S.; Bell, D.; Lane, C.; Cassady, S.; et al. Arizona Guide to Rangeland Monitoring and Assessment. In Arizona Grazing Lands Conservation Association; Rio Nuevo Press: Tucson, AZ, USA, 2012; Available online: https://rangelandsgateway.org/sites/default/files/2021-01/guide-to-rangeland-monitoring-assessment.pdf (accessed on 16 May 2023).
- Holechek, J.L. An approach for setting the stocking rate. Rangelands 1988, 10, 10–14. [Google Scholar]
- Ganskopp, D.; Vavra, M. Slope use by cattle, feral horses, deer and bighorn sheep. Northwest Sci. 1987, 61, 74–81. [Google Scholar]
- Winder, J.; Walker, D.; Bailey, C. Effect of breed on botanical composition of cattle diets on Chihuahuan desert range. J. Range Manag. 1996, 49, 209–214. [Google Scholar] [CrossRef]
- Millward, M.F.; Bailey, D.W.; Cibils, A.F.; Holechek, J.L. A GPS-based Evaluation of Factors Commonly Used to Adjust Cattle Stocking Rates on Both Extensive and Mountainous Rangelands. Rangelands 2020, 42, 63–71. [Google Scholar] [CrossRef]
- Hennig, J.D.; Rigsby, W.; Stam, B.; Scasta, J.D. Distribution of Salers cows in contrasting rangeland pastures relative to established slope and water guidelines. Livest. Sci. 2022, 257, 104843. [Google Scholar] [CrossRef]
- Costanza, J.K.; Koch, F.H.; Reeves, M.C. Future Exposure of Forest Ecosystems to Multi-Year Drought in the United States. Ecosphere 2023, 14, e4525. [Google Scholar] [CrossRef]
- National Research Council (NRC). Using Science to Improve the BLM Wild Horse and Burro Program: A Way Forward; The National Academies Press: Washington, DC, USA, 2013. [Google Scholar] [CrossRef]
- Allred, B.W.; Bestelmeyer, B.; Boyd, C.S.; Brown, C.; Davies, K.W.; Duniway, M.; Ellsworth, L.M.; Erickson, T.A.; Fuhlendorf, S.D.; Griffiths, T.V.; et al. Improving Landsat predictions of rangeland fractional cover with multitask learning and uncertainty. Methods Ecol. Evol. 2021, 12, 841–849. [Google Scholar] [CrossRef]
- Reeves, M.C.; Hanberry, B.B.; Wilmer, H.; Kaplan, N.E.; Lauenroth, W.K. An Assessment of Production Trends on the Great Plains from 1984 to 2017. Rangel. Ecol. Manag. 2021, 78, 165–179. [Google Scholar] [CrossRef]
- Lubow, B. Memorandum: Statistical Analysis for 2020 Surveys of Wild Horse Abundance in Carson City District Office HMAs, and in Montgomery Pass JMA, January 25, 2022; U.S. Department of the Interior: Washington, DC, USA, 2020.
- Henderson, E.B.; Bell, D.M.; Gregory, M.J. Vegetation mapping to support greater sage-grouse habitat monitoring and management: Multi-or univariate approach? Ecosphere 2019, 10, e02838. [Google Scholar] [CrossRef]
- Jones, M.O.; Robinson, N.P.; Naugle, D.E.; Maestas, J.D.; Reeves, M.C.; Lankston, R.W.; Allred, B.W. Annual and 16-Day Rangeland Production Estimates for the Western United States. Rangel. Ecol. Manag. 2021, 77, 112–117. [Google Scholar] [CrossRef]
- Conservation Biology Institute (CBI). Protected Areas Database of the United States (PADUS, CBI Edition 2.1). Available online: http://consbio.org/products/projects/pad-us-cbi-edition (accessed on 16 May 2023).
- Jacoby, P.W.; Ueckert, D.N.; Hartmann, S. Control of Creosotebush (Larrea Tridentata) with Pelleted Tebuthiuron. Weed Sci. 1982, 30, 307–310. [Google Scholar] [CrossRef]
- Hansen, R.; Clark, R.; Lawhorn, W. Foods of wild horses, deer, and cattle in the Douglas Mountain area, Colorado. Rangel. Ecol. Manag./J. Range Manag. Arch. 1977, 30, 116–118. [Google Scholar] [CrossRef]
- Mueggler, W.F. Cattle distribution on steep slopes. Rangel. Ecol. Manag./J. Range Manag. Arch. 1965, 18, 255–257. [Google Scholar] [CrossRef]
- Reeves, M.C.; Mitchell, J.E. A Synoptic Review of U.S. Rangelands: A Technical Document Supporting the Forest Service 2010 RPA Assessment; Gen. Tech. Rep. RMRS-GTR-288; U.S. Department of Agriculture, Forest Service, Rocky Mountain Research Station: Fort Collins, CO, USA, 2012; 128p.
- Krebs, M.A.; Reeves, M.C.; Baggett, L.S. Predicting understory vegetation structure in selected western forests of the United States using FIA inventory data. For. Ecol. Manag. 2019, 448, 509–527. [Google Scholar] [CrossRef]
- LaRade, S.; Bork, E. Aspen forest overstory relations to understory production. Can. J. Plant Sci. 2011, 91, 847–851. [Google Scholar] [CrossRef]
- Balandier, P.; Mårell, A.; Prévosto, B.; Vincenot, L. Forest understorey and overstorey interactions: So much more than just light interception by trees. For. Ecol. Manag. 2022, 526, 120584. [Google Scholar] [CrossRef]
- United States Department of the Interior (DOI); Bureau of Land Management (BLM). Wild Horses and Burros Management Handbook; BLM Handbook H-4700-1; Bureau of Land Management (BLM): Washington, DC, USA, 2010; 80p.
- Bailey, D.W.; Trotter, M.G.; Tobin, C.; Thomas, M.G. Opportunities to Apply Precision Livestock Management on Rangelands. Front. Sustain. Food Syst. 2021, 5, 515–523. [Google Scholar] [CrossRef]
- Burdick, J.; Swanson, S.; Tsocanos, S.; McCue, S. Lentic Meadows and Riparian Functions Impaired After Horse and Cattle Grazing. J. Wild. Manag. 2021, 85, 1121–1131. [Google Scholar] [CrossRef]
- Cubley, E.S.; Richer, E.E.; Baker, D.W.; Lamson, C.G.; Hardee, T.L.; Bledsoe, B.P.; Kulchawik, P.L. Restoration of riparian vegetation on a mountain river degraded by historical mining and grazing. River Res. Appl. 2022, 38, 80–93. [Google Scholar] [CrossRef]
- Davies, K.W.; Boyd, C.S. Ecological Effects of Free-Roaming Horses in North American Rangelands. BioScience 2019, 69, 558–565. [Google Scholar] [CrossRef]
- Scasta, J.D.; Hennig, J.D.; Beck, J.L. Framing Contemporary U.S. Wild Horse and Burro Management Processes in a Dynamic Ecological, Sociological, and Political Environment. Hum.–Wildl. Interact. 2018, 12, 6. [Google Scholar] [CrossRef]
- Beever, E.; Aldridge, C. Influences of Free-Roaming Equids on Sagebrush Ecosystems, with a Focus on Greater Sage-Grouse. Stud. Avian Biol. 2011, 38, 273–290. [Google Scholar]
- Hartman, M.D.; Parton, W.J.; Derner, J.D.; Schulte, D.K.; Smith, W.K.; Peck, D.E.; Day, K.A.; Del Grosso, S.J.; Lutz, S.; Fuchs, B.A.; et al. Seasonal grassland productivity forecast for the U.S. Great Plains using Grass-Cast. Ecosphere 2020, 11, e03280. [Google Scholar]
- Peck, D.; Derner, J.; Parton, W.; Hartman, M.; Fuchs, B. Flexible stocking with Grass-Cast: A new grassland productivity forecast to translate climate outlooks for ranchers. West. Econ. Forum 2019, 17, 24–39. [Google Scholar] [CrossRef]
- Bachelet, D.; Ferschweiler, K.; Sheehan, T.J.; Sleeter, B.M.; Zhu, Z. Projected carbon stocks in the conterminous USA with land use and variable fire regimes. Glob. Change Biol. 2015, 21, 4548–4560. [Google Scholar] [CrossRef]
- Kim, J.B.; Kerns, B.K.; Drapek, R.J.; Pitts, G.S.; Halofsky, J.E. Simulating vegetation response to climate change in the Blue Mountains with MC2 dynamic global vegetation model. Clim. Serv. 2018, 10, 20–32. [Google Scholar] [CrossRef]
Model Element | Data Source | Description |
---|---|---|
Water sources | From local units | Spatially referenced locations describing areas with permanent water sources |
Slope | National Map: https://www.usgs.gov/the-national-map-data-delivery, accessed on 25 November 2024 | Emanating from digital elevation model at 30 m spatial resolution |
Vegetation cover type | INREV (https://www.fs.usda.gov/detail/r3/landmanagement/gis/?cid=stelprdb5201889; accessed on 25 November 2024). | Mid-scale mapping is compliant with agency technical guidance for existing vegetation [20] |
Relative cover of life forms | Rangeland Analysis Platform (https://rangelands.app/; accessed on 25 November 2024) [21] | Percent foliar cover of shrubs, trees, perennial and annual herbaceous content |
Annual production | Rangeland Production Monitoring Service [18] | Annual production of vegetation in kg per ha |
Land ownership | Protected Areas Database of the US (PADUS; https://databasin.org/datasets/f10a00eff36945c9a1660fc6dc54812e/; accessed on 25 November 2024) [22] | Spatially explicit data describing the patterns of land ownership including federal and non-federal land |
Management Parameters | Montgomery Pass | Eagle Creek | Units |
---|---|---|---|
Distance from water | 8.05 | 3.22 | km |
Slope | 45 | 45 | % |
Vegetation types not considered useable forage | no | yes; areas dominated by Larrea tridentata | NA |
AUM adjustments for breed and size | 1.2 | 1 | AUM (kg of forage required per month) |
Forage demand for other species to consider: Number of animals | Cattle; 1182 | 0 | AUMs or number of animals |
Forage demand for other species to consider: Amount of forage | Cattle: 418,194 | 0 | kg of forage required per month |
Target use level | 30 | 35 | % |
Grazing period of use | 12 | 12 | months per year |
Proportion of shrubs in the diet | 2 | 10 | % |
Eagle Creek | Montgomery Pass | |||||
---|---|---|---|---|---|---|
Low | Med | High | Low | Med | High | |
Average produciton (kg per ha) (Uncorrected from the RPMS) | 245 | 416 | 587 | 147 | 226 | 304 |
Average produciton (kg per ha) (Corrected with retention factor) | 95 | 162 | 229 | 54 | 83 | 112 |
Accounting for other herbivore needs (AUMS) | 0 | 0 | 0 | 1182 | 1182 | 1182 |
Total Forage (kg) (includes RPMS production, shrub use assumptions and understory estimates) | 37,211,406 | 61,126,400 | 85,300,883 | 6,660,361 | 10,275,821 | 14,285,117 |
Accounting for other herbivore needs (AUMS) | 0 | 0 | 0 | 1182 | 1182 | 1182 |
37,211,406 | 61,126,400 | 85,300,883 | 5,942,234 | 9,167,872 | 12,744,881 | |
Capacity estimate (AUM) | 18,715 | 30,743 | 42,902 | 6991 | 9826 | 13,659 |
Capacity estimate (AUY) | 1560 | 2562 | 3575 | 175 | 287 | 398 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Reeves, M.C.; Swisher, J.; Krebs, M.; Warnke, K.; Hanberry, B.B.; Hudson, T.; Hall, S.A. Data-Driven Decision Support to Guide Sustainable Grazing Management. Land 2025, 14, 140. https://doi.org/10.3390/land14010140
Reeves MC, Swisher J, Krebs M, Warnke K, Hanberry BB, Hudson T, Hall SA. Data-Driven Decision Support to Guide Sustainable Grazing Management. Land. 2025; 14(1):140. https://doi.org/10.3390/land14010140
Chicago/Turabian StyleReeves, Matthew C., Joseph Swisher, Michael Krebs, Kelly Warnke, Brice B. Hanberry, Tip Hudson, and Sonia A. Hall. 2025. "Data-Driven Decision Support to Guide Sustainable Grazing Management" Land 14, no. 1: 140. https://doi.org/10.3390/land14010140
APA StyleReeves, M. C., Swisher, J., Krebs, M., Warnke, K., Hanberry, B. B., Hudson, T., & Hall, S. A. (2025). Data-Driven Decision Support to Guide Sustainable Grazing Management. Land, 14(1), 140. https://doi.org/10.3390/land14010140