Farming on the Edge: The 10-Fold Deficit in Lombardy’s Agricultural Land
Abstract
1. Introduction
2. Materials and Methods
2.1. An Introduction to Lombardy’s Primary Production
2.2. Land Use Change Analysis
2.3. Future Trends
2.4. The Quantification of Agricultural Land to Satisfy the Food Demand
3. Results
3.1. A Massive Reduction in Less than Twenty Years
3.2. A Challenging Future for Agricultural Land
3.3. Assessing the Deficit
4. Discussion
4.1. Significant Findings
4.2. Limits and Future Research Directions
4.3. Policy Implication
- the potential productivity of Controlled Environmental Agriculture (CEA) [37], assuming that this typology mainly produces specific vegetables, and it can hardly replicate the typology and quantity of production that traditional farming can get;
- the installation of agrophotovoltaic on legumes, tomatoes, and other vegetables in semi-arid environments, as it seems demonstrated that this kind of installation can be compatible and even augment the production while providing more shade to the ground [92];
- the introduction of Assisted Evolution Techniques (TEA) to breed crops, fostering yields without using additional fertilizers (especially corn or rice), thus balancing the tradeoff between an increase in productivity and environmental sustainability [93].
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- European Commission. FUTURE BRIEF: No Net Land Take by 2050? European Commission: Brussels, Belgium, 2016. [Google Scholar]
- Marquard, E.; Bartke, S.; Gifreu i Font, J.; Humer, A.; Jonkman, A.; Jürgenson, E.; Marot, N.; Poelmans, L.; Repe, B.; Rybski, R.; et al. Land Consumption and Land Take: Enhancing Conceptual Clarity for Evaluating Spatial Governance in the EU Context. Sustainability 2020, 12, 8269. [Google Scholar] [CrossRef]
- European Commission. Proposed Mission: 100 Climate-Neutral Cities by 2030—By and for the Citizens; European Commission: Brussels, Belgium, 2020; ISBN 9789276215417. [Google Scholar]
- European Commission. Proposal for a Directive of the European Parliament and of the CounciL on Soil Monitoring and Resilience (Soil Monitoring Law); European Commission: Brussels, Belgium, 2023; Volume 3. [Google Scholar]
- De Groot, R. Function-Analysis and Valuation as a Tool to Assess Land Use Conflicts in Planning for Sustainable, Multi-Functional Landscapes. Landsc. Urban Plan. 2006, 75, 175–186. [Google Scholar] [CrossRef]
- Staccione, A.; Candiago, S.; Mysiak, J. Mapping a Green Infrastructure Network: A Framework for Spatial Connectivity Applied in Northern Italy. Environ. Sci. Policy 2022, 131, 57–67. [Google Scholar] [CrossRef]
- Keesstra, S.D.; Bouma, J.; Wallinga, J.; Tittonell, P.; Smith, P.; Cerdà, A.; Montanarella, L.; Quinton, J.N.; Pachepsky, Y.; Van Der Putten, W.H.; et al. The Significance of Soils and Soil Science towards Realization of the United Nations Sustainable Development Goals. Soil 2016, 2, 111–128. [Google Scholar] [CrossRef]
- Angeler, D.G.; Allen, C.R. Editorial: Quantifying Resilience. J. Appl. Ecol. 2016, 53, 617–624. [Google Scholar] [CrossRef]
- Salata, S. Policy, Strategy and Technical Solutions for Land Take Limitations. In Urban Expansion, Land Cover and Soil Ecosystem Services; Gardi, C., Ed.; Routledge Taylor & Francis Group: Oxfordshire, UK, 2017; pp. 276–290. ISBN 978-1-138-88509-7. [Google Scholar]
- Nicolau, R.; Condessa, B. Monitoring Net Land Take: Is Mainland Portugal on Track to Meet the 2050 Target? Land 2022, 11, 1005. [Google Scholar] [CrossRef]
- Lacoere, P.; Decoville, A.; Delattre, R.; Melot, R.; Grimski, D.; Schamann, M.; Halleux, J.M. National Introduction of No Net Land Take: A Comparative Study of Five Pioneering Countries Seeking to Limit Their Land Consumption. Town Plan. Rev. 2025, 96, 347–371. [Google Scholar] [CrossRef]
- European Commission. EU Soil Strategy for 2030 Reaping the Benefits of Healthy Soils for People, Food, Nature and Climate; European Commission: Brussels, Belgium, 2021. [Google Scholar]
- Morel, J.L.; Schwartz, C.; Florentin, L.; de Kimpe, C. URBAN SOILS. Encycl. Soils Environ. 2005, 4, 202–208. [Google Scholar] [CrossRef]
- Dilling, L.; Failey, E. Managing Carbon in a Multiple Use World: The Implications of Land-Use Decision Context for Carbon Management. Glob. Environ. Change 2013, 23, 291–300. [Google Scholar] [CrossRef]
- Pásztor, L.; Laborczi, A.; Takács, K.; Szatmári, G.; Fodor, N.; Illés, G.; Farkas-Iványi, K.; Bakacsi, Z.; Szabó, J. Compilation of Functional Soil Maps for the Support of Spatial Planning and Land Management in Hungary. In Soil Mapping and Process Modeling for Sustainable Land Use Management; Elsevier: Amsterdam, The Netherlands, 2017; pp. 293–317. [Google Scholar] [CrossRef]
- Maienza, A.; Ungaro, F.; Baronti, S.; Colzi, I.; Giagnoni, L.; Gonnelli, C.; Renella, G.; Ugolini, F.; Calzolari, C. Biological Restoration of Urban Soils after De-Sealing Interventions. Agriculture 2021, 11, 190. [Google Scholar] [CrossRef]
- Artmann, M. Institutional Efficiency of Urban Soil Sealing Management—From Raising Awareness to Better Implementation of Sustainable Development in Germany. Landsc. Urban Plan. 2014, 131, 83–95. [Google Scholar] [CrossRef]
- Asleson, B.C.; Nestingen, R.S.; Gulliver, J.S.; Hozalski, R.M.; Nieber, J.L. Performance Assessment of Rain Gardens. J. Am. Water Resour. Assoc. 2009, 45, 1019–1031. [Google Scholar] [CrossRef]
- Maggiotto, G.; Miani, A.; Rizzo, E.; Castellone, M.D.; Piscitelli, P. Heat Waves and Adaptation Strategies in a Mediterranean Urban Context. Environ. Res. 2021, 197, 111066. [Google Scholar] [CrossRef] [PubMed]
- Brevik, E.C. The Potential Impact of Climate Change on Soil Properties and Processes and Corresponding Influence on Food Security. Agriculture 2013, 3, 398–417. [Google Scholar] [CrossRef]
- Mander, Ü.; Uuemaa, E. Landscape Planning. Encycl. Ecol. 2015, 4, 532–544. [Google Scholar] [CrossRef]
- Albert, C.; Galler, C.; Hermes, J.; Neuendorf, F.; Von Haaren, C.; Lovett, A. Applying Ecosystem Services Indicators in Landscape Planning and Management: The ES-in-Planning Framework. Ecol. Indic. 2016, 61, 100–113. [Google Scholar] [CrossRef]
- Ronchi, S.; Salata, S.; Arcidiacono, A.; Piroli, E.; Montanarella, L. Policy Instruments for Soil Protection among the EU Member States: A Comparative Analysis. Land Use Policy 2019, 82, 763–780. [Google Scholar] [CrossRef]
- European Commission. Guidelines on Best Practice to Limit, Mitigate or Compensate Soil Sealing; European Commission: Brussels, Belgium, 2012; ISBN 9789279262104. [Google Scholar]
- Paleari, S. Is the European Union Protecting Soil? A Critical Analysis of Community Environmental Policy and Law. Land Use Policy 2017, 64, 163–173. [Google Scholar] [CrossRef]
- Naumann, S.; Frelih-Larsen, A.; Prokop, G.; Ittner, S.; Reed, M.; Mills, J.; Morari, F.; Verzandvoort, S.; Albrecht, S.; Bjuréus, A.; et al. Land Take and Soil Sealing—Drivers, Trends and Policy (Legal) Instruments: Insights from European Cities. In International Yearbook of Soil Law and Policy; Ginzky, H., Ed.; Springer: Cham, Switzerland, 2019; pp. 83–112. ISBN 978-3-030-00757-7. [Google Scholar]
- Romano, B.; Fiorini, L.; Zullo, F.; Marucci, A. Urban Growth Control DSS Techniques for De-Sprinkling Process in Italy. Sustainability 2017, 9, 1852. [Google Scholar] [CrossRef]
- Barbosa, A.; Vallecillo, S.; Baranzelli, C.; Jacobs-Crisioni, C.; Batista e Silva, F.; Perpiña-Castillo, C.; Lavalle, C.; Maes, J. Modelling Built-up Land Take in Europe to 2020: An Assessment of the Resource Efficiency Roadmap Measure on Land. J. Environ. Plan. Manag. 2016, 60, 439–1463. [Google Scholar] [CrossRef]
- Akpoti, K.; Kabo-bah, A.T.; Zwart, S.J. Agricultural Land Suitability Analysis: State-of-the-Art and Outlooks for Integration of Climate Change Analysis. Agric. Syst. 2019, 173, 172–208. [Google Scholar] [CrossRef]
- Pelorosso, R.; Apollonio, C.; Rocchini, D.; Petroselli, A. Effects of Land Use-Land Cover Thematic Resolution on Environmental Evaluations. Remote Sens. 2021, 13, 1232. [Google Scholar] [CrossRef]
- Barbosa, B.; Rocha, J.; Costa, H.; Caetano, M. Uncovering Vegetation Changes in the Urban–Rural Interface through Semi-Automatic Methods. Appl. Sci. 2022, 12, 2294. [Google Scholar] [CrossRef]
- Vanderhaegen, S.; De Munter, K.; Canters, F. High Resolution Modelling and Forecasting of Soil Sealing Density at the Regional Scale. Landsc. Urban Plan. 2015, 133, 133–142. [Google Scholar] [CrossRef]
- Münch, Z.; Gibson, L.; Palmer, A. Monitoring Effects of Land Cover Change on Biophysical Drivers in Rangelands Using Albedo. Land 2019, 8, 33. [Google Scholar] [CrossRef]
- Maes, J.; Egoh, B.; Willemen, L.; Liquete, C.; Vihervaara, P.; Schägner, J.P.; Grizzetti, B.; Drakou, E.G.; La Notte, A.; Zulian, G.; et al. Mapping Ecosystem Services for Policy Support and Decision Making in the European Union. Ecosyst. Serv. 2012, 1, 31–39. [Google Scholar] [CrossRef]
- Panagos, P.; Imeson, A.; Meusburger, K.; Borrelli, P.; Poesen, J.; Alewell, C. Soil Conservation in Europe: Wish or Reality? Land Degrad. Dev. 2016, 27, 1547–1551. [Google Scholar] [CrossRef]
- MacDonald, D.; Crabtree, J.; Wiesinger, G.; Dax, T.; Stamou, N.; Fleury, P.; Gutierrez Lazpita, J.; Gibon, A. Agricultural Abandonment in Mountain Areas of Europe: Environmental Consequences and Policy Response. J. Environ. Manag. 2000, 59, 47–69. [Google Scholar] [CrossRef]
- Dsouza, A.; Newman, L.; Graham, T.; Fraser, E.D.G. Exploring the Landscape of Controlled Environment Agriculture Research: A Systematic Scoping Review of Trends and Topics. Agric. Syst. 2023, 209, 103673. [Google Scholar] [CrossRef]
- Rodríguez-Espinosa, T.; Navarro-Pedreño, J.; Lucas, I.G.; Belén Almendro-Candel, M. Land Recycling, Food Security and Technosols. J. Geogr. Res. 2021, 4, 44–50. [Google Scholar] [CrossRef]
- Foley, J.A.; DeFries, R.; Asner, G.P.; Barford, C.; Bonan, G.; Carpenter, S.R.; Chapin, F.S.; Coe, M.T.; Daily, G.C.; Gibbs, H.K.; et al. Global Consequences of Land Use. Science 2005, 309, 570–574. [Google Scholar] [CrossRef]
- Galiè, A. Leveraging Gender for Food and Nutrition Security Through Agriculture. In Encyclopedia of Food Security and Sustainability; Ferranti, P., Berry, E.M., Anderson, J.R., Eds.; Elsevier: Oxford, UK, 2019; pp. 426–431. ISBN 978-0-12-812688-2. [Google Scholar]
- Peng, W.; Berry, E.M. The Concept of Food Security. In Encyclopedia of Food Security and Sustainability; Ferranti, P., Berry, E.M., Anderson, J.R., Eds.; Elsevier: Oxford, UK, 2019; pp. 1–7. ISBN 978-0-12-812688-2. [Google Scholar]
- Provolo, G. Manure Management Practices in Lombardy (Italy). Bioresour. Technol. 2005, 96, 145–152. [Google Scholar] [CrossRef]
- Gundula, P.; Stefano, S. The European Approach: Limitation, Mitigation and Compensation. In Urban Expansion, Land Cover and Soil Ecosystem Services; Gardi, C., Ed.; Routledge Taylor & Francis Group: Oxfordshire, UK, 2017; pp. 265–275. ISBN 978-1-138-88509-7. [Google Scholar]
- Gastineau, P.; Mossay, P.; Taugourdeau, E. Ecological Compensation: How Much and Where? Ecol. Econ. 2021, 190, 107191. [Google Scholar] [CrossRef]
- Eurostat. How Much of Your Region Is Covered by Man-Made Surfaces? Available online: https://ec.europa.eu/eurostat/web/products-eurostat-news/-/WDN-20180523-1 (accessed on 10 August 2025).
- Sohl, T.L.; Sleeter, B.M.; Zhu, Z.; Sayler, K.L.; Bennett, S.; Bouchard, M.; Reker, R.; Hawbaker, T.; Wein, A.; Liu, S.; et al. A Land-Use and Land-Cover Modeling Strategy to Support a National Assessment of Carbon Stocks and Fluxes. Appl. Geogr. 2012, 34, 111–124. [Google Scholar] [CrossRef]
- Gavrilidis, A.A.; Niţă, M.R.; Onose, D.A.; Badiu, D.L.; Năstase, I.I. Methodological Framework for Urban Sprawl Control through Sustainable Planning of Urban Green Infrastructure. Ecol. Indic. 2017, 96, 67–78. [Google Scholar] [CrossRef]
- Saraiva, A.; Presumido, P.; Silvestre, J.; Feliciano, M.; Rodrigues, G.; Oliveira e Silva, P.; Damásio, M.; Ribeiro, A.; Ramôa, S.; Ferreira, L.; et al. Water Footprint Sustainability as a Tool to Address Climate Change in the Wine Sector: A Methodological Approach Applied to a Portuguese Case Study. Atmosphere 2020, 11, 934. [Google Scholar] [CrossRef]
- Zavalloni, M.; D’Alberto, R.; Raggi, M.; Viaggi, D. Farmland Abandonment, Public Goods and the CAP in a Marginal Area of Italy. Land Use Policy 2021, 107, 104365. [Google Scholar] [CrossRef]
- Fumagalli, M.; Acutis, M.; Mazzetto, F.; Vidotto, F.; Sali, G.; Bechini, L. An Analysis of Agricultural Sustainability of Cropping Systems in Arable and Dairy Farms in an Intensively Cultivated Plain. Eur. J. Agron. 2011, 34, 71–82. [Google Scholar] [CrossRef]
- Istituto Nazionale di Statistica. 7th General Census of Agriculture. Available online: https://www.istat.it/en/statistical-themes/censuses/agriculture/7th-general-census-of-agriculture/ (accessed on 5 June 2025).
- Regione Lombardia Il Sistema Agroalimentare Della Lombardia. Rapporto. 2023. Available online: https://www.regione.lombardia.it/wps/portal/istituzionale/HP/DettaglioRedazionale/servizi-e-informazioni/Imprese/Imprese-agricole/ricerca-e-statistiche-in-agricoltura/sistema-agroalimentare-2023/sistema-agroalimentare-2023#:~:text=Il valore della produzio (accessed on 5 June 2025).
- Sallustio, L.; Pettenella, D.; Merlini, P.; Romano, R.; Salvati, L.; Marchetti, M.; Corona, P. Assessing the Economic Marginality of Agricultural Lands in Italy to Support Land Use Planning. Land Use Policy 2018, 76, 526–534. [Google Scholar] [CrossRef]
- Coderoni, S.; Esposti, R. CAP Payments and Agricultural GHG Emissions in Italy. A Farm-Level Assessment. Sci. Total Environ. 2018, 627, 427–437. [Google Scholar] [CrossRef]
- Bünemann, E.K.; Bongiorno, G.; Bai, Z.; Creamer, R.E.; De Deyn, G.; de Goede, R.; Fleskens, L.; Geissen, V.; Kuyper, T.W.; Mäder, P.; et al. Soil Quality—A Critical Review. Soil Biol. Biochem. 2018, 120, 105–125. [Google Scholar] [CrossRef]
- Lynch, K.; Maconachie, R.; Binns, T.; Tengbe, P.; Bangura, K. Meeting the Urban Challenge? Urban Agriculture and Food Security in Post-Conflict Freetown, Sierra Leone. Appl. Geogr. 2013, 36, 31–39. [Google Scholar] [CrossRef]
- Pileri, P.; Salata, S. L’intensità Del Consumo Di Suolo. Lombardia, Emilia Romagna, Friuli Venezia Giulia e Sardegna. In Rapporto 2010. Centro di Ricerca sui Consumi di Suolo; Arcidiacono, A., Di Simine, D., Oliva, F., Pareglio, S., Pileri, P., Salata, S., Eds.; INU Edizioni: Roma, Italy, 2011; pp. 167–249. ISBN 8876030514. [Google Scholar]
- de Nijs, T.C.M.; de Niet, R.; Crommentuijn, L. Constructing Land-Use Maps of the Netherlands in 2030. J. Environ. Manag. 2004, 72, 35–42. [Google Scholar] [CrossRef]
- Romano, B.; Zullo, F.; Fiorini, L.; Marucci, A.; Ciabò, S. Land Transformation of Italy Due to Half a Century of Urbanization. Land Use Policy 2017, 67, 387–400. [Google Scholar] [CrossRef]
- Pileri, P. Learning and Interpreting Land Cover and Its Changes. In Land Cover Changes in Lombardy over the Last 50 Years; Regione Lombardia; ERSAF: Milan, Italy, 2012; pp. 185–204. [Google Scholar]
- Verburg, P.H.; Schot, P.P.; Dijst, M.J.; Veldkamp, A. Land Use Change Modelling: Current Practice and Research Priorities. GeoJournal 2004, 61, 309–324. [Google Scholar] [CrossRef]
- Veldkamp, A.; Verburg, P.H. Modelling Land Use Change and Environmental Impact. J. Environ. Manag. 2004, 72, 1–3. [Google Scholar] [CrossRef] [PubMed]
- Ronchi, S.; Salata, S.; Arcidiacono, A. I Processi Di Variazione d’uso Del Suolo Avvenuti Tra Il 1999 e Il 2015 Nelle Aree Di Interesse Paesaggistico Della Lombardia. In Consumo di Suolo, Servizi Ecosistemici e Green Infrastructures: Caratteri Territoriali, Approcci Disciplinari e Progetti Innovativi. Rapporto 2018; INU Edizioni: Rome, Italy, 2018; pp. 50–55. ISBN 978-88-7603-185-4. [Google Scholar]
- Regione Lombardia Geoportale Della Lombardia. Available online: https://www.geoportale.regione.lombardia.it/ricerca?p_p_id=gptadvancedsearch_WAR_gptmetadataportlet&p_p_lifecycle=0&p_p_state=normal&p_p_mode=view&_gptadvancedsearch_WAR_gptmetadataportlet_searchTerm=&_gptadvancedsearch_WAR_gptmetadataportlet_showSearchFi (accessed on 16 December 2024).
- Regione Lombardia Interventi Infrastrutturali Programmati in Lombardia. Available online: https://www.infrastrutturetracciati.servizirl.it (accessed on 5 October 2024).
- Monguidi, M.; Stoicescu, A.; Bocca, V.; Boelaert, F.; Riolo, F.; Rizzi, V.; Van der Stede, Y. The Food Classification and Description System FoodEx 2 (Draft-Revision 1). EFSA Support. Publ. 2011, 8, 215E. [Google Scholar] [CrossRef]
- Poore, J.; Nemecek, T. Reducing Food’s Environmental Impacts through Producers and Consumers. Science 2018, 360, 987–992. [Google Scholar] [CrossRef]
- Lombardi, G.V.; Parrini, S.; Atzori, R.; Stefani, G.; Romano, D.; Gastaldi, M.; Liu, G. Sustainable Agriculture, Food Security and Diet Diversity. The Case Study of Tuscany, Italy. Ecol. Modell. 2021, 458, 109702. [Google Scholar] [CrossRef]
- De Toni, A.; Roganti, R.; Ronchi, S.; Salata, S. Monitoring Recent Afforestation Interventions as Relevant Issue for Urban Planning. In Proceedings of the Computational Science and Its Applications—ICCSA 2023 Workshops, Athens, Greece, 3–6 July 2023; Gervasi, O., Murgante, B., Rocha, A.M.A.C., Garau, C., Scorza, F., Karaca, Y., Torre, C.M., Eds.; Springer Nature: Cham, Switzerland, 2023; pp. 578–595. [Google Scholar]
- Regione Lombardia la Legge Regionale per La Riduzione del Consumo di Suolo e per la Riqualificazione del Suolo Degradato. Available online: https://www.regione.lombardia.it/wps/portal/istituzionale/HP/DettaglioRedazionale/servizi-e-informazioni/enti-e-operatori/territorio/governo-del-territorio/legge-regionale-riduzione-consumo-suolo/legge-regionale-riduzione-consumo-suolo (accessed on 4 May 2025).
- Ritchie, H. How Much of the World’s Land Would We Need in Order to Feed the Global Population with the Average Diet of a Given Country? Available online: https://ourworldindata.org/agricultural-land-by-global-diets#article-citation (accessed on 5 June 2025).
- Hermoso, V.; Carvalho, S.B.; Giakoumi, S.; Goldsborough, D.; Katsanevakis, S.; Leontiou, S.; Markantonatou, V.; Rumes, B.; Vogiatzakis, I.N.; Yates, K.L. The EU Biodiversity Strategy for 2030: Opportunities and Challenges on the Path towards Biodiversity Recovery. Environ. Sci. Policy 2022, 127, 263–271. [Google Scholar] [CrossRef]
- Munafò, M. Consumo di Suolo, Dinamiche Territoriali e Servizi Ecosistemici—Edizione 2021. Report SNPA 22/21; ISPRA—Istituto Superiore per la Protezione e la Ricerca Ambientale: Rome, Italy, 2021; ISBN 978-88-448-1059-7. [Google Scholar]
- Disperati, L.; Virdis, S.G.P. Assessment of Land-Use and Land-Cover Changes from 1965 to 2014 in Tam Giang-Cau Hai Lagoon, Central Vietnam. Appl. Geogr. 2015, 58, 48–64. [Google Scholar] [CrossRef]
- De Fioravante, P.; Strollo, A.; Assennato, F.; Marinosci, I.; Congedo, L.; Munafò, M. High Resolution Land Cover Integrating Copernicus Products: A 2012–2020 Map of Italy. Land 2021, 11, 35. [Google Scholar] [CrossRef]
- Salata, S.; Giaimo, C.; Barbieri, C.A.; Garnero, G. The Utilization of Ecosystem Services Mapping in Land Use Planning: The Experience of LIFE SAM4CP Project. J. Environ. Plan. Manag. 2019, 63, 523–545. [Google Scholar] [CrossRef]
- Bulkeley, H.; Broto, V.C.; Edwards, G. Bringing Climate Change to the City: Towards Low Carbon Urbanism? Local Environ. 2012, 17, 545–551. [Google Scholar] [CrossRef]
- Xiao, R.; Su, S.; Zhang, Z.; Qi, J.; Jiang, D.; Wu, J. Dynamics of Soil Sealing and Soil Landscape Patterns under Rapid Urbanization. Catena 2013, 109, 1–12. [Google Scholar] [CrossRef]
- Mosammam, H.M.; Nia, J.T.; Khani, H.; Teymouri, A.; Kazemi, M. Monitoring Land Use Change and Measuring Urban Sprawl Based on Its Spatial Forms: The Case of Qom City. Egypt. J. Remote Sens. Space Sci. 2016, 20, 103–116. [Google Scholar] [CrossRef]
- Artmann, M. Managing Urban Soil Sealing in Munich and Leipzig (Germany)—From a Wicked Problem to Clumsy Solutions. Land Use Policy 2015, 46, 21–37. [Google Scholar] [CrossRef]
- Artmann, M. Assessment of Soil Sealing Management Responses, Strategies, and Targets toward Ecologically Sustainable Urban Land Use Management. Ambio 2014, 43, 530–541. [Google Scholar] [CrossRef]
- Rebelo, E.M. Land Economic Rent Computation for Urban Planning and Fiscal Purposes. Land Use Policy 2009, 26, 521–534. [Google Scholar] [CrossRef]
- Slätmo, E.; Nilsson, K.; Turunen, E. Implementing Green Infrastructure in Spatial Planning in Europe. Land 2019, 8, 62. [Google Scholar] [CrossRef]
- Wicki, M.; Wehr, M.; Debrunner, G.; Kaufmann, D. Public Acceptance and Policy for Green and Affordable Densification. White Paper on Acceptance of Swiss Urban Densification; ETH: Zurich, Switzerland, 2024. [Google Scholar]
- Langemeyer, J.; Gómez-Baggethun, E.; Haase, D.; Scheuer, S.; Elmqvist, T. Bridging the Gap between Ecosystem Service Assessments and Land-Use Planning through Multi-Criteria Decision Analysis (MCDA). Environ. Sci. Policy 2016, 62, 45–56. [Google Scholar] [CrossRef]
- Cortinovis, C.; Geneletti, D. Mapping and Assessing Ecosystem Services to Support Urban Planning: A Case Study on Brownfield Regeneration in Trento, Italy. One Ecosyst. 2018, 3, e25477. [Google Scholar] [CrossRef]
- Guan, X.; Liu, M.; Meng, Y. A Comprehensive Ecological Compensation Indicator Based on Pollution Damage—Protection Bidirectional Model for River Basin. Ecol. Indic. 2021, 126, 107708. [Google Scholar] [CrossRef]
- Adobati, F.; Garda, E. Soil Releasing as Key to Rethink Water Spaces in Urban Planning. City Territ. Archit. 2020, 7, 9. [Google Scholar] [CrossRef]
- Ceci, M.; Caselli, B.; Zazzi, M. Soil De-Sealing for Cities’ Adaptation to Climate Change. TeMA J. Land Use Mobil. Environ. 2023, 16, 121–145. [Google Scholar] [CrossRef]
- Dorst, H.; van der Jagt, S.; Raven, R.; Runhaar, H. Urban Greening through Nature-Based Solutions—Key Characteristics of an Emerging Concept. Sustain. Cities Soc. 2019, 49, 101620. [Google Scholar] [CrossRef]
- Zasada, I.; Loibl, W.; Köstl, M.; Piorr, A. Agriculture Under Human Influence: A Spatial Analysis of Farming Systems and Land Use in European Rural-Urban-Regions. Eur. Countrys. 2013, 5, 71–88. [Google Scholar] [CrossRef]
- Waller, R.; Kacira, M.; Magadley, E.; Teitel, M.; Yehia, I. Semi-Transparent Organic Photovoltaics Applied as Greenhouse Shade for Spring and Summer Tomato Production in Arid Climate. Agronomy 2021, 11, 1152. [Google Scholar] [CrossRef]
- Milla, R. Phenotypic Evolution of Agricultural Crops. Funct. Ecol. 2023, 37, 976–988. [Google Scholar] [CrossRef]





| Consumed Product | EFSA Associated Category | Ha of Land for a Ton of Product |
|---|---|---|
| Wine | Alcoholic beverages | 0.01 |
| Fats and oils | Animal and vegetable fats and oils and primary derivatives thereof | 0.46 |
| Coffee and dark chocolate | Coffee, cocoa, tea, and infusions | 0.45 |
| Eggs | Eggs and egg products | 0.06 |
| Fish (farmed) | Fish, seafood, amphibians, reptiles, and invertebrates | 0.08 |
| Fruit | Fruit and fruit products | 0.01 |
| Other fruits | Fruit and vegetable juices and nectars (including concentrates) | 0.01 |
| Wheat, rice, and maize | Grain and grain-based products | 0.03 |
| Cassava and potatoes | Legumes, nuts, oilseed, and spices | 0.08 |
| Meat and Lambs | Meat and meat products | 1.81 |
| Milk | Milk and dairy products | 0.08 |
| Groundnuts, peas, and tofu | Starchy roots or tubers and products thereof, sugar plants | 0.01 |
| Cane sugar | Sugar and similar confectionery and water-based sweet desserts | 0.03 |
| Vegetables | Vegetables and vegetable products | 0.00 |
| Typology of Action | Bergamo | Brescia | Como | Cremona | Lecco | Lodi |
|---|---|---|---|---|---|---|
| Cut (ha) | 389.98 | 879.34 | 57.59 | 205.17 | 39.53 | 82.25 |
| Cut % | 11.77% | 27.97% | 7.47% | 11.80% | 10.92% | 9.54% |
| Realized (ha) | 622.21 | 679.26 | 106.04 | 216.73 | 43.28 | 190.16 |
| Confirmed (ha) | 1901.39 | 1358.30 | 447.90 | 1362.06 | 215.04 | 653.92 |
| New (ha) | 217.61 | 292.66 | 82.30 | 232.40 | 29.45 | 56.02 |
| Milano | Monza e Brianza | Mantova | Pavia | Sondrio | Varese | |
| Cut (ha) | 2800.58 | 333.04 | 173.94 | 417.41 | 161.83 | 142.80 |
| Cut % | 100.00% | 31.48% | 9.11% | 13.51% | 17.82% | 25.41% |
| Realized (ha) | 780.00 | 171.26 | 238.48 | 390.64 | 59.39 | 132.50 |
| Confirmed (ha) | 1380.67 | 472.22 | 1601.15 | 2311.12 | 194.73 | 462.90 |
| New (ha) | 149.57 | 73.41 | 110.54 | 189.17 | 98.58 | 123.50 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Salata, S.; Arcidiacono, A.; Corsi, S.; Mazzocchi, C.; Fedalto, A.; Riccobene, D. Farming on the Edge: The 10-Fold Deficit in Lombardy’s Agricultural Land. Land 2025, 14, 2112. https://doi.org/10.3390/land14112112
Salata S, Arcidiacono A, Corsi S, Mazzocchi C, Fedalto A, Riccobene D. Farming on the Edge: The 10-Fold Deficit in Lombardy’s Agricultural Land. Land. 2025; 14(11):2112. https://doi.org/10.3390/land14112112
Chicago/Turabian StyleSalata, Stefano, Andrea Arcidiacono, Stefano Corsi, Chiara Mazzocchi, Alberto Fedalto, and Domenico Riccobene. 2025. "Farming on the Edge: The 10-Fold Deficit in Lombardy’s Agricultural Land" Land 14, no. 11: 2112. https://doi.org/10.3390/land14112112
APA StyleSalata, S., Arcidiacono, A., Corsi, S., Mazzocchi, C., Fedalto, A., & Riccobene, D. (2025). Farming on the Edge: The 10-Fold Deficit in Lombardy’s Agricultural Land. Land, 14(11), 2112. https://doi.org/10.3390/land14112112

