Long-Term Spatiotemporal Evolution Characteristics and Driving Force Analysis of Landscape Stability in the Forest–Grassland Ecotone of the Greater Khingan Mountains, Inner Mongolia, China
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Data Sources and Preprocessing
2.3. Research Methods
2.3.1. Conversion of Different Landscape Types
2.3.2. Calculation of Landscape Pattern Index
2.3.3. Calculation of Landscape Stability and Classification
2.3.4. Analysis of Spatial Migration of Landscape Stability Pattern
2.3.5. Analysis of Driving Factors of Landscape Stability Pattern
2.3.6. Spatial Heterogeneity of Dominant Driving Factors
3. Results
3.1. Landscape Type Transformation in the Study Area from 1990 to 2020
3.2. Dynamic Characteristics of Landscape Index in the Forest–Grassland Ecotone of the Greater Khingan Mountains in Inner Mongolia
3.3. Spatial Pattern Changes and Transfer Characteristics of Landscape Stability in the Forest–Grassland Ecotone of the Greater Khingan Mountains in Inner Mongolia
3.4. Migration Trends of the Spatial Pattern of Landscape Stability in the Forest–Grassland Ecotone of the Greater Khingan Mountains in Inner Mongolia
3.5. Analysis of Driving Factors for Landscape Stability in the Forest–Grassland Ecotone of the Greater Khingan Mountains in Inner Mongolia
3.6. Spatial Heterogeneity of Key Driving Factors in the Forest–Grassland Ecotone of the Greater Khingan Mountains in Inner Mongolia
4. Discussion
4.1. Changes in Landscape Stability Pattern in the Forest–Grassland Ecotone of the Greater Khingan Mountains in Inner Mongolia from 1990 to 2020
4.2. Spatial Migration Trend of Landscape Stability in the Forest–Grassland Ecotone of the Greater Khingan Mountains in Inner Mongolia from 1990 to 2020
4.3. Analysis of Driving Factors of Landscape Stability in the Forest–Grassland Ecotone of the Greater Khingan Mountains in Inner Mongolia from 1990 to 2020
4.4. Limitations and Future Research
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Myster, R.W. Ecotones Between Forest and Grassland; Springer: New York, NY, USA, 2012. [Google Scholar]
- You, G.Y.; Liu, B.; Zou, C.X.; Li, H.D.; McKenzie, S.; He, Y.Q.; Gao, J.X.; Jia, X.R.; Arain, M.A.; Wang, S.S.; et al. Sensitivity of vegetation dynamics to climate variability in a forest-steppe transition ecozone, north-eastern Inner Mongolia, China. Ecol. Indic. 2021, 120, 106833. [Google Scholar] [CrossRef]
- Guo, J.; Li, Y.H.; Ma, W.; Guo, Q.H.; Cheng, K.; Ma, J.; Wang, Z.W. Changes of Chinese forest-grassland ecotone in geographical scope and landscape structure from 1990 to 2020. Ecography 2024, 2024, e07296. [Google Scholar] [CrossRef]
- Manning, A.D.; Gibbons, P.; Lindenmayer, D.B. Scattered trees: A complementary strategy for facilitating adaptive responses to climate change in modified landscapes? J. Appl. Ecol. 2009, 46, 915–919. [Google Scholar] [CrossRef]
- Tian, C.; Yang, X.B.; Liu, Y. Edge effect and its impacts on forest ecosystem: A review. Chin. J. Appl. Ecol. 2011, 22, 2184–2192. [Google Scholar]
- Banerjee, S.; Thrall, P.H.; Bissett, A.; Heijden, M.G.A.; Richardson, A.E. Linking microbial co-occurrences to soil ecological processes across a woodland-grassland ecotone. Ecol. Evol. 2018, 8, 8217–8230. [Google Scholar] [CrossRef]
- Lashchinskiy, N.; Korolyuk, A.; Makunina, N.; Anenkhonov, O.; Liu, H.Y. Longitudinal changes in species composition of forests and grasslands across the North Asian forest steppe zone. Folia. Geobot. 2017, 52, 175–197. [Google Scholar] [CrossRef]
- Morgan, P.; Heyerdahl, E.K.; Strand, E.K.; Bunting, S.C.; Riser, J.P.; Abatzoglou, J.T.; Nielsen-Pincus, M.; Johnson, M. Fire and land cover change in the Palouse Prairie-forest ecotone, Washington and Idaho, USA. Fire Ecol. 2020, 16, 2. [Google Scholar] [CrossRef]
- Shumilovskikh, L.; Sannikov, P.; Efimik, E.; Shestakov, I.; Mingalev, V.V. Long-term ecology and conservation of the Kungur forest-steppe (pre-Urals, Russia): Case study Spasskaya Gora. Biodivers. Conserv. 2021, 30, 4061–4087. [Google Scholar] [CrossRef]
- Liu, L.C.; Lu, X.S.; Lv, S.H.; Lin, D. Analysis of landscape sustainability in Hulunbeir Forest-Steppe ecotone. Pratacult. Sci. 2008, 25, 119–124. [Google Scholar]
- Li, S.J.; Sun, Z.G.; Tan, M.H.; Guo, L.L.; Zhang, X.B. Changing patterns in farming-pastoral ecotones in China between 1990 and 2010. Ecol. Indic. 2018, 89, 110–117. [Google Scholar] [CrossRef]
- Hou, W.; Walz, U. Enhanced analysis of landscape structure: Inclusion of transition zones and small-scale landscape elements. Ecol. Indic. 2013, 31, 15–24. [Google Scholar] [CrossRef]
- Qiao, Z.; Yang, X.; Liu, J.; Xu, X.L. Ecological Vulnerability Assessment Integrating the Spatial Analysis Technology with Algorithms: A Case of the Wood-Grass Ecotone of Northeast China. Abstr. Appl. Anal. 2013, 2013, 207987. [Google Scholar] [CrossRef]
- Carlson, B.Z.; Renaud, J.; Biron, P.E.; Choler, P. Long-term modeling of the forest-grassland ecotone in the French Alps: Implications for land management and conservation. Ecol. Appl. 2014, 24, 1213–1225. [Google Scholar] [CrossRef] [PubMed]
- Shao, Q.F. The Research of Eco-Environment Remote Sensing Monitoring and Ecological Vulnerability Spatiotemporal Process Driving Mechanism in the Forest-Grass Ecotone of Northwest Sichuan. Ph.D. Thesis, Chengdu University of Technology, Chengdu, China, 2019. [Google Scholar]
- Simonson, J.T.; Johnson, E.A. Development of the cultural landscape in the forest-grassland transition in southern Alberta controlled by topographic variables. J. Veg. Sci. 2005, 16, 523–532. [Google Scholar] [CrossRef]
- Barros, C.; Thuiller, W.; Munkemuller, T. Drought effects on the stability of forest-grassland ecotones under gradual climate change. PLoS ONE 2018, 13, e0206138. [Google Scholar] [CrossRef]
- Smith, T.B.; Saatchi, S.; Graham, C.; Slabbekoorn, H.; Spicer, G. Putting process on the map: Why ecotones are important for preserving biodiversity. In Phylogeny and Conservation; Purvis, A., Gittleman, J.L., Brooks, T., Eds.; Cambridge University Press: Cambridge, UK, 2005; pp. 166–197. [Google Scholar]
- Mao, X.P.; Diao, J.J.; Fan, J.W.; Lyu, Y.Y.; Xu, W.G.; Wang, Z.; Li, M.S. Dynamic analysis and prediction of landscape pattern in Daxinganling forest-grass ecotone in Inner Mongolia. Acta Ecol. Sin. 2021, 41, 8623–8634. [Google Scholar]
- Lemessa, D.; Mewded, B.; Alemu, S. Vegetation ecotones are rich in unique and endemic woody species and can be a focus of community-based conservation areas. Bot. Lett. 2023, 170, 507–517. [Google Scholar] [CrossRef]
- Han, J.X.; Wang, R.Z.; Zhang, Y.G.; Jiang, Y. Research progress in plant and soil microbial diversity in forest-grassland ecotone. Chin. J. Ecol. 2024, 43, 2574–2586. [Google Scholar]
- Schindler, D.E.; Hilborn, R.; Chasco, B.; Boatright, C.P.; Quinn, T.P.; Rogers, L.A.; Webster, M.S. Population diversity and the portfolio effect in an exploited species. Nature 2010, 465, 609–612. [Google Scholar] [CrossRef]
- Li, W.J.; Kang, J.W.; Wang, Y. Distinguishing the relative contributions of landscape composition and configuration change on ecosystem health from a geospatial perspective. Sci. Total. Environ. 2023, 894, 165002. [Google Scholar] [CrossRef]
- Elmqvist, T.; Folke, C.; Nyström, M.; Peterson, G.; Bengtsson, J.; Walker, B.; Norberg, J. Response diversity, ecosystem change, and resilience. Front. Ecol. Environ. 2003, 1, 488–494. [Google Scholar] [CrossRef]
- Thébault, E.; Loreau, M. Trophic interactions and the relationship between species diversity and ecosystem stability. Am. Nat. 2005, 166, E95–E114. [Google Scholar] [CrossRef]
- Forman, R.T.T.; Godron, M. Landscape Ecology; John Wiley & Sons: New York, NY, USA, 1986. [Google Scholar]
- Wu, J. Landscape sustainability science: Ecosystem services and human well-being in changing landscapes. Landsc. Ecol. 2013, 28, 999–1023. [Google Scholar] [CrossRef]
- Turner, M.G. Disturbance and landscape dynamics in a changing world. Ecology 2010, 91, 2833–2849. [Google Scholar] [CrossRef] [PubMed]
- Peng, J.; Wang, Y.L.; Liu, S.; Wu, J.F.; Li, W.F. Landscape ecological evaluation for sustainable coastal land use. Acta. Geogr. Sin. 2003, 58, 363–371. [Google Scholar]
- Crews-Meyer, K.A. Agricultural landscape change and stability in northeast Thailand: Historical patch-level analysis. Agric. Ecosyst. Environ. 2004, 101, 155–169. [Google Scholar] [CrossRef]
- Wang, X.L.; Liu, X.L. Analysis on the stability of eastern Qilian mountainous landscape based on RS. Remote Sens. Technol. Appl. 2009, 24, 665–669. [Google Scholar]
- Zhang, X.; Wang, Z.X. Evaluation and characteristic analysis of urban landscape stability in karst mountainous cities in the central Guizhou Province. Acta Ecol. Sin. 2022, 42, 5243–5254. [Google Scholar]
- Tong, X.; Feng, Y. A review of assessment methods for cellular automata models of land-use change and urban growth. Int. J. Geogr. Inf. Sci. 2020, 34, 866–898. [Google Scholar] [CrossRef]
- McGarigal, K.; Marks, B.J. Fragstats: Spatial Pattern Analysis Program for Quantifying Landscape Structure; USDA, Forest Service, Pacific Northwest Research Station: Corvallis, OR, USA, 1995. [Google Scholar]
- Srivastava, P.; Pal, D.K.; Aruche, K.M.; Wani, S.P.; Sahrawat, K.L. Soils of the Indo-Gangetic Plains: A pedogenic response to landscape stability, climatic variability, and anthropogenic activity during the Holocene. Earth Sci. Rev. 2015, 140, 54–71. [Google Scholar] [CrossRef]
- Suir, G.M.; Sasser, C.E. Use of NDVI and landscape metrics to assess effects of riverine inputs on wetland productivity and stability. Wetlands 2019, 39, 815–830. [Google Scholar] [CrossRef]
- Clark, D.B.; Clark, D.A.; Oberbauer, S.F.; Kellner, J.R. Multidecadal stability in tropical rain forest structure and dynamics across an old-growth landscape. PLoS ONE 2017, 12, e0183819. [Google Scholar] [CrossRef] [PubMed]
- Margules, C.; Pressey, R.L. Systematic conservation planning. Nature 2000, 405, 243–253. [Google Scholar] [CrossRef] [PubMed]
- Farina, A. Principles and Methods in Landscape Ecology; Chapman & Hall: London, UK, 1998. [Google Scholar]
- Guisan, A.; Thuiller, W. Predicting species distribution: Offering more than simple habitat models. Ecol. Lett. 2005, 8, 993–1009. [Google Scholar] [CrossRef]
- Lindén, A.; Knape, J. Estimating environmental effects on population dynamics: Consequences of observation error. Oikos 2009, 118, 675–680. [Google Scholar] [CrossRef]
- Beckman, N.G.; Rogers, H.S. Consequences of seed dispersal for plant recruitment in tropical forests: Interactions within the seedscape. Biotropica 2013, 45, 666–681. [Google Scholar] [CrossRef]
- Song, Y.; Zhang, Q.J.; Zhou, T.T.; Pan, T. Spatio-temporal pattern and evolutionary heterogeneity of ecological land in the Yellow River Basin during 1980-2020. Resour. Dev. Market. 2024, 40, 1128–1139. [Google Scholar]
- Wu, J.G.; Zhang, Q.; Li, A.; Liang, C.Z. Historical landscape dynamics of Inner Mongolia: Patterns, drivers, and impacts. Landsc. Ecol. 2015, 30, 1579–1598. [Google Scholar] [CrossRef]
- Fair, K.R.; Anand, M.; Bauch, C.T. Spatial structure in protected forest-grassland mosaics: Exploring futures under climate change. Glob. Change Biol. 2020, 26, 6097–6115. [Google Scholar] [CrossRef]
- Chen, A.; Yang, X.C.; Guo, J.; Zhang, M.; Xing, X.Y.; Yang, D.; Xu, B.; Jiang, L.W. Dynamic of land use, landscape, and their impact on ecological quality in the northern sand-prevention belt of China. J. Environ. Manag. 2022, 317, 115351. [Google Scholar] [CrossRef]
- Militino, A.F. Mixed effects models and extensions in ecology with R. J. R. Stat. Soc. A 2010, 173, 938–939. [Google Scholar] [CrossRef]
- Lawley, D.N.; Maxwell, A.E. Factor analysis as a statistical method. J. R. Stat. Soc. D 2018, 12, 209–229. [Google Scholar] [CrossRef]
- Jia, W.J.; Wang, M.F.; Zhou, C.H.; Yang, Q.H. Analysis of the spatial association of geographical detector-based landslides and environmental factors in the southeastern Tibetan Plateau, China. PLoS ONE 2021, 16, e0251776. [Google Scholar] [CrossRef] [PubMed]
- Wei, W.; Zhang, M.; Yi, L.M.; Zhang, K. An analysis of the differences in evolution characteristics and influencing factors of the territorial spatial pattern between Fujian and Taiwan over the past 40 years. World Reg. Stud. 2024, 1–16. Available online: http://kns.cnki.net/kcms/detail/31.1626.P.20240930.1700.002.html (accessed on 1 December 2024).
- Wang, Y.Q.; Sun, X.Y. Spatiotemporal evolution and influencing factors of ecosystem service value in the Yellow River Basin. Environ. Sci. 2024, 45, 2767–2779. [Google Scholar]
- Zhang, P.; Zhang, Y.X.; Wang, Y.; Ding, Y.; Yin, Y.Z.; Dong, Z.; Wu, X.H. Analysis of temporal-spatial patterns and impact factors of typhoon disaster losses in China from 1978 to 2020. Trop. Geogr. 2024, 44, 1047–1063. [Google Scholar]
- Yi, J.Y.; Luo, M.L.; Bai, L.C.; Wu, Q.S. Quantitative attribution of topographic factors influencing vegetation indices in typical climatic zones: Based on geographic detector and GWR. J. China West Norm. Univ. Nat. Sci. 2024, 45, 457–465. [Google Scholar]
- Lv, Y.Y.; Wang, Z.; Xia, X.; Yuan, H.H.; Li, M.S.; Xu, W.G. Spatiotemporal evolutions and spatial processes of cultivated land landscape in Daxinganling forest-grass ecotone in the Inner Mongolia. Acta Ecol. Sin. 2023, 43, 1209–1218. [Google Scholar]
- Yuan, H.H.; Wang, Z.; Xu, W.G.; You, G.Y.; Zhang, J.L. Vegetation dynamics and influence factors in forest-steppe transition ecozone: The case of Daxing’an Mountains, Northeast China. Acta. Ecol. Sin. 2022, 42, 7321–7335. [Google Scholar]
- Yang, J.; Huang, X. The 30 m annual land cover dataset and its dynamics in China from 1990 to 2019. Earth Syst. Sci. 2021, 13, 3907–3925. [Google Scholar] [CrossRef]
- Xu, Q.Y.; Wang, W.W.; Mo, L. Evaluation of landscape stability in the Beijing-Tianjin-Hebei region. Acta Ecol. Sin. 2018, 38, 4226–4233. [Google Scholar]
- Turner, M.G. Landscape ecology: The effect of pattern on process. Annu. Rev. Ecol. Syst. 1989, 20, 171–197. [Google Scholar] [CrossRef]
- Su, H.M.; He, A.X. Land use analysis of Fuzhou City based on RS and geostatistics. J. Nat. Resour. 2010, 25, 91–99. [Google Scholar]
- Xie, X.P.; Chen, Z.C.; Wang, F.; Bai, M.W.; Xu, W.Y. Ecological risk assessment of Taihu Lake basin based on landscape pattern. Chin. J. Appl. Ecol. 2017, 28, 3369–3377. [Google Scholar]
- MacKenzie, D.I.; Royle, J.A.; Bailey, L.L.; Nichols, J.D.; Pollock, K.H.; Hines, J.E. Occupancy Estimation and Modeling: Inferring Patterns and Dynamics of Species Occurrence, 2nd ed.; Academic Press: Cambridge, MA, USA, 2017. [Google Scholar]
- Solhi, S.; Khosravi, G. Using a new method in the terrain landscape classification of Iran. Quant. Geomorphol. Res. 2020, 9, 132–154. [Google Scholar]
- Chen, H.M.; Liu, F.L.; Yang, B.W. Study on spatial and temporal changes of land use and landscape pattern evolution in Zhaotong city. Shanghai Land Res. 2024, 45, 92–98. [Google Scholar]
- Gao, Q.; Chen, S.Y.; Wang, H.Y. Study on spatial-temporal transition and driving factors of smart farms in China. Chin. J. Agric. Resour. Reg. Plan. 2024, 1–13. Available online: https://link.cnki.net/urlid/11.3513.s.20240905.1126.002 (accessed on 10 October 2024).
- Wang, J.F.; Xu, C.D. Geodetector: Principle and prospective. Acta. Geogr. Sin. 2017, 72, 116–134. [Google Scholar]
- Li, Z.Y.; Ma, T.X.; Cai, Y.M.; Zhai, C.; Qi, W.X.; Dong, S.K.; Gao, J.X.; Wang, X.G.; Wang, S.P. Stable or unstable? Landscape diversity and ecosystem stability across scales in the forest–grassland ecotone in northern China. Landsc. Ecol. 2023, 38, 3889–3902. [Google Scholar] [CrossRef]
- Tscharntke, T.; Tylianakis, J.M.; Rand, T.A.; Didham, R.K.; Fahrig, L.; Batáry, P.; Bengtsson, J.; Clough, Y.; Crist, T.O.; Dormann, C.F.; et al. Landscape moderation of biodiversity patterns and processes—Eight hypotheses. Biol. Rev. 2012, 87, 661–685. [Google Scholar] [CrossRef]
- Dong, J.Q.; Jiang, H.; Gu, T.W.; Liu, Y.X.; Peng, J. Sustainable landscape pattern: A landscape approach to serving spatial planning. Landsc. Ecol. 2022, 37, 31–42. [Google Scholar] [CrossRef]
- Li, H.F.; Wang, Y.Q.; Wang, J.; Song, S.Y.; Xu, D.Y. Landscape stability dynamics and their driving forces in core area of Ejina Oasis from 2013 to 2020. Bull. Soil. Water. Conserv. 2022, 42, 268–276. [Google Scholar]
- Zhou, G.M.; Li, X.J.; Wang, Z.Q.; Deng, Z.M.; Yu, M.F. Study on the change and stability of wetland landscape pattern in East Dongting Lake. Hunan. For. Sci. Technol. 2021, 48, 79–86. [Google Scholar]
- Zhang, G.S.; Cai, Y.Y.; Yang, X.C.; Yan, J.S.; Sun, J.W.; Wang, Q.M.; Zhan, S.C.; Huang, X.L. Evaluation of landscape stability and vegetation carbon storage value in Liaohe delta coastal wetland. Mar. Environ. Sci. 2023, 42, 612–621. [Google Scholar]
- Lu, T.; Zhao, S.T.; Zhou, C.Y.; Sun, J.Y. Change of landscape pattern in Caizi Lake Basin from 1992 to 2022. J. Hubei Univ. Nat. Sci. 2025, 47, 63–74. [Google Scholar]
- Soliman, M.; Newlands, N.K.; Lyubchich, V.; Gel, Y.R. Multivariate copula modeling for improving agricultural risk assessment under climate variability. Variance 2023, 16, 1–19. [Google Scholar]
- Xia, Y.; Li, J.; Li, E.H.; Liu, J.J. Analysis of the spatial and temporal evolution and driving factors of landscape ecological risk in the Four Lakes Basin on the Jianghan Plain, China. Sustainability 2023, 15, 13806. [Google Scholar] [CrossRef]
- Yan, Z.Y.; Wang, Y.Q.; Wang, Z.; Zhang, C.R.; Wang, Y.J.; Li, Y.M. Spatiotemporal analysis of landscape ecological risk and driving factors: A case study in the Three Gorges Reservoir Area, China. Remote Sens. 2023, 15, 4884. [Google Scholar] [CrossRef]
- Liu, Y.Z.; Cao, W.P.; Wang, F.Y. Spatiotemporal evolution of land cover and landscape ecological risk in Wuyishan National Park and surrounding areas. Land 2024, 13, 646. [Google Scholar] [CrossRef]
- Pecl, G.T.; Araújo, M.B.; Bell, J.D.; Blanchard, J.L.; Bonebrake, T.C.; Chen, I.; Clark, T.D.; Colwell, R.K.; Danielsen, F.; Evengård, B.; et al. Biodiversity redistribution under climate change: Impacts on ecosystems and human well-being. Science 2017, 355, eaai9214. [Google Scholar]
- IPCC. Sections. In Climate Change 2023: Synthesis Report. Contribution of Working Groups I, II and III to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change; Core Writing Team, Lee, H., Romero, J., Eds.; IPCC: Geneva, Switzerland, 2023; pp. 35–115. [Google Scholar]
- Jiang, L.H.; Zhao, W.; Lewis, B.J.; Wei, Y.W.; Dai, L.M. Effects of management regimes on carbon sequestration under the Natural Forest Protection Program in northeast China. J. For. Res. 2018, 29, 1187–1194. [Google Scholar] [CrossRef]
- Qiao, D.; Yuan, W.T.; Ke, S.F. China’s Natural Forest Protection Program: Evolution, impact and challenges. Int. For. Rev. 2021, 23, 338–350. [Google Scholar] [CrossRef]
- Liao, C.J.; Yue, Y.M.; Wang, K.L.; Fensholt, R.; Tong, X.W.; Brandt, M. Ecological restoration enhances ecosystem health in the karst regions of Southwest China. Ecol. Indic. 2018, 90, 416–425. [Google Scholar] [CrossRef]
- Zhai, J.W.; Sun, S.J.; Xue, B.B. Sensitivity of forest growth rate to temperature and precipitation change in Taihang Mountains. For. Ecol. Sci. 2001, 4, 324–328. [Google Scholar]
- Babst, F.; Bouriaud, O.; Poulter, B.; Trouet, V.; Girardin, M.P.; Frank, D.C. Twentieth century redistribution in climatic drivers of global tree growth. Sci. Adv. 2019, 5, eaat4313. [Google Scholar] [CrossRef]
- Li, M.H.; Du, J.K.; Li, W.T.; Li, R.J.; Wu, S.Y.; Wang, S.S. Global vegetation change and its relationship with precipitation and temperature based on GLASS-LAI in 1982-2015. Sci. Geogr. Sin. 2020, 5, 823–832. [Google Scholar]
PD | LSI | TECI | CONTAG | SHDI | SHEI | |
---|---|---|---|---|---|---|
PD | 1.000 | |||||
LSI | 0.983 ** | 1.000 | ||||
TECI | −0.215 | −0.211 | 1.000 | |||
CONTAG | 0.098 | 0.080 | 0.409 * | 1.000 | ||
SHDI | −0.398 * | −0.397 * | −0.235 | −0.902 ** | 1.000 | |
SHEI | −0.398 * | −0.396 * | −0.235 | −0.902 ** | 1.000 ** | 1.000 |
Judgment Criteria | Types of Interactions |
---|---|
q(X1∩X2) < Min(q(X1),q(X2)) | Nonlinear weakening |
Min(q(X1),q(X2)) < q(X1∩X2) < Max(q(X1),q(X2)) | Univariate nonlinear weakening |
q(X1∩X2) > Max(q(X1),q(X2)) | Bivariate enhancement |
q(X1∩X2) = q(X1) + q(X2) | Independent |
q(X1∩X2) > q(X1) + q(X2) | Nonlinear enhancement |
Year | Temperature | Precipitation | NPP | NDVI | Forest Area | Population | Nighttime Light |
---|---|---|---|---|---|---|---|
1990 | 0.2972 ** | 0.3494 ** | 0.2232 ** | 0.1064 ** | 0.0055 | 0.0646 ** | 0.0003 |
2000 | 0.3227 ** | 0.4492 ** | 0.1921 ** | 0.2350 ** | 0.0103 | 0.0539 ** | 0.0053 |
2010 | 0.4192 ** | 0.5049 ** | 0.0403 ** | 0.1139 ** | 0.0519 ** | 0.0093 | 0.0021 |
2020 | 0.4783 ** | 0.2082 ** | 0.0983 ** | 0.2206 ** | 0.0864 ** | 0.0025 | 0.0062 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Han, Q.; Wu, J.; Lin, W. Long-Term Spatiotemporal Evolution Characteristics and Driving Force Analysis of Landscape Stability in the Forest–Grassland Ecotone of the Greater Khingan Mountains, Inner Mongolia, China. Land 2025, 14, 396. https://doi.org/10.3390/land14020396
Han Q, Wu J, Lin W. Long-Term Spatiotemporal Evolution Characteristics and Driving Force Analysis of Landscape Stability in the Forest–Grassland Ecotone of the Greater Khingan Mountains, Inner Mongolia, China. Land. 2025; 14(2):396. https://doi.org/10.3390/land14020396
Chicago/Turabian StyleHan, Qingchi, Jinzhuo Wu, and Wenshu Lin. 2025. "Long-Term Spatiotemporal Evolution Characteristics and Driving Force Analysis of Landscape Stability in the Forest–Grassland Ecotone of the Greater Khingan Mountains, Inner Mongolia, China" Land 14, no. 2: 396. https://doi.org/10.3390/land14020396
APA StyleHan, Q., Wu, J., & Lin, W. (2025). Long-Term Spatiotemporal Evolution Characteristics and Driving Force Analysis of Landscape Stability in the Forest–Grassland Ecotone of the Greater Khingan Mountains, Inner Mongolia, China. Land, 14(2), 396. https://doi.org/10.3390/land14020396