The Impact of Spatiotemporal Effect and Relevant Factors on the Urban Thermal Environment Through the XGBoost-SHAP Model
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Data Source
2.3. Research Model
2.4. LST Intensity
3. Results
3.1. The Spatial Distribution of LST Intensity
3.2. The Spatial Distribution of Relevant Research Measurements
3.3. The Impact Mechanisms of LST and Relevant Research Measurements
3.3.1. XGBoost Model Tuning and Results Analysis
3.3.2. SHAP Model Interpretation and Feature Importance
3.3.3. SHAP-Based Multivariable Interaction Analysis
4. Discussion
4.1. The Influence Mechanism of a Single Research Measure on LST
4.1.1. The Impact Mechanisms of LST Variation Across Urban and Rural Spatial Scales
4.1.2. The Influence Mechanism of LST Variations Across Temporal Dimensions
4.2. The Influence Mechanism of LST Under the Interaction of Multiple Research Measure
4.3. Implications for Urban Planning and Future Planning
5. Conclusions and Limitations
- The spatial distribution of LST in Hangzhou reveals that HSTAs are mainly concentrated in urban areas, with higher HSTA densities closer to the city center. LSTAs, on the other hand, are primarily distributed in certain rural areas and the high-altitude regions along Hangzhou’s northwestern edge. For most regions, the distribution of HSTAs and LSTAs remains consistent between daytime and nighttime, except for large water bodies in rural areas. Due to the high specific heat capacity of water, these areas release more heat at night compared to daytime.
- The contributions of influencing mechanisms to the urban thermal environment vary across temporal and spatial scales. The ranking of influence categories is as follows:First, during the daytime, DEM has a strong impact on the thermal issues in both urban and rural areas. At nighttime, the distribution and activity of the population play a dominant role. Second, wetness significantly affects the global area of Hangzhou during both day and night. Third, the built environment, especially road density, has a notable impact on the global area of Hangzhou. Fourth, the distribution of landscape patterns, including landscape shape and density, has a relatively low impact on LST across Hangzhou.
- In multivariable synergy analyses, the collaborative effects of influencing factors on LST are significantly stronger in urban areas compared to rural areas. In urban areas, the most influential synergistic factors are ranked as follows: DEM, POP_D, RD, wet, NDVI, and slope. These factors should be jointly considered in future urban planning and development efforts in Hangzhou’s urban areas to comprehensively enhance the capacity to mitigate LST in the city’s core areas.
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Yadav, N.; Rajendra, K.; Awasthi, A.; Singh, C. Systematic Exploration of Heat Wave Impact on Mortality and Urban Heat Island: A Review from 2000 to 2022. Urban Climate 2023, 51, 101622. [Google Scholar] [CrossRef]
- Han, D.; Zhang, T.; Qin, Y.; Tan, Y.; Liu, J. A Comparative Review on the Mitigation Strategies of Urban Heat Island (Uhi): A Pathway for Sustainable Urban Development. Clim. Dev. 2023, 15, 379–403. [Google Scholar] [CrossRef]
- Hayes, A.T.; Jandaghian, Z.; Lacasse, M.A.; Gaur, A.; Lu, H.; Laouadi, A.; Ge, H.; Wang, L. Nature-Based Solutions (Nbss) to Mitigate Urban Heat Island (Uhi) Effects in Canadian Cities. Buildings 2022, 12, 925. [Google Scholar] [CrossRef]
- Taslim, S.; Parapari, D.M.; Shafaghat, A. Urban Design Guidelines to Mitigate Urban Heat Island (Uhi) Effects in Hot-Dry Cities. J. Teknol. 2015, 74. [Google Scholar] [CrossRef]
- Tesfamariam, S.; Govindu, V.; Uncha, A. Spatio-Temporal Analysis of Urban Heat Island (Uhi) and Its Effect on Urban Ecology: The Case of Mekelle City, Northern Ethiopia. Heliyon 2023, 9, e13098. [Google Scholar] [CrossRef] [PubMed]
- Mokarram, M.; Taripanah, F.; Pham, T.M. Investigating the Effect of Surface Urban Heat Island on the Trend of Temperature Changes. Adv. Space Res. 2023, 72, 3150–3169. [Google Scholar] [CrossRef]
- Geng, X.; Zhang, D.; Li, C.; Yuan, Y.; Yu, Z.; Wang, X. Impacts of Climatic Zones on Urban Heat Island: Spatiotemporal Variations, Trends, and Drivers in China from 2001–2020. Sustain. Cities Soc. 2023, 89, 104303. [Google Scholar] [CrossRef]
- Thanvisitthpon, N.; Nakburee, A.; Khamchiangta, D.; Saguansap, V. Climate Change-Induced Urban Heat Island Trend Projection and Land Surface Temperature: A Case Study of Thailand’s Bangkok Metropolitan. Urban Clim. 2023, 49, 101484. [Google Scholar] [CrossRef]
- Shi, Y.; Liu, S.; Yan, W.; Zhao, S.; Ning, Y.; Peng, X.; Chen, W.; Chen, L.; Hu, X.; Fu, B. Influence of Landscape Features on Urban Land Surface Temperature: Scale and Neighborhood Effects. Sci. Total Environ. 2021, 771, 145381. [Google Scholar] [CrossRef]
- Ezimand, K.; Azadbakht, M.; Aghighi, H. Analyzing the Effects of 2d and 3d Urban Structures on Lst Changes Using Remotely Sensed Data. Sustain. Cities Soc. 2021, 74, 103216. [Google Scholar] [CrossRef]
- Assaf, G.; Assaad, R.H. Modeling the Impact of Land Use/Land Cover (Lulc) Factors on Diurnal and Nocturnal Urban Heat Island (Uhi) Intensities Using Spatial Regression Models. Urban Clim. 2024, 55, 101971. [Google Scholar] [CrossRef]
- Harmay, N.S.M.; Kim, D.; Choi, M. Urban Heat Island Associated with Land Use/Land Cover and Climate Variations in Melbourne, Australia. Sustain. Cities Soc. 2021, 69, 102861. [Google Scholar] [CrossRef]
- Morabito, M.; Crisci, A.; Guerri, G.; Messeri, A.; Congedo, L.; Munafò, M. Surface Urban Heat Islands in Italian Metropolitan Cities: Tree Cover and Impervious Surface Influences. Sci. Total Environ. 2021, 751, 142334. [Google Scholar] [CrossRef]
- Shi, Z.; Li, X.; Hu, T.; Yuan, B.; Yin, P.; Jiang, D. Modeling the Intensity of Surface Urban Heat Island Based on the Impervious Surface Area. Urban Clim. 2023, 49, 101529. [Google Scholar] [CrossRef]
- Oke, T.R. The Energetic Basis of the Urban Heat Island. Q. J. R. Meteorol. Soc. 1982, 108, 1–24. [Google Scholar] [CrossRef]
- Lopez-Cabeza, V.; Loor-Vera, M.; Diz-Mellado, E.; Rivera-Gomez, C.; Galan-Marin, C. Decoding Outdoor Thermal Comfort: The Role of Location in Urban Canyon Microclimate. Sustain. Energy Technol. Assess. 2024, 72, 104095. [Google Scholar] [CrossRef]
- Hua, J.; Zhang, X.; Ren, C.; Shi, Y.; Lee, T.-C. Spatiotemporal Assessment of Extreme Heat Risk for High-Density Cities: A Case Study of Hong Kong from 2006 to 2016. Sustain. Cities Soc. 2021, 64, 102507. [Google Scholar] [CrossRef]
- Lin, J.; Wei, K.; Guan, Z. Exploring the Connection between Morphological Characteristic of Built-up Areas and Surface Heat Islands Based on Mspa. Urban Clim. 2024, 53, 101764. [Google Scholar] [CrossRef]
- Fang, Y.; Zhao, L.; Dou, B.; Wang, S. Research on the Identification and Evaluation of Thermal Environment Networks in Urban Agglomerations of the Middle Reaches of the Yangtze River Based on Mspa-Circuit. Ecol. Environ. 2023, 32, 1237. [Google Scholar]
- He, P.; Xue, J.; Shen, G.Q.; Ni, M.; Wang, S.; Wang, H.; Huang, L. The Impact of Neighborhood Layout Heterogeneity on Carbon Emissions in High-Density Urban Areas: A Case Study of New Development Areas in Hong Kong. Energy Build. 2023, 287, 113002. [Google Scholar] [CrossRef]
- Ulpiani, G. On the Linkage between Urban Heat Island and Urban Pollution Island: Three-Decade Literature Review Towards a Conceptual Framework. Sci. Total Environ. 2021, 751, 141727. [Google Scholar] [CrossRef] [PubMed]
- Huang, X.; Song, J.; Wang, C.; Chui, T.F.M.; Chan, P.W. The Synergistic Effect of Urban Heat and Moisture Islands in a Compact High-Rise City. Build. Environ. 2021, 205, 108274. [Google Scholar] [CrossRef]
- Jandaghian, Z.; Colombo, A. The Role of Water Bodies in Climate Regulation: Insights from Recent Studies on Urban Heat Island Mitigation. Buildings 2024, 14, 2945. [Google Scholar] [CrossRef]
- Mohammad, P.; Goswami, A. A Spatio-Temporal Assessment and Prediction of Surface Urban Heat Island Intensity Using Multiple Linear Regression Techniques over Ahmedabad City, Gujarat. J. Indian Soc. Remote Sens. 2021, 49, 1091–1108. [Google Scholar] [CrossRef]
- Oukawa, G.Y.; Krecl, P.; Targino, A.C. Fine-Scale Modeling of the Urban Heat Island: A Comparison of Multiple Linear Regression and Random Forest Approaches. Sci. Total Environ. 2022, 815, 152836. [Google Scholar] [CrossRef]
- Chen, H.; Zheng, S. The Influence of 2d/3d Urban Spatial Form Indicators on Surface Urban Heat Island Based on Spatial Regression Models: A Case Study of Hangzhou, China. In International Symposium on Advancement of Construction Management and Real Estate: 2022; Springer: Berlin/Heidelberg, Germany, 2022; pp. 840–855. [Google Scholar]
- Liu, Q.; Wang, J.; Bai, B. Unveiling Nonlinear Effects of Built Environment Attributes on Urban Heat Resilience Using Interpretable Machine Learning. Urban Clim. 2024, 56, 102046. [Google Scholar] [CrossRef]
- Garzón, J.; Molina, I.; Velasco, J.; Calabia, A. A Remote Sensing Approach for Surface Urban Heat Island Modeling in a Tropical Colombian City Using Regression Analysis and Machine Learning Algorithms. Remote Sens. 2021, 13, 4256. [Google Scholar] [CrossRef]
- Park, S.; Park, J.; Lee, S. Unpacking the Nonlinear Relationships and Interaction Effects between Urban Environment Factors and the Urban Nighttime Heat Index. J. Clean. Prod. 2023, 428, 139407. [Google Scholar] [CrossRef]
- Bansal, P.; Quan, S.J. Examining Temporally Varying Nonlinear Effects of Urban Form on Urban Heat Island Using Explainable Machine Learning: A Case of Seoul. Build. Environ. 2024, 247, 110957. [Google Scholar] [CrossRef]
- Bassani, F.; Garbero, V.; Poggi, D.; Ridolfi, L.; von Hardenberg, J.; Milelli, M. An Innovative Approach to Select Urban-Rural Sites for Urban Heat Island Analysis: The Case of Turin (Italy). Urban Clim. 2022, 42, 101099. [Google Scholar] [CrossRef]
- Fu, X.; He, B.-J.; Liu, H. Uncertainties of Urban Heat Island Estimation with Diverse Reference Delineation Method Based on Urban-Rural Division and Local Climate Zone. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2024, 17, 18818–18833. [Google Scholar] [CrossRef]
- He, J.; Shi, Y.; Xu, L.; Lu, Z.; Feng, M.; Tang, J.; Guo, X. Exploring the Scale Effect of Urban Thermal Environment through Xgboost Model. Sustain. Cities Soc. 2024, 114, 105763. [Google Scholar] [CrossRef]
- Zhang, J.; Tu, L.; Wang, X.; Liang, W. Comparison of Urban Heat Island Differences in the Yangtze River Delta Urban Agglomerations Based on Different Urban–Rural Dichotomies. Remote Sens. 2024, 16, 3206. [Google Scholar] [CrossRef]
- Liu, X.; Yue, W.; Yang, X.; Hu, K.; Zhang, W.; Huang, M. Mapping Urban Heat Vulnerability of Extreme Heat in Hangzhou Via Comparing Two Approaches. Complexity 2020, 2020, 9717658. [Google Scholar] [CrossRef]
- Pateman, T. Rural and Urban Areas: Comparing Lives Using Rural/Urban Classifications. Reg. Trends 2011, 43, 11–86. [Google Scholar] [CrossRef]
- Li, Y. Urban–Rural Interaction Patterns and Dynamic Land Use: Implications for Urban–Rural Integration in China. Reg. Environ. Chang. 2012, 12, 803–812. [Google Scholar] [CrossRef]
- Hidding, M.C.; Teunissen, A.T. Beyond Fragmentation: New Concepts for Urban–Rural Development. Landsc. Urban Plan. 2002, 58, 297–308. [Google Scholar] [CrossRef]
- Cattivelli, V. Where Is the City? Where Is the Countryside? Assessing the Methods for the Classification of Urban, Rural, and Intermediate Areas in Europe. J. Rural Stud. 2024, 109, 103288. [Google Scholar] [CrossRef]
- Kim, S.W.; Brown, R.D. Urban Heat Island (Uhi) Intensity and Magnitude Estimations: A Systematic Literature Review. Sci. Total Environ. 2021, 779, 146389. [Google Scholar] [CrossRef]
- Wang, Z.; Peng, Y.; Li, Y.; Zhou, X.; Xie, Y. Exploration of Influencing Factors of Land Surface Temperature in Cities within the Beijing-Tianjin-Hebei Region Based on Local Climate Zone Scheme. IEEE J. Sel. Top. Appl. Earth Obs. Remote. Sens. 2024, 17, 9728–9744. [Google Scholar] [CrossRef]
- Chen, Z.; Yu, B.; Yang, C.; Zhou, Y.; Yao, S.; Qian, X.; Wang, C.; Wu, B.; Wu, J. An Extended Time Series (2000–2018) of Global Npp-Viirs-Like Nighttime Light Data from a Cross-Sensor Calibration. Earth Syst. Sci. Data 2021, 13, 889–906. [Google Scholar] [CrossRef]
- Chakraborty, T.; Hsu, A.; Manya, D.; Sheriff, G. A Spatially Explicit Surface Urban Heat Island Database for the United States: Characterization, Uncertainties, and Possible Applications. ISPRS J. Photogramm. Remote Sens. 2020, 168, 74–88. [Google Scholar] [CrossRef]
- Khandelwal, S.; Goyal, R.; Kaul, N.; Mathew, A. Assessment of Land Surface Temperature Variation Due to Change in Elevation of Area Surrounding Jaipur, India. Egypt. J. Remote Sens. Space Sci. 2018, 21, 87–94. [Google Scholar] [CrossRef]
- Ramírez-Aguilar, E.A.; Souza, L.C.L. Urban Form and Population Density: Influences on Urban Heat Island Intensities in Bogotá, Colombia. Urban Clim. 2019, 29, 100497. [Google Scholar] [CrossRef]
- Mathew, A.; Khandelwal, S.; Kaul, N. Spatial and Temporal Variations of Urban Heat Island Effect and the Effect of Percentage Impervious Surface Area and Elevation on Land Surface Temperature: Study of Chandigarh City, India. Sustain. Cities Soc. 2016, 26, 264–277. [Google Scholar] [CrossRef]
- Kim, S.W.; Brown, R.D. Urban Heat Island (Uhi) Variations within a City Boundary: A Systematic Literature Review. Renew. Sustain. Energy Rev. 2021, 148, 111256. [Google Scholar] [CrossRef]
- Deilami, K.; Kamruzzaman, M.; Liu, Y. Urban Heat Island Effect: A Systematic Review of Spatio-Temporal Factors, Data, Methods, and Mitigation Measures. Int. J. Appl. Earth Obs. Geoinf. 2018, 67, 30–42. [Google Scholar] [CrossRef]
- Wang, Z.; Ishida, Y.; Mochida, A. Effective Factors for Reducing Land Surface Temperature in Each Local Climate Zone Built Type in Tokyo and Shanghai. Remote Sens. 2023, 15, 3840. [Google Scholar] [CrossRef]
Research Categories | Research Measurement | Data Source |
---|---|---|
Population activities | POP_D | https://hub.worldpop.org/geodata/summary?id=131 |
NTL | https://www.escience.org.cn | |
Built environment | RD | https://www.openstreetmap.org/ |
BD | https://data.tpdc.ac.cn/zh-hans/data/60dac98d-eec4-41df-9ad5-b1563e5c532c/ | |
BH | https://doi.org/10.5281/zenodo.7827315 | |
Urban topography | DEM | https://earthexplorer.usgs.gov/ |
Slope | ||
Aspect | ||
Ecological and climatic conditions | Wet | https://code.earthengine.google.com |
NDBSI | ||
NDVI | ||
Urban landscape pattern | PLAND | https://zenodo.org/record/8176941 |
LPI | ||
ED | ||
CA | ||
CONTAG |
Daytime | Nighttime | |||
---|---|---|---|---|
Model | XGBoost | SHAP | XGBoost | SHAP |
Urban area | DEM | DEM | POP_D | POP_D |
Wet | NTL | DEM | DEM | |
POP_D | Wet | RD | Wet | |
NDBSI | NDBSI | Wet | NTL | |
NDVI | POP_D | NDBSI | RD | |
RD | Slope | NDVI | NDBSI | |
NTL | RD | NTL | BD | |
Slope | NDVI | Slope | NDVI | |
Aspect | BD | BD | Slope | |
BD | Aspect | Aspect | ED | |
Rural area | DEM | RD | POP_D | POP_D |
POP_D | DEM | Wet | Wet | |
Wet | Wet | NDBSI | DEM | |
RD | NDVI | NDVI | NDBSI | |
NDVI | POP_D | RD | Slope | |
Aspect | NDBSI | DEM | RD | |
NDBSI | BD | Slope | BD | |
BD | NTL | Aspect | Aspect | |
Slope | Aspect | BD | NDVI | |
NTL | Slope | NTL | CONTAG |
Daytime | Nighttime | |
---|---|---|
Urban area | DEM&NTL | POP_D&DEM |
DEM&POP_D | POP_D&RD | |
DEM&RD | DEM&NTL | |
DEM&NDVI | DEM&RD | |
Wet&POP_D | DEM&Slope | |
Rural area | Wet&DEM |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wei, J.; Li, Y.; Jia, L.; Liu, B.; Jiang, Y. The Impact of Spatiotemporal Effect and Relevant Factors on the Urban Thermal Environment Through the XGBoost-SHAP Model. Land 2025, 14, 394. https://doi.org/10.3390/land14020394
Wei J, Li Y, Jia L, Liu B, Jiang Y. The Impact of Spatiotemporal Effect and Relevant Factors on the Urban Thermal Environment Through the XGBoost-SHAP Model. Land. 2025; 14(2):394. https://doi.org/10.3390/land14020394
Chicago/Turabian StyleWei, Junqing, Yonghua Li, Liqi Jia, Benteng Liu, and Yuehan Jiang. 2025. "The Impact of Spatiotemporal Effect and Relevant Factors on the Urban Thermal Environment Through the XGBoost-SHAP Model" Land 14, no. 2: 394. https://doi.org/10.3390/land14020394
APA StyleWei, J., Li, Y., Jia, L., Liu, B., & Jiang, Y. (2025). The Impact of Spatiotemporal Effect and Relevant Factors on the Urban Thermal Environment Through the XGBoost-SHAP Model. Land, 14(2), 394. https://doi.org/10.3390/land14020394